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Abstract: When applying the Global Navigation Satellite System (GNSS) for precise kinematic
positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed
mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances
among these GNSS antennas are known and invariant. This information can be used to improve the
accuracy and reliability of the state estimates. For this purpose, the known distances between the
antennas are applied as a priori constraints within the state parameters adjustment. These constraints
are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS
data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show
that an application of distance constraints improves the accuracy of the GNSS kinematic positioning,
for example, by about 4 mm for the radial component.

Keywords: airborne gravimetry; shipborne gravimetry; GNSS sensors system; precise kinematic
positioning; a priori distance constraint; multiple kinematic stations

1. Introduction

Measuring the Earth’s gravity field is an important topic in many scientific and economic
applications, such as geodesy, geophysics, explorations, geoid determination, and satellite orbit
computation [1]. In this context, airborne and shipborne gravimetry play a very important role in
recovering the Earth’s gravity field in the range of medium to high frequencies [2]. In that work
area, precise kinematic positioning based on the Global Navigation Satellite System (GNSS) plays a
significant role [3], since the state information of a kinematic platform (a ship or an airplane) carrying
a gravimeter can be obtained independently from GNSS observations. Trajectory and attitude of such
a kinematic platform are indispensable information for analyzing gravimetry data. The acceleration
information derived from the GNSS position and/or velocity information for such a kinematic platform
can be used to separate the disturbing kinematic accelerations from the gravitational signal. Therefore,
the estimation of accurate state information for such a kinematic platform by precise GNSS positioning
is a key factor for any successful implementation of airborne and shipborne gravimetry [4–6].
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In our study, we used the data of a shipborne gravimetric campaign on the Baltic Sea which
was organized by the German Research Centre for Geosciences (GFZ) and the Federal Agency
for Cartography and Geodesy (BKG). The gravimetric measurements were taken near Greifswald,
Germany from 18 to 27 June 2013. The ship used for this campaign including the arrangement of the
GNSS antennas installed thereon is shown in Figure 1. The positions of these antennas were surveyed
with respect to the local reference frame of the vessel. Thus, the distances among the multiple GNSS
kinematic antennas are known and can be used to improve the accuracy and reliability of the state
estimates and to control their uncertainties. However, as explained later on, the distance used in this
study was determined in a different way, i.e., from GNSS observation.
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observation equations are formed, there is only one station that is used as a formal reference station. 
The other reference stations are processed formally as kinematic stations together with the actual 
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constraints based on the known station information are applied to other reference stations. In other 
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Figure 1. The ship used in the Baltic Sea gravimetric campaign and the positions of the three Global
Navigation Satellite System (GNSS) receiving antennas.

For this purpose, a method of GNSS kinematic positioning based on multiple kinematic stations
with multiple reference stations [7] was in a first step updated to use the known distances among the
multiple GNSS kinematic antennas as a priori constraints within the corresponding state parameters
adjustment. In a second step, the data of the mentioned Baltic Sea shipborne campaign have been
processed with and without these constraints. Finally, we summarize the findings from our application
of distance constraints for GNSS kinematic positioning.

2. Kinematic Positioning Based on A Priori Distance Constraints

The principle of the method of GNSS kinematic positioning with multiple kinematic and multiple
reference stations [7] can be briefly described as follows: When double difference (DD) observation
equations are formed, there is only one station that is used as a formal reference station. The other
reference stations are processed formally as kinematic stations together with the actual moving
kinematic stations, but, in contrast to the actual moving kinematic stations, a priori constraints based
on the known station information are applied to other reference stations. In other words, their
positions are known and treated as unchangeable. Without these constraints, they would actually be
kinematic stations.

Based on the classic Kalman filter theory and the method of GNSS kinematic positioning with
multiple kinematic and multiple reference stations, the principle of a priori distance constraints within
the state parameters was developed as briefly described in the following.

2.1. Classic Kalman Filter

The system state equation and observation equation of GNSS kinematic positioning are generally
expressed as [8]

Xi “ Φi.i´1Xi´1 ` Wi (1)



Sensors 2016, 16, 470 3 of 11

and
Li “ AiXi ` ei (2)

where Xi and Xi´1 are m ˆ 1 state vectors at epochs ti and ti´1, respectively. Φi.i´1 is a m ˆ m transition
matrix from state Xi´1 to Xi, and Wi is an m ˆ 1 error vector of system state model with zero mean
and covariance matrix ΣWi . Li is a n ˆ 1 measurement vector at epoch ti, Ai is a n ˆ m design matrix,
and ei is a measurement error vector with zero mean and covariance matrix Σi “ σ2

0 P´1
i , where σ2

0 is
the theoretical variance of unit weight and Pi denotes the weight matrix of observations.

The predicted state vector Xi and its covariance matrix ΣXi
are denoted by

Xi “ Φi,i´1X̂i´1 (3)

and
ΣXi

“ Φi,i´1ΣX̂i´1
ΦT

i,i´1 ` ΣWi (4)

The transition matrix Φi.i´ 1 of the state vector Xi and the covariance matrix ΣWi of the error
vector Wi of the Kalman filter system state model are described in the literature [8–10].

The error equations for the predicted state vector and the measurement vector are

VXi
“ X̂i ´ Xi (5)

and
Vi “ AiX̂i ´ Li (6)

where VXi
and Vi denote the estimators of the vectors Wi and ei, respectively.

According to the classical Kalman filter theory [8,10–14], the state estimate at epoch i can be
expressed as

X̂i “ Xi ` ΣXi
AT

i

´

AiΣXi
AT

i ` Σi

¯´1
`

Li ´ AiXi
˘

(7)

with its covariance matrix ΣX̂i
,

ΣX̂i
“

ˆ

I ´ ΣXi
AT

i

´

AiΣXi
AT

i ` Σi

¯´1
Ai

˙

ΣXi
(8)

where I is the identity matrix.

2.2. The Distance between Two Kinematic GNSS Antennas

When certain constraints in the GNSS kinematic state parameters of a multiple GNSS sensors
system are given, they should be taken into account in order to improve the positioning accuracy and
reliability. A typical example for such a constraint option is the known distance between two GNSS
antennas mounted on a kinematic platform. This distance is

dk1,k2
i “

c

´

xk1
i ´ xk2

i

¯2
`

´

yk1
i ´ yk2

i

¯2
`

´

zk1
i ´ zk2

i

¯2
(9)

where k1 and k2 are the kinematic stations (antennas) and (xi, yi, zi) their respective position vectors at
the epoch i. The precision of this distance was determined from the error estimates of the measurements
performed in order to determine it.

There are several approaches to deal with a priori constraints in Kalman filter applications [15],
including linearized constraints [16], nonlinear constraints [17], and timevarying constraints [18]. In
this study, a specific kind of a priori distance constraint is applied for the GNSS kinematic positioning,
as described in the following section.
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2.3. The A Priori Distance Constraints

Due to the offset of the GNSS antenna phase center, the distances between GNSS antennas are
difficult to measure precisely in a simple way (for instance by using a ruler). Therefore, in this study,
DD processing on ultrashort baselines is applied to measure the distances among GNSS antennas with
millimeter accuracy. These precisely known distances of kinematic antennas are used as the a priori
constraints by means of the so-called pseudo observation method, i.e., by expressing the constraints as
highly weighted observations that strengthen the structure of the measurement space directly.

When multiple kinematic stations are mounted on a moving platform, the linearized constraint
equation can be written as

D “ BiXi ` ε (10)

where D denotes the u ˆ 1 distance constraint vector at every epoch i, and Bi is a u ˆ m design matrix.
Xi is the m ˆ 1 unknown parameter vector at epoch i, and ε is a distance constraint uncertainty vector
with zero mean and covariance matrix Σd.

To express the distance constraints among the kinematic antennas as observation equations, error
Equation (10) can be combined with GNSS observation error Equation (6) of a classical Kalman filter as

«

Vi
Vd

i

ff

“

«

Ai
Bi

ff

X̂i ´

«

Li
D

ff

(11)

where Vd
i is an u ˆ 1 estimator vector for the uncertainty vector ε. The covariance matrix of

Equation (11) is

«

Σi 0
0 Σd

ff

.

According to the classical Kalman filter theory [8,10–14], the parameter estimate depending on
a priori distance constraints at epoch i can be expressed as

X̂i “ Xi ` ΣXi

”

AT
i BT

i

ı

¨

#«

AiΣXi
AT

i AiΣXi
BT

i
BiΣXi

AT
i BiΣXi

BT
i

ff

`

«

Σi 0
0 Σd

ff+´1

¨

«

Li ´ AiXi
D ´ BiXi

ff

(12)

and the a posteriori covariance matrix ΣX̂i
is

ΣX̂i
“ ΣXi

´ ΣXi

”

AT
i BT

i

ı

¨

#«

AiΣXi
AT

i AiΣXi
BT

i
BiΣXi

Ai BiΣXi
BT

i

ff

`

«

Σi 0
0 Σd

ff+´1

¨

«

Ai
Bi

ff

ΣXi
(13)

In this study, such a kind of a priori distance constraint is developed, which takes into account
their actual variance for the GNSS kinematic positioning. In order to achieve this, the accuracy of the
measurement of these distances is analyzed and introduced in this approach. This approach can be
treated as two groups of observations as well (see, for example, [19]).

In order to illustrate the impact of these distance constraints in GNSS precise positioning for
multiple kinematic stations, data of a shipborne gravimetric campaign were used as described in the
following section.

3. Experiment and Analysis

If the reference stations for a highly dynamic platform are located far away, it is difficult to get
sufficiently accurate state information for a kinematic platform using GNSS precise positioning [20].
In order to investigate this context, a benchmark is needed. Therefore, here in our study, GNSS DD
positioning results obtained by using the most closely located reference stations are regarded as the
“true value” for the comparison with results obtained using reference stations located far away [21].
In this case, the developed method was investigated for long baseline mode for comparison. This
method can be applied to airborne and shipborne kinematic platforms. However, it is difficult to get



Sensors 2016, 16, 470 5 of 11

more accurate state information for an airborne platform than such as obtained from GNSS kinematic
positioning. Therefore, GNSS data of the shipborne gravimetry campaign on the Baltic Sea were used
to illustrate the methodology, since the state information for a kinematic platform from the GNSS
ultrashort baselines can be used as a true value to compare it with the state information from GNSS
long baseline.

Ten days of GNSS and gravimetric data from 18 to 27 June 2013 were collected by GFZ and BKG in
the Baltic Sea near Greifswald, Germany. During this campaign, three GNSS antennas were mounted
on the ship. Their relative positions are shown in Figure 2.
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Figure 2. Relative positions of the kinematic GNSS antennas on the ship.

In order to investigate the capability of the new strategy, the GNSS data of the first day
(18 June 2013) were selected for testing. The GNSS stations KIN1 and KIN3 were taken as multiple
kinematic stations. Their known distance length of 26.342 m was used as distance constraint as
described in the following. The stations 0801 and 0775 of the Satellite Positioning Service (SAPOS),
which is operated by the Working Committee of the Surveying Agencies of the States of the Federal
Republic of Germany (AdV), were taken as nearby-located reference stations (distances < 30 km). Their
positions are shown in Figure 3. The IGS stations WARN and POTS were chosen as for-away-located
reference stations (distance ~50–200 km). The trajectory of the ship and the positions of the latter
reference stations are shown in Figure 3 as well. The hardware types of all GNSS receivers and antennas
are given in Table 1.
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Table 1. Hardware equipment of the chosen stations from the Baltic Sea gravimetric campaign.

Station Name Receiver Type Antenna Type With Radome

KIN1 JAVAD TRE_G3TH DELTA LEIAS10 NONE
KIN3 JAVAD TRE_G3TH DELTA ACCG5ANT_42AT1 NONE
0801 TPS NET-G3A TPSCR.G3 TPSH
0775 TPS NET-G3A TPSCR.G3 TPSH

WARN JPS LEGACY LEIAR25.R3 LEIT
POTS JAVAD TRE_G3TH DELTA JAV_RINGANT_G3T NONE

For the GNSS data processing, the HALO_GNSS software [22] was used for applying the methods
described in this study. Here, the dual-frequency carrier phase observations were used to form the
ionosphere-free combination. The wet tropospheric zenith path delay was estimated as a random walk
process, where the initial uncertainty was assumed to be 10 cm, and its spectral density 10´12 m2/s.
The justifications for the selection of these values were the slow motion of the ship and the small
changes in the height profile [9,23]. The two-way Kalman filter [24] was used for the parameter
estimation, and the selected data containing GPS and GLONASS observations with a sampling rate of
1 Hz were used for the calculation of the trajectories for the multiple kinematic stations KIN1 and KIN3.

As already explained, in order to demonstrate the capability of our approach, the state information
of kinematic platform was first calculated using the nearby reference stations. These results were
treated as “true values” for comparison. Then, the state information of the kinematic platform was
calculated using the far-away reference stations and was regarded as benchmark. Finally, our new
approach with a priori constraints was applied to this configuration. The improvement due to the new
approach should be obvious from these comparisons. For this purpose, three experimental scenarios
were realized with the following computational schemes:

Scheme 1 (Scenario for the nearby-located reference stations without distance constraints): The
trajectories of the multiple kinematic stations KIN1 and KIN3 were calculated, where 0801 and 0775
served as multiple nearby-located reference stations.

In general, it is difficult to know the true value of the exact position of a moving GNSS antenna.
In order to investigate the accuracy of the kinematic results, the distance between the two kinematic
stations KIN1 and KIN3 was calculated for each epoch. The apparent changes of this length are
shown in Figure 4, and the corresponding statistical results are given in Table 2. Because the results of
kinematic GNSS positioning are usually of lower accuracy than those of static GNSS positioning, and
this distance as a function of time came from two distinct kinematic antennas, the distance variation of
up to 10 cm can be accepted. Therefore, the trajectory as obtained from the kinematic positioning can
be treated as a “true value” with a respective standard deviation (STD) of 1.5 cm. Since the results for
KIN1 and KIN3 are of almost the same quality, only the results of KIN1 are used for comparisons in
the following scenarios.

Scheme 2 (Scenario with the far-away reference stations without distance constraints): The
trajectories of the multiple kinematic stations KIN1 and KIN3 were calculated, where WARN and
POTS served as multiple reference stations which are located far away from the kinematic stations.

The distance between the two kinematic stations KIN1 and KIN3 was calculated for each epoch.
The apparent changes of this distance are shown in Figure 5, and the respective statistical results
are provided in Table 2. The results demonstrate that the precision of Scheme 2 is lower than that
of Scheme 1, since in the case of the far-away reference stations, differential common error residuals
increase and may hamper the differential process, or may decrease the accuracy [25–27], for instance,
due to tropospheric path delay and ionospheric refraction effects.
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Figure 4. Apparent distance (as a function of time) between two kinematic antennas KIN1 and KIN3
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reference stations 0801 and 0775 (Scheme 1).

Table 2. The statistical results for the distance between KIN1 and KIN3 (Unit: m).

Scheme Reference Stations Min Max Mean STD

1 Nearby 26.282 26.406 26.342 0.015
2 Far away 26.261 26.428 26.338 0.022

Sensors 2016, 15, 470 8 of 12 

 

 

Figure 5. Apparent distance (as a function of time) between the two antennas KIN1 and KIN3 
without distance constraints; the trajectories of these antennas were estimated by using two 
far-away-located reference stations, WARN and POTS (Scheme 2). 

Table 2. The statistical results for the distance between KIN1 and KIN3 (Unit: m). 

Scheme Reference Stations Min Max Mean STD 
1 Nearby 26.282 26.406 26.342 0.015 
2 Far away 26.261 26.428 26.338 0.022 

The trajectories of KIN1 for the reference stations located far away were compared with the 
“true value” of Scheme 1. The comparison results are displayed in Figure 6, and their statistics are 
given in Table 3, showing that the achieved accuracy (in terms of RMS) is 5.8 mm, 4.5 mm, and  
36.8 mm for the north, east, and up directions, respectively. The large deflections that appear in 
Figure 6 between hours 15 and 16 are obviously caused by a lower number of visible satellites at that 
time. The total number of visible satellites (GPS plus GLONASS) is shown in Figure 7. 

 
Figure 6. Differences between the trajectories of KIN1 for the scenario with far-away-located 
reference stations (Scheme 2) and those obtained for Scheme 1. 

Figure 5. Apparent distance (as a function of time) between the two antennas KIN1 and KIN3 without
distance constraints; the trajectories of these antennas were estimated by using two far-away-located
reference stations, WARN and POTS (Scheme 2).

The trajectories of KIN1 for the reference stations located far away were compared with the “true
value” of Scheme 1. The comparison results are displayed in Figure 6, and their statistics are given in
Table 3, showing that the achieved accuracy (in terms of RMS) is 5.8 mm, 4.5 mm, and 36.8 mm for
the north, east, and up directions, respectively. The large deflections that appear in Figure 6 between
hours 15 and 16 are obviously caused by a lower number of visible satellites at that time. The total
number of visible satellites (GPS plus GLONASS) is shown in Figure 7.
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Table 3. Statistics for the differences between the positioning results for KIN1 obtained from Scheme 2
resp. 3 , and the corresponding results from Scheme 1 (Unit: mm).

Scheme Direction Min Max Mean RMS

2 vs. 1
North –27.0 23.0 –6.4 5.8
East –23.5 14.8 –6.4 4.5
Up –165.7 165.9 3.5 36.8

3 vs. 1
North –27.7 15.8 –6.4 5.8
East –21.6 16.4 –6.6 4.2
Up –161.6 145.4 0.0 33.1

Scheme 3: Based on Scheme 2, the a priori distance constraint was applied when calculating the
trajectories of KIN1 and KIN3.



Sensors 2016, 16, 470 9 of 11

The trajectory of KIN1 was compared with the “true value” of Scheme 1 as well. The differences of
the positions are shown in Figure 8, and corresponding statistical results are given in Table 3, showing
that the achieved accuracy is 5.8 mm, 4.2 mm, and 33.1 mm for the north, east, and up directions,
respectively. In comparison with Scheme 2, the new approach obviously improves the accuracy of the
GNSS kinematic positioning by 0.3 mm and 3.7 mm for the east and up directions.
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From the obtained computational results, the following conclusions can be drawn:
When applying the method of GNSS kinematic positioning (based on DD) for multiple kinematic

stations and multiple reference stations, the precision of the state estimates of the kinematic stations
when using far-away-located reference stations (Scheme 2) is lower than that obtained by the usage
of nearby-located reference stations (Scheme 1), since, in the first case, differential common residual
errors increase and may hamper the differential process, or may decrease the accuracy.

Because of the relationships or known information between state parameters used in GNSS precise
kinematic positioning, the accuracies of the estimated kinematic state parameters can be improved
by applying a priori distance constraints, especially in the up direction. It is worth pointing out that,
in this comparison, uncertainties occurs for both nearby and far-away reference stations, and it is
difficult to obtain a "true value" for the time variable position of a kinematic platform. Nevertheless,
this comparison method illustrates the performance of the approach applied in this study.

4. Conclusions

In order to improve the accuracy of GNSS kinematic positioning for a kinematic platform, a new
approach was proposed based on multiple GNSS receiving equipment mounted on this platform. In
our study, we make use of the distances among multiple mechanically fixed GNSS antennas, which are
usually known and invariant. Therefore, this information can be used as a priori distance constraints
to improve the RMS accuracy of the state estimates. We propose a special method for such a priori
distance constraints by considering the accuracy of the measured distance between the multiple
GNSS antennas when applying the constraints. Finally, the GNSS data of a shipborne gravimetric
campaign in the Baltic Sea was used to test this method, and the results show that the accuracies of
the estimated kinematic state parameters, using the a priori distance constraints, can be obviously
improved, especially in the up direction (an improvement of 3.7 mm).
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