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Abstract: Joint design of compressed sensing (CS) and network coding (NC) has been demonstrated to
provide a new data gathering paradigm for multi-hop wireless sensor networks (WSNs). By exploiting
the correlation of the network sensed data, a variety of data gathering schemes based on NC and
CS (Compressed Data Gathering—CDG) have been proposed. However, these schemes assume
that the sparsity of the network sensed data is constant and the value of the sparsity is known
before starting each data gathering epoch, thus they ignore the variation of the data observed by
the WSNs which are deployed in practical circumstances. In this paper, we present a complete
design of the feedback CDG scheme where the sink node adaptively queries those interested nodes to
acquire an appropriate number of measurements. The adaptive measurement-formation procedure
and its termination rules are proposed and analyzed in detail. Moreover, in order to minimize
the number of overall transmissions in the formation procedure of each measurement, we have
developed a NP-complete model (Maximum Leaf Nodes Minimum Steiner Nodes—MLMS) and
realized a scalable greedy algorithm to solve the problem. Experimental results show that the
proposed measurement-formation method outperforms previous schemes, and experiments on both
datasets from ocean temperature and practical network deployment also prove the effectiveness of
our proposed feedback CDG scheme.
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1. Introduction

Wireless sensor networks (WSNs) are currently deployed for many applications, such as
environmental monitoring, civil structure maintenance, military surveillance, and so on. In most
of these kinds of applications, sensor nodes in the network are set to periodically report their sensed
data (i.e., readings) to a sink node (or remote base station) through intermediate nodes’ relay. Under
such circumstances, energy efficiency becomes one of the dominating issues of this data gathering
process. Many solutions have been proposed based on various aspects, which include, among others,
topology control (e.g., [1]), sleep scheduling (e.g., [2]), mobile data collectors (e.g., [3]), and data
aggregation (e.g., [4–7]). The first three approaches focus on the energy efficiency of data gathering
protocols or strategies, while the last one aims at reducing the required number of data packets to be
sent to the sink node by eliminating data redundancy [8], hence it complements the others.

Generally speaking, depending on the information that is needed at the sink node, existing
data aggregation research falls into two categories: “functional” and “recoverable” [9]. The first one
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corresponds to cases where only some values of statistical function of the network sensed data (e.g.,
AVG, MAX, SUM) are required by the sink node. Alternatively, the second one is for applications
where the sink node needs the set of entire network sensed data. Compressed data gathering (CDG),
based on the theory of compressed sensing (CS, [10]) and network coding (NC, [11]), has recently
been proposed as a promising “recoverable” scheme, it enables the sink node acquire the complete
network sensed data in an energy-efficient manner, as well as balance the energy consumption among
sensor nodes.

First of all, we make some definitions on the problem to be discussed. Given a WSN of N
sensor nodes, each having a piece of reading xi pi “ 1, 2, . . . , Nq at each data gathering epoch, we
denote XN “ rx1, . . . , xNs

T as the network sensed data. In a typical CDG scheme, the sink node will
reconstruct XN by collecting only M pM ! Nqweighted sums of xi from the network rather than all
N original readings (in CS theory, these M weighted sums YM “ ry1, y2, ¨ ¨ ¨ , yMs

T are formed by
YM “ ΦXN , where the M-by-N matrix Φ is the measurement matrix (or called projection matrix), and
each yi is the corresponding measurement (or projection) result of XN ; unless otherwise specified,
“projection” and “measurement” are interchangeable hereunder). Such a reconstruction process is
guaranteed and performed based on an observation fact that, in most network deployment cases, XN
has a property called K-sparse (K ! N) under certain orthogonal transform domains (e.g., discrete
wavelet transform, discrete cosine transform [10,12]).

In most previous CDG studies, classical CS theory is directly adopted without concern for the the
WSN specialty, which inevitably incurs several shortcomings. For example, when processing a signal,
CS theory conventionally supposes that the sparsity (i.e., sparse degree) of this signal is fixed, while in
a more general network deployment environment, the sparsity of the data observed by the network
may change frequently. As shown in Figure 1, two 1000-reading datasets of ocean temperature data
(OTD) are plotted with red lines. These datasets were collected from the Pacific Ocean on 29 March
2014 (Figure 1a) and 2 April 2014 (Figure 1c), respectively [13].
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Figure 1. The sparsity varies in OTD datasets. (a) The Pacific Ocean temperature observed on 29 
March 2014 (OTD A); (b) The corresponding coefficients of OTD A after six-layer Daubechies2 
wavelet transformation; (c) The Pacific Ocean temperature observed on 2 April 2014 (OTD B); (d) The 
corresponding coefficients of OTD B after six-layer Daubechies2 wavelet transformation. 

By comparing these two figures, we can see that the sparsity is changing; specifically, there are 
61 larger coefficients after transformation of the first dataset (61-sparse signal), and only 53 in the 
second (53-sparse signal). There are also some other practical shortcomings, which will be 
elaborated in Section 3. To address these challenges, we propose an adaptive CDG scheme in this 
paper. During each data gathering epoch, we evaluate the current network sensed data at the sink 
node and adjust the measurement-formation process according to this evaluation. By doing so, it 
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Figure 1. The sparsity varies in OTD datasets. (a) The Pacific Ocean temperature observed on
29 March 2014 (OTD A); (b) The corresponding coefficients of OTD A after six-layer Daubechies2
wavelet transformation; (c) The Pacific Ocean temperature observed on 2 April 2014 (OTD B); (d) The
corresponding coefficients of OTD B after six-layer Daubechies2 wavelet transformation.

By comparing these two figures, we can see that the sparsity is changing; specifically, there are
61 larger coefficients after transformation of the first dataset (61-sparse signal), and only 53 in the
second (53-sparse signal). There are also some other practical shortcomings, which will be elaborated
in Section 3. To address these challenges, we propose an adaptive CDG scheme in this paper. During
each data gathering epoch, we evaluate the current network sensed data at the sink node and adjust
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the measurement-formation process according to this evaluation. By doing so, it forms a kind of
feedback-control process, and the required number of measurements is tuned adaptively according to
the real-time variation of data to be gathered.

From another point of view, despite CDG’s ability to reduce the global communication cost,
multiple studies show that the effectiveness of CDG is still affected by the strategy of the measurements’
formation process [9,12,14]. Several optimization schemes, such as Hybrid-CDG [9], are proposed
to form all of the measurement results through a single routing tree in each data gathering epoch.
To further reduce the energy consumption of such process, different from Hybrid-CDG, we supply
a measurement-formation algorithm in this paper, where each measurement-formation path is treated
individually in a data gathering epoch. Similar idea was also adopted by PB-CDG [14], yet the novelty
of our approach lies in the path-generation procedure and the underlying method of measurement
coefficients’ distribution, which omits the massive coordination among sensor nodes in the network.

The remainder of this paper is organized as follows: in Section 2 we first give a comprehensive
overview on the typical CDG scheme mentioned above. Then, we propose our explicit motivation
and main resolve method in Section 3. Next, we illustrate our data gathering approach in detail in
Sections 4 and 5. Simulation and practical experiment results are presented in Section 6. At last, we
address the conclusions in Section 7.

2. Related Work of Compressed Data Gathering

In non-aggregation data gathering schemes, data packets generated by sensor nodes are directly
forwarded to the sink node through a certain topology organization (e.g., the tree-type topology as
shown in Figure 2A). These data gathering schemes do not exploit the correlation of network sensed
data, resulting in the network forwarding a larger number of original packets; what’s more, in addition
to sending their own detected data, nodes that are closer to the sink node tend to relay a number of
packets from remote nodes (e.g., in Figure 2A, node #5 forwards 11 packets while each leaf node only
forwards one packet). Such an imbalance of energy consumption will inevitably lead to the quick
failure of the whole network. Thus, the lifetime of nodes which are closer to the sink node forms
a bottleneck in these data-gathering schemes.
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Figure 2. Non-CDG and typical CDG schemes. 

Plain-CDG, as shown in Figure 2B, is the earliest and the most rudimental data gathering 
scheme which exploits the CS and NC theory. During each data gathering epoch, every node needs 
to forward a fixed number of packets (denoted as ) to form  weighted sums  (we let = 3 
in Figure 2B, and = + +⋯+ , = 1,2,3 , where  is the reading of node #  

Figure 2. Non-CDG and typical CDG schemes.

Plain-CDG, as shown in Figure 2B, is the earliest and the most rudimental data gathering scheme
which exploits the CS and NC theory. During each data gathering epoch, every node needs to forward
a fixed number of packets (denoted as M) to form M weighted sums Yi (we let M = 3 in Figure 2B, and
Y “ ϕi1x1 ` ϕi2x2 ` ¨ ¨ ¨ ` ϕi11x11, i “ 1, 2, 3 , where xj is the reading of node #j and ϕij is its coefficient
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of this measurement). Note that each weighted sum corresponds to one measurement of network
sensed data, and after receiving these measurement results, the sink node can reconstruct the network
sensed data by adopting an appropriate CS reconstruction algorithm. Comparing to the Non-CDG
schemes, Plain-CDG can reduce the number of transmissions, and balance the transmission load
among sensor nodes.

The authors in [9] proposed a scheme based on Plain-CDG, called Hybrid-CDG (shown in
Figure 2C), to further reduce the number of transmissions. In the Hybrid-CDG scheme, nodes whose
degrees are equal to or less than M will employ the Non-CDG to forward their readings and the others
will employ the Plain-CDG scheme to generate M measurement packets. By comparing Figure 2C to
Figure 2B, it is easy to find that the Hybrid-CDG scheme indeed reduces the redundancy transmission
of the Plain-CDG (e.g., the leaf node #1 forwards three packets in Plain-CDG while only one packet in
Hybrid-CDG). More efficient data gathering schemes using random sparse measurements were first
introduced in [15] and developed in [14] as follows: at the beginning of each epoch, M projection nodes
are selected randomly to collect M measurements (i.e., each projection node collects one measurement),
meanwhile, each projection node is assigned or generates a sparse vector Φi by itself. Then, projection
node #i is obliged to inform all nodes whose coefficient ϕij ‰ 0 to report their contributions (ϕijxj) back.
After receiving all segments of a measurement (yi), the projection node sends the result to the sink node
through the shortest routing path. An example of such measurement-formation process is illustrated in
Figure 2D. To form the measurement result y1, as the projection node, node #5 has randomly generated
a sparse coefficient vector Φ1 “ rϕ11 0 ϕ13 0 0 0 0 0 ϕ19 0 0s, then, for these non-zero coefficients (ϕ11,
ϕ13 and ϕ19), it sends transmission requests to nodes #1, #3 and #9; these nodes reply to the requests
by sending their contributions back (e.g., node #3 will reply ϕ13x3). Note that, similar to other CDG
schemes, those packets can be merged into one single packet on their measurement formation path
(e.g., packets can be merged on nodes #3 and #5 for forming measurement y1—this packet-merging
process can be regarded as a network coding process [16]). Similarly, other measurements are formed
in the network and forwarded to the sink node. It is easy to see that these sparse measurement-based
CDG schemes would outperform prior dense schemes, because the formation of each measurement
only involves several nodes, and the rest of the nodes can still stay in an idle/sleeping mode to reduce
energy consumption.

3. Motivation and Proposed Method Design

3.1. Motivation of the Study

In most existing CDG studies, the network sensed data is considered to have a known and
fixed sparsity. Therefore, according to the CS theory, once a recovery algorithm is picked, an upper
bound of required measurements (O(Klog(N/K))) is determined. However, this assumption is not
practical, and even problematic. Firstly, as depicted in Section 1, the sparsity of data signals observed
in a real natural environment is changing, making it impractical to know the exact sparsity value before
reconstruction. Secondly, to successfully reconstruct the network sensed data, the necessary number of
measurements is continuously varying over a range, thus, taking a fixed upper bound as the number
of measurements may inevitably cause excessive measurements. To show this point, we carried
on an experiment to reconstruct an N-dimensional K-sparse signal from two typical measurement
methods, namely a Gaussian measurement method and a Bernoulli measurement method (each entire
measurement takes values of either ˘1 each with probability s/2, or 0 with probability 1 ´ s (0 < s < 1)).
We randomly generated an original signal x (N = 100, K = 10, s = 1/2), and to avoid the variations we
repeated experiments of each measurement method for 600 times and employed the same algorithm
(L1-formulation matching pursuit) on each reconstruction of x.

The experimental results are depicted in Figure 3. We can conclude that both measurement
ensembles exhibit high variance (mean values are 32.9450 and 33.8167, respectively; standard
deviations are 4.8468 and 4.9414, respectively) and the most minimum number of required



Sensors 2016, 16, 462 5 of 22

measurements are lower than the upper bound (50). This explains that schemes relying on an upper
bound can guarantee successful data recovery, but it often means that many unnecessary measurements
are taken (in our experiment 17.5 and 16.18 of 50 on average). For CDG applications, as shown in
Figure 2, the formation of each measurement result requires processing and forwarding through
several intermediate nodes; thus, reducing the unnecessary measurements will definitely decrease
nodes' energy consumption.
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Note that, comparing to the dense measurement method, we are particularly interested in
the sparse measurement method. The reason is the sparse measurement method requires a very
similar number of dense measurements (as shown in Figure 3), while for CDG applications, sparse
measurement coefficient vector leads to a fewer interested nodes (interested nodes are the nodes whose
corresponding coefficient of such measurement is non-zero) than that of dense method in the formation
of each measurement, and thus other nodes can keep sleeping to save energy. For the sparse Bernoulli
example in Figure 3, we experimented with s = 1/2, thus there were averagely 50% fewer nodes in the
formation of each measurement than that of dense Gaussian method.

3.2. Main Program of the Proposed Method

In the CDG scheme, the key problem is how these measurements will be formed and sent to the
sink node in an energy-efficiently manner. As we mentioned above, in actual network deployment,
network sensed data is in fluctuation, and thus, the sparsity also changes with time. Given that the
required number of measurements (M) cannot be decided at the beginning (it is up to the sparsity of
the network sensed data X), it is inappropriate to use a specific upper bound in previous researches.
In order to make up this defect, we propose a feedback control strategy without the requirement of
having the specific sparsity knowledge of the network sensed data. The procedure is as follows (as
shown in Figure 4 and Algorithm 1). During each epoch, the sink node evaluates the reconstruction
quality of measurements which have been received; if the reconstruction quality indicators have not
been obtained, a feedback packet will be sent to inform the nodes that additional ∆M measurements
are required. This measurement-reconstruction process will repeat until the reconstruction quality is
satisfied. Therefore, unlike existing schemes, a typical feature of our scheme is that the measurement
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procedure during each epoch is separated into several rounds. Since the network sensed data is
adaptively and progressively reconstructed in our scheme, the sink node can also satisfy the varying
levels of quality requirement of network sensed data by different users.
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Algorithm 1: Main Procedure of the Proposed Scheme

Input: Reconstruction quality requirement, time of each data gathering period T
Output: Network sensed data X in epoch Ti
1 Initiate the network settings, flag = 1
2 If clock interrupt of Ti is received do
3 generate feed-back packet and propagate it to the network
4 ∆M measurements are propagated to the sink node through designed routing architecture
5 the sink node receives and adds these projections into projection pool and gets reconstruction result X̂
6 evaluate X̂
7 If stopping rule is achieved then
8 flag = 0
9 Ifend
10 While flag = 0
11 Ifend
12 Return X̂

4. Measurement Formation Process

According to the description in Section 2, CDG schemes require a certain number of
measurements of network sensed data, and these measurement results are generated and aggregated
on measurement-formation paths (i.e., trees). As each measurement is a linear combination of multiple
contributions, each of which is generated by multiplying the reading of an interested node and its
corresponding measurement coefficient, an underlying question surfaces that how the measurement
coefficients are generated and distributed. For the example proposed in Figure 2D, before responding to
the requirement of the formation of the measurement y1, interested nodes #1, #3 and #9 should receive
their coefficients first. One may think that the sink node can pack and broadcast each measurement
coefficient vector Φi to the network during each data gathering epoch, and every node in the network
can directly acquire its measurement coefficient vector by monitoring these packets. However, for
a WSN which has dozens of sensor nodes deployed in a large harsh field, such a process will incur a very
heavy overhead of the time slice. What’s worst, such broadcasting requires the synchronization among
nodes in the network, thus it is impractical, especially for those WSNs applying sleeping mechanisms.

Considering the tree-type and sink-rooted measurement-formation path which covers all
interested nodes, we propose to generate the measurement coefficients during constructing these paths.
We achieve this object by associating a pseudo-random generator, which is an algorithm publicly known
by both the sink node and sensor nodes in the network. In each measurement-coefficient-generating
procedure, the sink node first produces a global seed corresponding to this measurement (in fact,
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the sink node’s running time would be a greater candidate for this global seed). Once the interested
nodes in the network receive this global seed, it can generate its own measurement coefficient by
adding the node ID. The sink node can generate a sparse coefficient vector Φi, where each element
Φij is randomly generated by using the group seed: (global seed Si, node ID j). Thus, coefficients
in Φi obey an independent and identical distribution (i.i.d.) and the sink node can programme
the measurement-formation path according to Φi. For the measurement y1 proposed in Figure 2D,
such measurement-formation process is depicted in Figure 5, and two contribution packets can be
merged on node #3. Now, there’s still an issue remaining, i.e., how to energy efficiently build an
optimal measurement-formation path which covers all interested nodes. In other words, how to
ensure that all interested nodes in the network can receive the global seeds efficiently, and meanwhile
how to minimize the total transmission cost. In the following sections, we would like to present our
measurement-formation method.
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4.1. Construction of the Measurement-Formation Path (Tree)

According to the perspective of graph theory, this measurement-formation process comes down
to constructing a sink-rooted path which covers all interested nodes. To improve the efficiency of
measurement formation, the total length of this tree should be minimized. Thus, the construction of
such optimal tree is a typical Steiner minimum tree problem [17]. Unfortunately, it has been proved
to be a kind of NP-complete problem [18]. To solve this problem, a heuristic method based on the
All-Pair-Shortest-Paths (APSP) [14] algorithm has been proposed for CDG applications. However,
APSP tries to form a line-shape measurement-formation path which does not consider the wireless
transmission characteristics of WSNs. For example, the total lengths of both the left and right trees
in Figure 6 are 6, but if we consider the eavesdropping characteristics of the wireless channels used
in WSNs, the actual transmission overheads of the left and right trees are 6 and 4, respectively. From
this example, we can find that the overhead of the construction of this tree depends on the number of
non-leaf nodes, namely the number of relay nodes. Thus, this is a Maximum Leaf Nodes-Minimum
Steiner Nodes (MLMS) problem, i.e., we need to build a sink-rooted minimum Steiner tree (denoted
by T) that covers all interested nodes (denoted by I). Note that not all interested nodes are located
on the leaf nodes, some can also act as non-leaf nodes. MLMS tree has the requirement to minimize
the number of introduced non-interested nodes (or called Steiner nodes), and maximum number
of leaf nodes. In the next subsection, we will present the mathematical model of this problem, and
after that, a global approximation algorithm is designed to solve this problem. Note that, classical
converge-cast protocols can be a good candidate for data aggregation schemes as well as those CDG
applications which do not consider the measurement coefficients generation/distribution (these CDG
applications assume that nodes in network have already been assigned the measurement coefficients).
Through this local gradient-routing mechanism, measurement results can be safely reported to the
sink node. We proposed our MLMS tree-shape method based on an overall consideration of path
generation, coefficients generation/distribution and the measurement results’ formation, and the
measurement-formation path is created at the time of the global seed distribution.
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4.2. Mathematical Model of MLMS Problem

We describe the WSN as a connected graph G “ xV, E, Ty, where V is the set of nodes; E is the
set of undirected edges connecting any two nodes that can directly communicate with each other.
T “ tIni, Si, Yu , i “ 1, 2, . . . , M is the set of M measurement-formation routing trees. Ini is the set of
interested nodes of ith measurement, and Si (Si Ă V ´ Ini) is the set of Steiner nodes, Yi “ tyt

iju is
a binary variable indicating whether there is an edge between node i and node j for tree t, when (i, j) is
the edge of the optimal Steiner tree t, yij “ 1, otherwise, yij “ 0. Then the objective and constraints of
our MLMS construction problem can be formulated as below:

Min z “
M
ÿ

t“1

ÿ

pi,jqPE

yt
ij, s.t. (1)

ÿ

i:pi,jqPE
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i,jPIiYSi
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ˇ

ˇIni Y Si
ˇ
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ˇIni Y Si
ˇ

ˇ´1 (4)
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N
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V
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Constraint (2) limits each interested node that can only connect with one Steiner node. By using
Constraint (3), the degree of each Steiner node is limited to no less than 2. Constraint (4) ensures that
the result we obtained is a spanning tree. Constraint (5) is a restriction on the number of interested
nodes for the spanning tree.

4.3. Scalable Algorithm for MLMS Construction

Notice that all interested nodes Iv within the communication range of node v can be considered
to come from the same group, and based on this circumstance, we can perform a greedy iterative
algorithm to reduce the complexity of MLMS construction problem. Without loss of generality, node v
can perform the iteration operation on behalf of other nodes in such a group. During each iteration,
we first select the node that connects the most interested nodes or groups; combine this node and its



Sensors 2016, 16, 462 9 of 22

associated nodes or groups to form a new group; and we repeat this process until find out all groups.
Next, in order to make group leader nodes and the remaining interested nodes be connected with
the sink node, an optimal Steiner tree approximation algorithm is required. Since this problem is
NP-complete, we proposed an alternative algorithm which is built upon the minimum spanning tree
(MST) algorithm. The scope to run the MST is the closure that takes the sink node as a fulcrum and
contains all the remaining interested nodes. Then, we perform the Graham scan algorithm to obtain
a convex hull of all remaining groups. At last, we perform the MST algorithm to connect these nodes
in convex hull. Detailed description of this algorithm is shown in Algorithm 2. It is easy to see that
for each measurement formation tree, maximum iterations times for group formation is ρ/2; and for
the node-sparse graph, the proposed algorithm has a complexity of O

`

ρ2d2˘, and for the edge-sparse
graph is O

`

ρ2d2 ` nlogn` n2˘, where d is the average degree of the nodes in network, n is the number
of edges and ρ is the number of interested nodes.

Algorithm 2: Construction of the Measurement-Formation Path

Input: Sparse measurement coefficients vectors Φ1, Φ2 . . . , ΦM each with n i.i.d. elements; nodes’
maximum communication range Rcomm;
Output: Set of measurement formation a trees T “ tT1, T2, . . . , TMu, Ti “

 

Ini, Si, Yi(

1 For each measurement i “ 1, 2, . . . , M
2 Calculate the set of interested nodes Ini “

 

all nodes s.t. Φij ‰ 0, j “ 1, 2, . . . , n
(

.
3 Calculate the set of neighbor nodes Ne “ teach node v s.t. dist pv, tq ď Rcomm, v P V, t P Iniu.
4 Do
5 Calculate the number of edges incident from Ne to Ini (denoted as De t|Ne|u).
6 If Max pDe t|Ne|uq ě 2
7 Remove all adjacent nodes of node v from Ini where v P Ini and De tvu “ Max pDe t|Ne|uq
8 Add node v into Ini
9 Renew Ne and Ini
10 Ifend

11 While (
ˇ

ˇInnew
i

ˇ

ˇ ă

ˇ

ˇ

ˇ
Inold

i

ˇ

ˇ

ˇ
).

12 Calculate the convex hull (denoted as Cl) of set NeY tsinku by using Graham scan method
13 Construct the MST which takes the sink as a root and connects all Cl nodes
14 Ti “

 

Ini, Cl, Yi( where Yi recorded the edge information of such MST
15 Forend
16 Return T “ tT1, . . . , TMu

4.4. MLMS Tree Construction and Maintenance

In order to avoid a large number of control packets caused by constructing MLMS trees, after
calculating the approximate minimum cost MLMS path T, we let the sink node pack the information
of T with the global seed into several packets. Through the nodes’ relay of these packets the MLMS
tree is constructed orderly (as shown in Figure 7), but for a large-scale network (meaning there are
many interested nodes in each measurement and the path from the sink node to the interested nodes
may be extremely deep), the complete path information will take up a lot of space in the packet head.
Due to the length limitation of packets transmitted in the WSN, the sink node needs to compress and
encode the information of T.

Noticing that Algorithm 2 divides the neighboring interested nodes into a group, we can use the
effect of wireless communication to locally broadcast such packets at each branch node and thus all
its neighbors can overhear them. Thus, in the branches of the MLMS path, we only need to encode
the branch node information and add the local broadcast hops to the packet header, rather than the
information of all interested nodes. In this way, we can compress the path information to reduce the
number of control packets.
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As shown in Figure 7, all interested nodes and branch nodes are in four groups a, b, c and d, and
we can guarantee that all interested nodes can receive the corresponding global seed simply by coding
the information of branch nodes into the packet header, and the MLMS path can be constructed in
disseminating such packets. Obviously, this mechanism is affected by the density of the interested
nodes (i.e., the proportion of the number of interested nodes to the total number of network nodes),
and we will evaluate it in Section 6.

4.5. Maintenance of MLMS Measurement-Formation Path

WSNs are always deployed in a harsh environment, where unreliable wireless links and failure
of certain nodes are prevalent, which potentially leads to the failure of creating and maintaining
the MLMS path. In fact, the failure of any intermediate node compromises the delivery of all data
aggregated and sent by the previous nodes in the path. Hence, some improvements to the scheme
should be implemented. We will discuss this problem from two aspects: the nodes failure and the
packets loss.

Because the failures of other nodes will not affect the current MLMS measurement formation
process, we mainly deal with the node failure on the MLMS path. If a node has failed, a new routing
path should be established in a timely fashion, and the information of this failed node should be
reported to the sink node to guide the building of another MLMS path. Then, two kinds of node failures
on a MLMS path will be discussed below, including the group head node failure and the ordinary node
failure. If a group head node at the end of MLMS path has failed, a new head node needs to be selected
to continue to transmit packets of nodes in the group. Through dividing the remaining nodes into
several small groups, we can choose the node which has the second-highest number of neighbor nodes
to act as a new group head. If a node on the path fails to operate, its upstream node will choose the
next neighbor nodes, which is similar to the GPSR protocol [19], and continue to transmit the packet,
since all routing information (heading to interested nodes) is encoded into the packet head. As shown
in Figure 8, when node #5 has failed, and its upstream node #4 encounters this situation, according to
the working nodes in the neighbors, it will automatically select a next-hop node (e.g., node #6). But at
this time, the routing path is probably not the optimal path, and if necessary, the optimal MLMS path
should be recalculated.

For the node-failure message return, we need to respectively deal with node failures in different
measurement-formation periods. In the distribution of the global seed, we can use the Piggyback
method, which allowing the sender to add the ID of the failure node to the fixed position of
seed-distribution packet. As node #4 sends packets to node #6, because node #3 can eavesdrop
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on the packet, it writes the ID of failure node #8 into a corresponding fixed position of its next packet to
be sent, and in turn, until the failure information of node #5 reversely backtracking to the Sink through
the normal data channel.
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Therefore, without increasing any control packet, by adopting the eavesdropping property,
information about failed nodes is quickly reported to the Sink, while for the information return of the
failed nodes in the process of measurement-formation, we can directly write the ID of the failed node
to the fixed position of the measurement-formation packet. With the return of measurement-formation
packets, the sink node can directly obtain the information of failing nodes.

For each measurement formation process, both in the global seed distribution period and the
establishment of measurement result, it will inevitably experience packet losses, and if the packet
losses occur without a recovery mechanism, failure of this measurement formation will be induced,
definitely. If a node in MLMS path discoveries that several packets in a sequence are not received
within an acceptable TTL time, it will ask the upstream node for these packets along the reverse
path. If the upstream node does not keep these packets, this process will continue until reaching the
interested nodes. As shown in Figure 8, if node #4 fails to receive the packet from #6, node #4 will
request this packet from its upstream node #6; if node #6 does not keep it, node #6 will request its
upstream node #8 for this packet, and such process will be repeated until the packet is found. Of course,
in order to further improve the reliability and recover the lost packets timely, we can set nodes around
the MLMS paths to buffer the packets they have eavesdropped on; when certain packets are lost,
they can be recovered quickly and accurately through multicast inquiry messages to the neighbor
nodes. What’s more, a consultation method can also be used to further improve the reliability of packet
transmission (for example, three-handshake negotiation). The disadvantages of these two methods are
the large overhead of transmitting control messages, and we will evaluate it in Section 6.

5. Adaptive Termination Rule of the Measurement-Formation

As we mentioned before, after choosing a reconstruction algorithm (such as BP, or MP), the
sink node can reconstruct the K-sparse original signal with the probability close to 1 as long as it
receives a certain number of measurement results (theoretically, O(KlogN)). However, as shown in
Section 3, this bound cannot be applied to our method directly, because it requires prior knowledge
of the sparsity information of the network sensed data. By using the conclusion from “sequential
compress sensing [20]”, an adaptive termination condition of measurement procedure was proposed
in literature [21]. Specifically, assume that we can obtain measurement result of a K-sparse signal
x (x P RN, K is unknown) step by step (each step gets one measurement result and we denote the
measurement on step i as yi “ ϕix); if the reconstruction result on step M is x̂M and x̂M “ x̂M´ 1, then
x̂M is the result which we need (i.e., x̂M “ x) with probability 1.

Although this termination rule is very concise, it still has some limitations when applied it to
CDG for WSNs. Because this rule is based on the dense measurement method (each measurement
coefficients vector ϕi obey Gaussian distribution), as shown in Section 2, each measurement formation
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will concern every node in the network, which will lead to more energy consumption than the sparse
measurement method. On the other hand, coefficients in the measurement vector of this termination
rule are continuous; thus, it is very difficult to generate on cheap WSN sensor nodes. Therefore, we need
to find a termination rule for the sparse measurement method in this study. The difference emerging
from the dense Gaussian measurement method is that the probability of being nonsingular for each
submatrix of the measurement coefficient matrix is no longer 0. In order to meet our specific demands,
we modified the termination rule in [20] to obtain agreement for a certain number of consecutive
measurements (denoted as ∆M) (as shown in Proposition 1). Note that, we assume that the sink node
can obtain and reconstruct the sparse Bernoulli measurement results step by step, and x represents the
N-dimensional data vector which is desired by the sink node in each data-gathering epoch.

Lemma 1. Let v be an n-dimensional sparse Bernoulli vector (v P t´1, 0, 1un) and ||v0|| “ λ p0 ă λ ď nq.
Let W be a deterministic w-dimensional subspace of Rn

p0 ă λ ă w ď nq, then Probpv P Wq ď 3w´n.

Proof. Given W being a w-dimensional subspace, there exist w coordinates ci1, . . . , ciw that determine
all the other n-w coordinates of an arbitrary vector c “ pc1, . . . , cnq P W. Thus, if we condition on
the coordinates ci1, . . . , ciw of v, there is at most one case to make v P W in the other n-w coordinates.
Hence the probability of v P W is at most 3´pn´wq.

Proposition 1. Suppose that the sink node has got M´ 1 measurement results in previous M´ 1 steps, and at
step M, if the sink node have got the measurement result yM from the network, it can get a reconstruction result of
network sensed data (denote as x̂M) from these received measurement results; if x̂M “ x̂M´1 “ . . . “ x̂M´∆M,
x̂M is the reconstruction result which we need with probability no less than 1´ 3´∆M.

Proof. We prove this proposition by using argumentum ad absurdum. We denote the measurement
coefficient vector at Step i as ϕi, and the measurement result of Step i as yi. Assume that, x̂M “ x̂M´1 “

. . . “ x̂M´∆ M and x̂M is not the correct reconstruction result of x, then x ‰ x̂M´∆M “ . . . “ x̂M

is valid. Because we have obtained the solution result x̂M´∆M at the Step M ´ ∆M, equation
pϕM´∆Mq

T x̂M´∆M “ yM´∆M “ pϕM´∆Mq
Tx comes into existence. Thus, according to the assumption

that x̂M´∆M “ x̂M, it is easy to obtain pϕM´∆Mq
T
px ´ x̂Mq “ 0. By following this idea, for ∆M

measurement coefficient vectors generated from Step M ´ ∆M ` 1 to Step M, we can also get
equationspϕiq

T
px ´ x̂Mq “ 0, i “ M ´ ∆M ` 1, . . . , M. Let V be a vector space which is spanned

from the non-zero vector x̂ ´ x̂M, and if this equation set is correct, entire ∆M measurement
coefficient vectors ϕi must exactly belong to the orthogonal complement of V (denoted as WK where
WK “

!

x
ˇ

ˇ

ˇ
x P RNs.t. px, yq “ 0 f or all y P V

)

). For a 1-dimensional nonzero linear transformation

px´ x̂Mq1, its orthogonal complement is an (n´ 1)-dimensional subspace of RN . Hence, from Lemma
1, it can be seen that the probability of an imprecise solution x̂M being calculated and kept is greater
than 3´∆M, as desired.

Proposition 1 provides us a termination rule of sparse Bernoulli measurement formation by
comparing several construction results. In our experiments, signals are generated with the same
signal length and sparse degree as shown in Figure 3. We test the signal reconstruction under the
termination rule proposed in Proposition 1 with different ∆M values, and the experiment results are
shown in Table 1. We can see that Proposition 1 presents a very efficient terminating condition in the
reconstruction of sparse Bernoulli measurement method. The larger the quantity (∆M) is adopted, the
lower error reconstruction generates (i.e., 128 errors happen under ∆M = 1, while only 2 under ∆M = 2).
Thus, our data gathering process can adapt to the various requirements of network applications by
adjusting the value of ∆M.
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Table 1. Data reconstruction experiment on sparse Bernoulli measurement by using Proposition 1.

∆M Errors Upper Bound Average Measurement Standard Deviation

1 128 200 31.0733 6.9430
2 2 200/3 34.8133 4.8461
3 0 200/9 36.7350 4.8882
4 0 200/27 37.9867 4.8428

6. Numerical Results

We evaluate the performance of the proposed and existing schemes through both simulations
and practical experiments. We separate our experiments into two main parts: (1) the performance
simulation of the cost of MLMS measurements formation and (2) the reconstruction of sensed data
in the network by using our proposed termination rule. We employ OMNeT++ to establish our
sensor network with different randomly distributed wireless nodes. Due to the data reconstruction
performance of the sink node involved in the sparsity of data itself and the chosen of reconstruction
algorithm, it belongs to the category of the application layer; as a matter of convenience, we adopt
MATLAB to reconstruct the data received by the sink node.

6.1. Energy Consumption of Measurements Formation in MLMS Construction and Maintainance

We randomly disperse N nodes in an 800 ˆ 800 two-dimensional plane. Each node has the same
transmission distance of r. Only the two nodes, whose Euclidean distance (d) between each other
is less than r, can communicate with each other. In order to guarantee the network connectivity,
the communication distance of nodes is fixed at 800

?
5{N [22], and the collection node is located

at (400,800). The detailed parameters are shown in Table 2. We compare our MLMS method with
the schemes mentioned in the Section 2, including Plain-CS, Hybrid-CDG, and the PB-CDG [14].
Measurement coefficients for all of these methods obey Bernoulli distribution (entries take value of
either 1 or ´1, each with probability of 1/4, and value 0, with probability of 1/2).

Table 2. Parameters of the simulation experiments.

Parameter Value

size of network 800 ˆ 800
number of nodes 100~1200

max transmission radius 800
?

5/(number of nodes)
sink node position (400,800)

packet length 120 Byte
PHY layer Free space propagation model
MAC layer CSMA/CA

E_elec 50 nJ/bit
E_start 250 nJ/packet

channel type erasure channel

We first test the energy consumption of various measurement formation methods with the
increasing number of measurements and the nodes in the network (density). Note that, similar to
reference [14], we measure the node’s energy consumption by the number of packets it transmitted.
The experiment results are shown in Figure 9. We can see that Non-CS and Hybrid-CS incur higher
energy cost than that of PB-CDG and the proposed MLMS method, because all measurements in these
two methods are collected through a single fixed forwarding tree, which does not consider the sparse
structure and derivative routing path of each measurement. Despite the fact that both MLMS-CDG and
PB-CDG are derived from the idea of a Steiner tree, MLMS-CDG consumes less energy than PB-CDG
(up to 14.52% and 17.76% in Figure 9A,B, respectively). This is largely because MLMS incurs lower
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overhead of measurement coefficient distribution than PB-CDG (with an average of 11.4% in different
network densities).Sensors 2016, 16, 462 14 of 22 
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Figure 9. Comparison of MLMS measurement formation and other methods. (A) Experiment of the
influence of the number of measurements; (B) Experiment of the influence of the density of the network.

We then experiment on the number of control messages of PB-CDG and MLMS
measurement-formation methods with the increasing value of the node density in the network. Because
the PB-CDG method did not specify the generation method of measurement coefficients as well as
the processing strategy of the node failures and the packet losses, we treat the PB-CDG scheme in the
same manner of measurement generation as MLMS. Figure 10A shows the overhead of constructing
the measurement-formation paths by using original methods and compressed construction method
(MLMS-CC). With the growth of the number of sensor nodes, we observe that PB-CDG increases
more sharply than both MLMS and MLMS-CC methods do. This is mainly because PB-CDG builds
several line-shape paths for each measurement formation which will take a greater number of control
messages in distributing global seeds (overheads of MLMS and MLMS-CC are averagely 53.33% and
68.70% less than that of PB-CDG). Then, we experiment on the influence of the intensity of interested
nodes. As shown in Figure 10B, at the beginning of increasing the density of interested nodes, control
messages of all schemes increase sharply, but the difference is that the MLMS-CC tends to increase
slowly after intensity ratio equal to 50% which is less than MLMS (60%) and PB-CDG (70%). This is
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because if the interested nodes have accounted for a certain part of nodes in the network, continuing to
increase the number of interested nodes will lead to a high efficiency of constructing groups in MLMS
method, therefore the MLMS-CC and MLMS methods are not severely affected.
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Figure 10. Comparison of the number of control messages of MLMS measurement formation and
other methods. (A) Experiment of the overhead of the construction of measurement-formation paths
(interested nodes of each measurement account for 50% of nodes in network); (B) Experiment of the
influence of the number of interested nodes.

In the performance evaluation of using the Piggyback mechanism to process node failures, we
respectively simulated the influence of network size (number of nodes 500 and 1000) and intensity of
interested nodes (30% and 60% of nodes in the network). Each node on a MLMS path may fail with
a probability of 1%~7% during the measurement-formation periods. The experiment results are shown
in Figure 11A, we can see that both the network size and density of the interested nodes will have
a greater impact on the Piggyback mechanism, but the impact of network size is significantly larger
than that of the intensity of interested nodes (for example, under the condition of node failure rate = 7%,
if the number of network size doubles (from 500 to 1000), the number of packets increases 205.46%,



Sensors 2016, 16, 462 16 of 22

while if node density doubles (from 30% to 60%), the number of packets only increases 42.17%). This is
because when the network size increases, it will inevitably lengthen the MLMS paths, which will result
in a remarkable overhead increase in returning failure-node information in the Piggyback mechanism;
however, increasing the density of interested nodes does not have a significant influence.
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Figure 11. Overhead of maintaining measurement-formation paths. (A) Influence of nodes failure;
(B) Influence of packets loss.

Because nodes in the network communicate over an erasure channel, by setting the bit error
rate (BER) of this channel, we are able to generate a random packet losses context. We simulated the
proposed NAck mechanism and the hand-shaking negotiation mechanism on a 1000-node network
(the intensity of interested nodes is 50%). The experimental results are shown in Figure 11B. We can
easily find the differences between these two mechanisms. With the increasing of the BER, packets
transmission in the NAck mechanism increase more rapidly than in the negotiation mechanism.
Specifically, when the BER is relatively small, using NAck mechanism will incur less number of control
packets; when BER is around 0.4 ˆ 10´4~0.5 ˆ 10´4 (in this case, the packets successful delivery rate
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is about 95%), both mechanisms have a similar performance, and if we still increase the error rate, the
negotiation mechanism will outperform the NAck. This means that, when the network conditions are
poor, the negotiation mechanism will be a better choice.

6.2. Measurement-Formation and Reconstruction of OTD Datasets with the Proposed Termination Rule

In order to verify the effectiveness of the proposed adaptive termination rule, we select the two
OTD datasets (depicted in Figure 1) as the original experimental signal. Due to the influence of ∆M on
the performance of this algorithm, we carry out the experiment on the number of measurements and
the quality of signal reconstruction under different ∆M conditions. With the purpose of ensuring the
accuracy of the experimental results, we repeat the experiment of each set of parameters 500 times,
and the detailed experimental parameters are listed in Table 3.

Table 3. Parameters of the OTD simulation experiments.

Parameter Value

data file of OTD A 1403291948.cor
data file of OTD B 1404020436.cor

transformation base 6-level Daubechies2
reconstruction method BP

experiment rounds 500
relative error ||x̂´ x||{||x||

SNR 20 lg p||x||{||x̂´ x||q
range of ∆M 1~8

Figure 12 shows an execution process (∆M = 8) of our proposed method in the recovery of two
datasets. We can find that in the reconstruction process of two datasets, the relative error between the
reconstructed signal and the original signal tends to be 0 as the number of measurements increases,
and this decline continues until reaching the termination condition of Proposition 1. It can be seen that
when the algorithm terminates (dataset OTD A stops at Step 276, and OTD B stops at Step 380), we can
acquire high quality reconstruction results (relative error values are 0.0068 and 0.0036, respectively).
Detailed experimental results are shown in Table 4, and Figure 13 shows the average relative time
consumption of the experiment on these two datasets.
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Table 4. Experiment result of our proposed method performed on OTD datasets.

∆M DataSet
Number of Measurements Relative Error of Results

MIN SNR
AVG MIN MAX AVG MIN MAX

1
A 143.43 103 198 0.1042 0.0139 0.4568 22.9357
B 141.60 103 180 0.1202 0.0110 0.4504 22.2775

2
A 189.26 118 274 0.0225 0.0068 0.1527 34.1279
B 181.07 156 210 0.0152 0.0056 0.0517 37.0925

3
A 222.04 160 283 0.0131 0.0069 0.0445 38.2235
B 196.70 169 226 0.0102 0.0045 0.0197 40.3772

4
A 246 180 316 0.0098 0.0057 0.0175 40.4925
B 211.73 176 244 0.0066 2.1694 ˆ 10´8 0.0115 47.3546

5
A 256.85 175 330 0.0090 0.0051 0.0212 41.2457
B 213.33 165 265 0.0065 4.6999 ˆ 10´10 0.0144 48.6981

6
A 276.22 202 334 0.0078 0.0043 0.0135 42.3482
B 225.20 196 262 0.0047 4.5934 ˆ 10´11 0.0078 62.4401

7
A 286.69 219 338 0.0070 0.0043 0.0127 43.3284
B 220.87 184 254 0.0052 6.7932 ˆ 10´11 0.0118 64.2592

8
A 296.24 212 356 0.0069 0.0040 0.0132 43.4967
B 225.07 188 268 0.0049 1.3999 ˆ 10´10 0.0105 69.4010
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Figure 13. Experiment process (∆M = 8) of our proposed method on OTD datasets.

By comparing the experimental results of these two time-continuous datasets, we find that the
number of required measurements is different (i.e., the number for OTD-B is less than that of OTD-A),
which is due to their different sparsity degrees (as shown in Figure 1, the sparsity degree of OTD-B
is higher than that of OTD-A, i.e., 53-sparse and 61-sparse, respectively). With the increase of ∆M,
the average number of measurements required by the two datasets will increase rapidly (i.e., OTD-A
increases by 106.5% and OTD-B increases by 59%). The minimum and maximum number indexes
also show a similar phenomenon. The reason is that with the increase of ∆M (i.e., the increase of
measurement required by each round of reconstruction (∆M) also grows), according to the conclusion
of Proposition 1, it is more difficult to meet the measurement termination condition under that situation.
Another typical characteristic is that at the beginning of increasing ∆M, the SNR of reconstructed
signal increases rapidly; but when the SNR reaches a certain level, further increasing ∆M has little
effect. For example, for dataset OTD-A, when ∆M = 1, Min SNR = 22.9, and when ∆M = 4, SNR is up to
40.49; if continuing to increase ∆M to 8, the corresponding SNR becomes 43.5. This feature is caused by
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the shortcoming of CS reconstruction algorithm itself in processing non-strictly sparse signals, which
is beyond the scope of this article. Note that, although we can acquire a higher recovery quality and
a lower error rate (1 ´ 3´∆M according to Proposition 1) with a higher ∆M value, the measurement
cost (constructed in the network) would also have a significant increase (because of the extra number
of required measurements). So, on the whole, there is a tradeoff between the performance and the cost,
and the specific network implementation target also should be considered to choose a proper value
of ∆M.

6.3. Experiment of Data Gathered by Practical Network

In order to evaluate the performance of the proposed algorithm in dealing with the data
acquired from an actual environment, we implemented a WSN consisting of 30 nodes to monitor
the luminosity of the environment. The microprocessor of the sensor nodes is CC2530 [23], and the
luminosity-observation sensor is BH1750 [24]. The measurement resolution of this sensor is 0.1 (lx),
and the measurement error is ˘5 (lx) in the measurement range of 0 to 65,535 (lx). To test the impact of
the collected signals on the proposed method under different experiment environments and topology
conditions, we deployed the network into both outdoor and semi-outdoor scenes. The so-called
semi-outdoor is as shown in Figure 14B, i.e., a part of nodes are placed outdoors, and the rest are
placed in the building. In order to obtain the entire environmental luminosity data, the sink node will
enquire the sensor readings of all nodes every 5 min.
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According to our experimental results, our proposed schemes can be directly applied to both
uniform and random outdoor deployment experiments; but for the semi-outdoor experimental data,
the algorithm is not able to meet the stopping condition within the effective measurement steps.
Analysis indicates that, in the semi-outdoor experiment, nodes placed outdoors are exposed to strong
light, while their neighbor nodes may be placed in a relatively dimmed building, which will destroy
the spatial sparse characteristics of the luminosity data observed by the whole network (for one epoch
of the network sensed data (denoted as vector x) which is shown in Figure 15A, we can see that it is
not sparse under wavelet transformation, as shown in Figure 15C).

After examining the statistics of the observation data, we find that, although the reading values of
the adjacent nodes are very different, for the two consecutive rounds of network sensed data, there are
a few differences between the readings of the adjacent nodes. We let xt

i denote the sensor reading of
node i during data collecting epoch t; ∆xt

i “ xt`1
i ´ xt

i denotes the difference of node i between two
consecutive periods. Then ∆xt

i , ∆xt
j of the adjacent nodes should be related (the experimental results

are shown in Figure 15B,D; the wavelet coefficient of x is emanative, but the wavelet transformation
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coefficient of ∆x obviously tends to be 0). If we denote xt` 1 and xt as the (t + 1)th and the (t)th network
sensed data, we can acquire the following two equations:

∆xt “ xt`1 ´ xt (7)

∆xt “ ΨU (8)
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Figure 15. Wavelet representation of an original illumination data vector x and the difference vector
∆x. (A) Original data vector x; (B) Difference between two consecutive data vectors ∆x; (C) Wavelet
representation of x; (D) Wavelet representation of ∆x.

We assume that the previous rounds of data collection have been completed, and the network
sensed data xt has been worked out at the sink node. Thus, if the sink node has received the
measurement results yt`1 at t + 1 epoch, where yt`1 “ Φt`1xt`1, from Equation (7), by solving
out ∆xt, we can get xt`1. Actually, Φt`1 can be treated as the measurement matrix of ∆xt, because:

yt`1 ´ y1t “ Φt`1xt`1 ´Φt`1xt “ Φt`1∆xt (9)

Therefore, by Equations (8) and (9), ∆xt can be calculated through a typical CS reconstruction
method. It should be pointed out that y1t “ Φt`1xt ‰ yt in Equation (9). This is because measurement
matrices are randomly generated in different data gathering epochs.

With this method, we experiment on two consecutive rounds of data collected under each
deployment condition. The experimental results are shown in Table 5. We can see that, with
an increasing ∆M, both the recovery quality of signal and the required number of measurements
increase. But for outdoor experimental data, SNR of reconstructed signal between ∆M = 5 and
∆M = 6 changes slightly; thus, considering the factor of the average number of measurements, for this
application and the reconstruction algorithm, ∆M = 5 will be a good choice.
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Table 5. Experiment of reconstruction the data collected by the network.

Location Topology ∆M = 4 ∆M = 5 ∆M = 6

Measurement SNR Measurement SNR Measurement SNR

outdoor
mesh 9.3 32.5 14.4 62.68 20.6 67.83

random 12.4 28.6 15.0 42.35 22.5 42.72

semi-outdoor
mesh 13.3 32.1 17.9 31.3 24.4 46.06

random 14.9 29.7 19.9 45.55 26.6 44.08

7. Conclusions

In this paper we have proposed a feedback-control-based compressed data gathering scheme.
Different from existing studies, in this scheme, the sink node can adaptively adjust the measurement
formation according to the reconstruction of received measurements in each data gathering epoch.
To save the energy cost of the measurement-formation process in the network, a sparse measurement
method and optimized measurement-formation construction strategy are proposed, and the control
traffic on the network for requesting additional measurements is designed to combine with the
generation of measurement coefficients. Simulation experiments verify that our measurement
formation method outperforms existing methods in both energy consumption and controlling message
quantity. Moreover, datasets from both OTD and practical network deployment also show the
effectiveness of our proposed feed-back data recovery method.
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