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Abstract: Owing to their numerous merits, such as compact, autonomous and independence, the
strapdown inertial navigation system (SINS) and celestial navigation system (CNS) can be used in
marine applications. What is more, due to the complementary navigation information obtained
from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system
can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation
field. However, the CNS is easily interfered with by the surroundings, which will lead to the output
being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce
the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed.
The Krein space theory is introduced firstly, and then, the linear state and observation models of
the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty
problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness
of the integrated system. At last, this new robust filter based on the Krein space theory is estimated
by numerical simulations and actual experiments. Additionally, the simulation and experiment
results and analysis show that the attitude errors can be reduced by utilizing the proposed robust
filter effectively when the measurements are missing discontinuous. Compared to the traditional
Kalman filter (KF) method, the accuracy of the SINS/CNS integrated system is improved, verifying
the robustness and the availability of the proposed robust H∞ filter.

Keywords: uncertainty problem; SINS/CNS integrated system; missing measurements; Krein space
theory; robust H∞ filter

1. Introduction

In modern marine navigation, the strapdown inertial navigation system (SINS) is widely used
due to its advantages of being more compact and autonomous, which can provide vehicle’s navigation
information, including attitude, velocity and position [1–3]. However, in SINS systems, there are
accumulated navigation errors caused by the inertial components inevitably. Additionally, this is a
serious problem in long-term marine navigation. Thus, some other navigation systems, e.g., the Global
Position System (GPS), the Doppler velocity log (DVL), the celestial navigation system (CNS), etc., are
often integrated with it to improve the navigation accuracy of the whole system availably making use
of the complementary navigation information obtained from different sensors [4–8].

In CNS, the accurate attitude is calculated based on the azimuth of a celestial body measured
by the celestial sensor. Since the celestial body is used as the navigation information source, the
CNS has numerous merits, such as high positioning and orienting accuracy, good stealthiness and
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independence. What is more, the navigation error is not accumulated over time. Therefore, the CNS
is widely used to aid the SINS in astronautics, marine navigation and surveying fields, utilizing the
SINS/CNS integrated navigation system. In [9], Xu and Fang proposed INS/CNS integration, using
the INS error model and Kalman filter (KF) based on neural networks. Integrating INS with GPS and a
star tracker was performed by [10] using a decentralized multisensor integration structure, in which
the error compensation rate of integration was studied. Because of that traditional ground-based initial
alignment methods cannot work well on the lunar surface, [8] proposed a new autonomous INS initial
alignment method, which used star observations to help the INS estimate its attitude, gyroscopes drifts
and accelerometer biases. Additionally, simulations proved the superiority of the new method.

However, the CNS easily interfered with by the surroundings, such as clouds, since stars are
used as the beacon of the star sensor. For example, the number of stars, which is used for calculating
the navigation information of the star sensor, is reduce under cloudy weather. Hence, the occluded
star sensor will lead to the output being discontinuous [6,11,12]. Then, the system model will not
be accurate under this condition. Furthermore, the uncertainty problem will be introduced into
the integrated system, reducing the system accuracy significantly. Although the KF is the most
commonly-used optimal estimation, it is hard to get the expected results when the system model is
not accurate. Therefore, many methods are used to describe and compensate the uncertainty of the
system [13–16]. In [14], a new robust Kalman filter was proposed that detects and bounds the influence
of outliers in a discrete linear system, including those generated by thick-tailed noise distributions, such
as impulsive noise. Taking the robust state estimation for uncertain descriptor systems into account, a
robust filtering framework (RFF) was proposed to facilitate the robust filter design [16]. Hamza and
Nebylov proposed a robust design of an INS/GNSS navigation system to solve the problem of state
space models with non-Gaussian measurement noise based on parallel nonlinear filtering [13].

Although the robust Kalman filter based on the H2 norm has a simple design form, it requests
that the statistical characteristics of the system noise be already known, which is difficult to meet in
practical applications. The robust H∞ filter has high stability, but its design form is complex, which is
not suitable for actual applications, as well [15,17].

In recent years, due to its simple design, flexible structure and wide application, the Krein space
theory has become a hot issue gradually [18–20]. Therefore, a robust H∞ filter for the SINS/CNS
integrated navigation system is presented in this manuscript based on the Krein space theory. Taking
the uncertainty problem into account, a robust H∞ filter in the Krein space frame is presented and
derived. Even better, the novel filter not only achieves robustness against missing measurements
using robust H∞ filtering, but also improves the system accuracy effectively due to the Krein space
theory. Additionally, the results from simulations and experiments show that the presented robust
filter is superior to the normal Kalman filter. The rest of this manuscript is organized as follows. The
fundamentals of the Krein space theory and the linear error equations of the SINS/CNS integrated
navigation system are introduced in Section 2. Additionally, the new robust filter is proposed in
Section 3. Numerical simulations and experiments along with specific analysis are given in Section 4.
Section 5 concludes this manuscript.

2. Linear Filter Based on the Krein Space Theory

In this section, some basic knowledge of the Krein space theory will be introduced in order to
understand the theoretical derivation below easily. The system model of the SINS/CNS integrated
system is established, as well, here.

2.1. Fundamentals of the Krein Space Theory

The Krein space is a non-classical functional space, which has attracted extensive attention. The
kernel of the Krein space estimation theory is that the minimization of the quadratic cost function
is translated into the Kalman filter problem just in the Krein space, rather than the random Hilbert
space [19–21].
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Now, consider the following Krein space state-space formal system:
{

xj+1 = Ajxj + Bjuj
yj+1 = Cj+1xj+1 + Dj+1vj+1

(1)

with covariance matrix:

〈


x0

uj
vj+1


 ,




x0

uj
vj+1



〉

=




P0 0 0
0 Qj Sj

0 Sj Rj+1


 (2)

wherein xj+1 and yj+1 are the state vector and the measurement vector at time j + 1, respectively; Aj
and Cj+1 are specific known linear functions, the state-transition matrix and the measurement matrix;
Bj and Dj+1 are the coefficient matrices of the state noises; uj and vj+1 are the state noise vector and
observation noise vector with their autocorrelation and cross-correlation matrix of variance matrices
Qj, Rj+1 and Sj, respectively; P0 is the initial state covariance matrix.

Thus, the quadratic cost function is chose as follows:

J = xT
0 P−1

0 x0 +
N

∑
j=0

uT
j Q−1

j uj +
N

∑
j=0

vT
j R−1

j vj (3)

We define the state transition matrix as:

φj,k
∆
= Aj−1 · · ·Ak, j > k, φj,j = I (4)

and the response matrix as:

hj,k
∆
= CjAj−1 · · ·Ak+1 Bk (5)

Then, using:

ȳ ∆
= col {y0, · · · ȳN} ȳ ∆

= col {y0, · · · ȳN} v̄ ∆
= col {v0, · · · , vN} (6)

the Krein space state-space as Equation (1) satisfies this:

ȳ = Θ̄x0 + Ῡū + Ω̄v̄ =
(

Θ̄ Ῡ Ω̄
)



x0

ū
v̄


 (7)

wherein:

Ξ ∆
=

〈


x0

ū
ȳ


 ,




x0

ū
ȳ



〉

=




I 0 0
0 I 0
Θ̄ Ῡ Ω̄







P0 0 0
0 Q̄ S̄
0 S̄T R̄







I 0 0
0 I 0
Θ̄ Ῡ Ω̄




T

(8)

and the symbols are defined as follows:

Q̄ = Q0 ⊕ · · · ⊕QN
R̄ = R0 ⊕ · · · ⊕ RN
S̄ = S0 ⊕ · · · ⊕ SN
Ω̄ = D0 ⊕ · · · ⊕DN

(9)
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Θ̄ =




C0

C1φ1,0
...

CNφN,0




, Ῡ =




0
h1,0 0
h2,0 h2,1 0

... · · · . . .




(10)

The projection error in Krein space to study is the following Gramian:

〈æ− kȳ, æ− kȳ〉 =
(

I −k
)

Ξ

(
I
−kT

)
(11)

where we suppose æ = col {x0, ū}.
Unfortunately, the partial equivalence between Equations (3) and (11) cannot be found as easily

as in [22,23]; thus, some more matrix algebra has to be used to translate Equation (3) into our
desired format.

In [20], zero-valued polynomials were introduce to proof that the deterministic quadratic form as
Equation (3) has the same stationary point to the error Gramian as Equation (11) in Krein space. On
the basis of Theorem 1 and Lemma 2, it can be deduced easily. Therefore, it will not be elaborated any
more in this paper.

As we all know, the KF method has a recursive form, which is simply and easily achieved.
Therefore, the classical recursion form of KF is used in filters of the Krein space. Consider the
discrete-time linear state-space model and its a priori knowledge, shown as Equations (1) and (2); the
Riccati recursive steps are summarized as follows:

The estimated state vector:

x̂j+1 = Ajx̂j + Kj

(
yj − Bjx̂j

)
(12)

The filtering gain:
Kj =

(
AjPjCT

j + BjSj

)
R−1

e,j (13)

wherein:
Re,j = CjPjCT

j + Rj (14)

The estimated covariance matrix:

Pj+1 = AjPjAT
j + BjQjB

T
j −KjRe,jKT

j (15)

2.2. SINS/CNS Integrated System Model

Although SINS has numerous advantages, the accumulated error caused by its inertial
components limits its applications. The CNS can provide accurate attitude information based on
the azimuth of the celestial body. Therefore, the SINS/CNS integrated navigation system is widely
applied, since the navigation accuracy of the whole system can be enhanced significantly by using
the complementary navigation information obtained from two different kinds of sensors. In the
SINS/CNS integrated navigation system, the loosely-coupled scheme is used due to its simpleness
and convenience. As we all know, the CNS is easy to interfere by the surroundings, and then, the CNS
information will be invalid discontinuously. Taking this situation into account, the schematic diagram
of the SINS/CNS integrated system is shown in Figure 1.

In this paper, we focus on marine navigation. As we all know, the vertical information (vertical
acceleration, vertical velocity and vertical altitude) can be ignored for simplification reasonably and
acceptably in surface navigation systems. Thus, only horizontal information is taken into account.
Therefore, we choose the error equation of SINS as the state model, including horizontal velocity error
equations, longitude and latitude error equations and attitude error equations.
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(1) Velocity error equation:

δV̇E =
VN
Rn

tan LδVE +

(
2ωie sin L +

VE
Rn

tan L
)

δVN

+ ϕU fN +∇E +

(
2ωie cos LVN +

VEVN
Rn

sec2L
)

δL (16)

δV̇N =−
(

2ωie sin L +
2VE
Rn

tan L
)

δVE − ϕU fE

+∇N −
(

2ωie cos LVE +
V2

E
Rn

sec2L

)
δL (17)

(2) Position error equation:

δL̇ =
δVN
Rm

(18)

δλ̇ =
δVE
Rn

sec L +
VE
Rn

tan L sec LδL (19)

(3) Attitude error equation

ϕ̇E =− δVN
Rm

+

(
ωie sin L +

VE tan L
Rn

)
ϕN

−
(

ωie cos L +
VE
Rn

)
ϕU + εE (20)

ϕ̇N =−ωie sin LδL +
δVE
Rn

−
(

ωie sin L +
VE tan L

Rn

)
ϕE −

VN
Rm

ϕU + εN (21)

ϕ̇U =

(
ωie cos L +

VE
Rn

sec2L
)

δL + tan L
δVE
Rn

+

(
ωie cos L +

VE
Rn

)
ϕE +

VN
Rm

ϕN + εU (22)

wherein VE and VN are the east and north velocities and δVE and δVN are corresponding velocity errors;
L and λ are the local latitude and longitude; while Rm and Rn are the Earth’s radii of the meridian
circle and the prime vertical circle; fE and fN are the measured specific force by the east and north
accelerometers; ϕE, ϕN , ϕU are the attitude angle errors; εx, εy and εz are the gyro drifts of the x-, y-
and z-axes; ∇x and ∇y are the accelerator biases of the x- and y-axes. Additionally, we also know this:




εE
εN
εU


 = Cn

b




εx

εy

εz


 (23)

wherein Cn
b is the transformation matrix from the vehicle’s body coordinate system (b) to the navigation

coordinate system (n), the size of which is 3 × 3. A similar transform exists between ∇E,∇N
and ∇x,∇y.

From the above, the state vector x of the SINS/CNS integrated system is defined as:

x(t) =
[

δL δλ δVE δVN ϕE ϕN ϕU εx εy εz ∇x ∇y

]T
(24)
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The measurement is the attitude error between the calculated attitude of the SINS and the CNS.
Therefore, the observation equation can be described as:

z(t) =




ϕE
ϕN
ϕU


 = H(t)x(t) + v(t) (25)

where z(t) denotes the measurement, while v(t) is the measurement noise. The measurement matrix:

H(t) =
[

03×4 I3×3 03×5

]
(26)
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Figure 1. Schematic diagram of the SINS/CNS integrated system.
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Figure 1. Schematic diagram of the SINS/CNS integrated system.

3. Robust H∞ Filter Based on Krein Space Theory

In this section, we formulate the Krein space filter recursions for the H∞ filter problem. Taking
the missing measurements into account, a novel robust H∞ filter based on the Krein space theory
is proposed.

Considered the following discrete-time linear state-space system:
{

xj+1 =
(
Aj + ∆Aj

)
xj + Bjuj

yj+1 =
(
Cj+1 + ∆Cj+1

)
xj+1 + vj+1

(27)

wherein xj and yj+1 are the state vector and measurement vector, uj and vj are unknown system noises
and ∆Aj and Cj are uncertainty parameters. Generally, we assume that:

(
∆Aj
∆Cj

)
=

(
Fj
Dj

)
∆jEj (28)

wherein Aj, Bj, Cj, Dj, Ej and Fj are already known matrices and ∆j is a unknown matrix with:

∆T
j ∆j ≤ I (29)

Given ξ j = ∆jEjxj, sj = Ejxj, the system uncertainty can be indicated by the following
constraint condition:

∥∥ξ j
∥∥2 ≤

∥∥sj
∥∥2, j = 0, 1, . . . , N (30)

where ‖·‖ denotes the standard H2 norm.
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In a general way, the estimated vector is the linear combination of the state vector. That means:

zj = Ljxj (31)

wherein Lj is a known coefficient matrix.

Defining that ẑj is the estimation of zj on the basis of the given observations
{

yj

}
, the estimation

error is:

ej = zj − ẑj (32)

Thus, the estimation problem of the H∞ filter under the level parameter γ can be translated into
solving the optimal solution of Equation (27):

J = ‖T‖2
∞ = sup

x0,uj ,vj

N
∑

j=0
eT

j ej

x0TP0
−1x0 +

N
∑

j=0
uT

j Q−1
j uj +

N
∑

j=0
vT

j vj

≤ γ2 (33)

From the above, we can see that the H∞ filter should be designed to ensure that the energy of
estimation error ek is γ times less than the one of system noises. If Equation (33) can be guaranteed, the
estimation error will be very small authentically. Substituting, the constraint of uncertain parameters
shown as Equation (30) into Equation (33), we will obtain the robust H∞ filter problem:

x0
TP0

−1x0 +
N

∑
j=0

uT
j Q−1

j uj +
N

∑
j=0

vT
j vj +

N

∑
j=0

∥∥ξ j
∥∥2 −

N

∑
j=0

∥∥sj
∥∥2 − 1

γ2

N

∑
j=0

eT
j ej

︸ ︷︷ ︸
J∞(x0,u,v)

≤ ε (34)

wherein x0 and P0 are the initial state vector and the initial state covariance matrix and ε is a constant.
As was mentioned in [20], Equation (34) generate an ellipsoid set of the estimated state, whose

boundary is restrained by ε. Therefore, the estimation of the robust H∞ filter is under this constraint,
as well. However, with uncertain parameters, the quadratic function is irreversible directly with the
Gramian matrix of the noise error in the Krein space.

Therefore, based on Theorem 1 in [20], vectors in the Hilbert space are indicated by the vectors
that have the same meanings in the Krein space. Then, the objective quadratic Equation (34) can be
rewritten as:

J∞ (x0, u, v) = x0
TP0

−1x0 +
N

∑
j=0

{
uT

j Q−1
j uj + vT

j vj + ξT
j ξ j − sT

j sj −
1

γ2 eT
j ej

}
(35)

Since that zero vector will not change the quadratic value, the following zero polynomial
is introduced:

0 =
N
∑

j=0

{
2ξT

j DT
j R−1

j Djξ j + vT
j R−1

j Djξ j + ξT
j DT

j R−1
j vj

− ξT
j DT

j R−1
j
(
vj + Djξ j

)
−
(

vj + Djξ j
T
)

R−1
j Djξ j

} (36)

Substituting the above equation into Equation (35), we can get:
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J∞ (x0, u, v) = x0
TP0

−1x0 +
N
∑

j=0

{
uT

j Q−1
j uj − sT

j sj − 1
γ2 eT

j ej

+

(
ξ j

vj + Djξ j

)T(
I + DT

j R−1
j Dj −DT

j R−1
j

−R−1
j Dj R−1

j

)(
ξ j

vj + Djξ j

)


(37)

After matrix inversion, Equation (37) is equivalent to:

J∞ (x0, u, v) = x0
TP0

−1x0 +
N

∑
j=0

(
uj

Djvj

)T (
Qj SjDT

j
DjST

j DjRjDT
j

)(
uj

Djvj

)
(38)

Based on the Equation (7) in the Krein space, the coordinate transformation is as follows:



x0

u
Ωv


 =




I 0 0
0 I 0
−Θ −Υ I







x0

u
y


 (39)

Then, the vector form of Equation (38) is:

J∞ (x0, u, v) =




x0

u
Ωv




T 


P0 0 0
0 Q SΩT

0 ΩST ΩRΩT




−1


x0

u
Ωv


 (40)

Therefore, the quadratic function can be transformed as the following equation:

J∞ (x0, u, y) =

(
x0

u
y

)T




(
I 0 0
0 I 0
Θ Υ I

)(
P0 0 0
0 Q SΩT

0 ΩST ΩRΩT

)(
I 0 0
0 I 0
Θ Υ I

)T




−1(
x0

u
y

)
(41)

Obviously, the weighted matrix of the quadratic function and the one of the error covariance
matrix in the Krein space are just inverse. Therefore, we can design recursive steps of the H∞ filter in
the Krein space.

Considering a state model in the Krein space represented as Equation (1), the recursive steps of
the H∞ filter are summarized as follows:

xj|j−1 = Aj−1xj−1|j−1 (42)

Pj|j = Aj−1Pj−1|j−1 Aj−1
T + Bj−1Bj−1

T

−Aj−1Pj−1|j−1

[
CT

j LT
j

]
(Re)

−1

[
Cj
Lj

]
Pj−1|j−1 Aj−1

T (43)

(Re)
−1 =

[
I 0
0 −γ2I

]
+

[
Cj
Lj

]
Pj−1|j−1

[
CT

j LT
j

]
(44)

Kj=Pj|j CT
j

(
I + CjPj|j CT

j

)−1
(45)

xj|j = xj|j−1 +Kj

(
yj − Cjxj|j−1

)
(46)

Compared to the KF, the proposed filter is much more robust. Actually, when γ → ∞, the H∞

filter is just the KF exactly. Additionally, the less γ is, the stronger the robustness of the system. Using
the above H∞ filter, the uncertainty of the system noise can be eliminated availably. Hence, taking
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void measurement into account, we introduce a new parameter α into the presented robust H∞ filter.
Assume that the coefficient of the void measurement is indicated as α (1 ≥ α ≥ 0):

when α = 1, the CNS measurement is constantly available;
when α < 1, the CNS measurement is lost.
That means, the smaller α is, the more the measurement is invalid. Therefore, the proposed novel

robust H∞ filter in the Krein space can be rewritten as the following reliability:
The predicted state is still as Equation (42), while the predicted measurement is:

ŷj = αCjxj|j−1 (47)

To derive the filtering steps conveniently, we define some intermediate variables:

C∞
j =

[
αCj
Lk

]
(48)

(R∞
e )−1 = C∞

j Pj−1|j−1

(
C∞

j

)T
+

[
α (1− α)CjCT

j 0
0 −γ2I

]
(49)

K∞
e = Pj−1|j−1

(
C∞

j

)
(R∞

e )−1 (50)

P∞
j =

(
I− K∞

e C∞
j

)
Pj−1|j−1 (51)

Therefore, the estimated covariance matrix:

Pj|j = Aj−1P∞
j Aj−1

T + Aj−1Aj−1
T (52)

The filtering gain is:
Kj = P∞

j CT
j

(
I + α (1− α) ICjCT

j

)
(53)

The estimated state:
xj|j = xj|j−1 + Kj

(
yj − ŷj

)
(54)

In the SINS/CNS integrated system, the measurement of the CNS is invalid occasionally for the
environmental disturbance. To solve various uncertainty problems, the robust H∞ filter introduces
the H∞ norm, which is the robust design parameter. In this filter, the noise and the uncertainty are
regarded as the limited energy random signal. Then, the filter can be designed based on the objective
quadratic that the H∞ norm of the transfer function from the system interference to the estimated error
is less than a given positive threshold.

4. Simulations and Experiments

To verify and estimate the performance of the proposed robust filter, simulations and experiments
are performed in this section.

4.1. Simulations and Analysis

First of all, numerical simulations have been done. Suppose that the initial parameters of a marine
vehicle are given and shown as Table 1:
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Table 1. Simulation parameters.

Parameters Values

initial latitude L = 40.2631049◦

initial longitude λ = 120.886482◦

initial velocity vx = vy = 0
gravity acceleration g0 = 9.7805 m/s2

initial misalignment angles φx = φy = φz = 20′

constant drifts of the gyroscopes εx = εy = εz = 0.01◦/h
random noise of the gyroscopes Wgx = Wgy = Wgz = 0.05◦/h

constant biases of the accelerometers ∇x = ∇y = 10−4g0
random noise of the accelerometer Wax = Way = 5 ∗ 10−5g0

sampling frequency 98 Hz

According to Section 2.2, the state vector is composed of the position errors δL and δλ, the velocity
errors δVE, δVN , the misalignment angle errors φE, φN , φU , the gyroscope constant drifts εx, εy, εz and
the accelerometer constant biases ∇x,∇y. The measurement vector is the attitude error between the
SINS and CNS. On the basis of Equations (16)–(26), the model of the SINS/CNS integrated system can
be expressed clearly.

In order to estimate the performance of the proposed filter, the normal KF is used as the reference
filter. The initial state vector is:

x0 =
[

0 m 0 m 0 m/s 0 m/s 20′ 20′ 20′ 0.01◦/h 0.01◦/h 0.01◦/h 10−4g0 10−4g0
]T (55)

Additionally, the corresponding covariance matrix is:

P0 = diag
{
(10/Re)2, (10/Re)2, 0.12, 0.12, (20′)2, (20′)2, (20′)2,

(0.01◦/h)2, (0.01◦/h)2, (0.01◦/h)2,
(

10−4g0

)2
,
(

10−4g0

)2
} (56)

wherein Re indicates the Earth’s radius, Re = 6,378,393.0 m.

0 50 100 150 200

−5

0

5

P
it
c
h
 e

rr
o
r 

( 
’ 
)

 

 

0 50 100 150 200

−2

0

2

R
o
ll 

e
rr

o
r 

( 
’ 
)

0 50 100 150 200

−2
0
2
4
6
8

Time (s)

H
e
a
d
in

g
 e

rr
o
r 

( 
’ 
)

Normal KF

Proposed Robust filter

Figure 2. The estimated errors of the misalignment angles when α = 0.75.

Under the same simulation conditions, the proposed robust H∞ filter and the normal KF were
applied to estimate the states of the SINS/CNS integrated navigation system. We compared the errors
of misalignment angles in different conditions when α = 0.75 and α = 0.5, respectively. The estimated
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results are shown in Figures 2 and 3, respectively. To compare the running times of these two filters,
Monte Carlo simulations are carried out 20-times on the same computer equipped with an Intel Core 2
T6570, 2.1-GHz processor and 3 GB RAM under Windows XP. Additionally, the means of the running
times are compared in Table 2.

Table 2. Comparisons of the running times.

Running Time (s)

Kalman Filter Proposed Filter

α = 0.5 0.6972 0.9457

α = 0.75 0.7146 0.9691
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Figure 3. The estimated errors of the misalignment angles when α = 0.5.

From Figures 2 and 3, it is obvious that when α = 0.75, the heading errors with the KF and
proposed robust H∞ filter are 4’ and −0.3’, respectively; when α = 0.5, the heading error with the
robust H∞ filter is merely 0.4’, while the one with KF is about 7’. The average running times of normal
Kalman filter are 0.7146 s and 0.6972 s, while the average times of the proposed robust filter are 0.9691 s
and 0.9457 s when α = 0.75 and α = 0.5, respectively. Therefore, we can know that obviously when
the CNS measurement is lost occasionally, the estimated accuracy of the normal KF is decreased
severely from 4’ to 7’. In addition, the more measurements are lost, the worse the estimated results are.
However, under these two conditions, utilizing the proposed robust H∞ filter, the misalignment angles
not only can be estimated availably, but also have better convergence rates and stability than the KF
method at a cost of few computations. Therefore, the robustness and superiority of the proposed H∞

filter can be verified.

4.2. Experiments and Analysis

To further validate the performance of the proposed robust H∞ filter based on the Krein space
theory, some experiments are carried out, as well. In these experiments, the SINS and star sensor
are fixed on the ship’s deck together. The schematic of experimental setup and sensors are shown in
Figures 4 and 5, respectively. In the SINS, the inertial measurement unit (IMU) is composed of the
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accelerometer and the gyroscope, which was developed by our lab and shown as the left picture in
Figure 5. The performance parameters of the SINS and the star sensor are detailed in Table 3.

���������	
�������

��

����

Figure 4. Schematic of the experimental setup.

Figure 5. The IMU (left) and GPS (right) used in the experiments.

Table 3. Main parameters of the SINS and star sensor.

Sensors Parameters Values

Gyro

Dynamic range ±100◦/s
Bias stability ≤ 0.01◦/h

Random walk ≤ 0.005◦/
√

h
Scale factor stability ≤ 20 ppm

Accelerometer

Dynamic range ±4 g
Bias stability ≤ 10−4 g

Random walk ≤ 5 ∗ 10−5 g
Scale factor stability ≤ 20 ppm

Star Sensor
Field of view 24◦

Attitude accuracy 5′′

Data update frequency 20 Hz

During the experiment, the lens of the star sensor is covered discontinuously to simulate the
invalid state of the star Sensor from about 22 h to 24 h. In addition, the GPS is also used as the
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reference information, shown as the right picture in Figure 5. Therefore, in the experiments, the
SINS/GPS integrated system can be used as the standard to estimate the accuracy of the SINS/CNS
integrated system.

Figures 6 and 7 give the experiment results of the SINS/CNS integrated system with the normal
KF and robust H∞ filter based on the Krein space theory, respectively.
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Figure 6. The horizontal angle errors with the normal Kalman filter method and the proposed robust
H∞ filter. The blue dash line indicates the horizontal errors by utilizing the normal Kalman filter
method; The green solid line indicates the horizontal errors by utilizing the novel method proposed in
this article.
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Figure 7. The azimuth angle errors with the normal Kalman filter method and the proposed robust H∞

filter. The blue dash line indicates the azimuth errors by utilizing the normal Kalman filter method;
The green solid line indicates the azimuth errors by utilizing the novel method proposed in this article.

From the experiment results, we can see that the angle errors are vibrational when the star sensor
is covered from about 22 h to 24 h. For the pitch error, the amplitude values are about 0.14◦ and 0.11◦
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with the normal KF and with the proposed robust filter, respectively, while the values of the roll error
are 0.44◦ and 0.21◦. Compared to the normal KF method, the horizontal and azimuth angle errors of
the SINS/CNS integrated system are a bit smaller with the new robust filter based on the H∞ filter
and the Krein space theory. Regarding the yaw error, the maximal errors of the normal KF and the
proposed robust filter have an extremely great distance. With the traditional KF method, the maximal
are 38.76◦, as the one with the proposed robust filter algorithm is nearly 0.69◦. Therefore, with the
proposed robust filter, the attitude errors can be decreased dramatically when the measurements of
the integrated system are uncertain or lost. Furthermore, the robustness of this novel robust filter
is also verified.

5. Conclusions

In order to solve the uncertainty problem of the SINS/CNS integrated navigation system caused
by the missing measurements, a novel robust H∞ filter based on the Krein space theory was proposed
in this manuscript. Firstly, the system model of the SINS/CNS integrated navigation system was
established, and then, a novel robust filter taking the uncertainty problem into account was proposed.
Then, the superiority of the Krein space was described in principle, and the derivational process of
the novel robust H∞ filter was presented in detail. Numerical simulations and experiments were
carried out to verify the new robust H∞ filter. The results proved the advantages of the presented
robust H∞ filter on the basis of the Krein space theory, which can improve the navigation accuracy
of the integrated navigation system availably when the CNS measurements are lost. Therefore, the
feasibility and the superiority of this new robust filter were verified. However, the system model of the
SINS/CNS integrated system was assumed as a linear model, which is clearly unrealistic in practical
applications. Therefore, our future work will focus on the nonlinear robust filter, which is suitable for
practical systems.
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