
sensors

Article

A Novel Semi-Supervised Electronic Nose Learning
Technique: M-Training

Pengfei Jia, Tailai Huang, Shukai Duan *, Lingpu Ge, Jia Yan and Lidan Wang

College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China;
jiapengfei200609@126.com (P.J.); 18580465830@163.com (T.H.); gelingpu@126.com (L.G.);
yanjia119@163.com (J.Y.); ldwang@swu.edu.cn (L.W.)
* Correspondence: duansk@swu.edu.cn; Tel.: +86-139-8389-9976

Academic Editor: M. Carmen Horrillo Güemes
Received: 1 February 2016; Accepted: 9 March 2016; Published: 14 March 2016

Abstract: When an electronic nose (E-nose) is used to distinguish different kinds of gases, the label
information of the target gas could be lost due to some fault of the operators or some other reason,
although this is not expected. Another fact is that the cost of getting the labeled samples is usually
higher than for unlabeled ones. In most cases, the classification accuracy of an E-nose trained using
labeled samples is higher than that of the E-nose trained by unlabeled ones, so gases without label
information should not be used to train an E-nose, however, this wastes resources and can even
delay the progress of research. In this work a novel multi-class semi-supervised learning technique
called M-training is proposed to train E-noses with both labeled and unlabeled samples. We employ
M-training to train the E-nose which is used to distinguish three indoor pollutant gases (benzene,
toluene and formaldehyde). Data processing results prove that the classification accuracy of E-nose
trained by semi-supervised techniques (tri-training and M-training) is higher than that of an E-nose
trained only with labeled samples, and the performance of M-training is better than that of tri-training
because more base classifiers can be employed by M-training.
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1. Introduction

An electronic nose (E-nose) is a device composed of a gas sensor array and an artificial intelligence
algorithm. They are effective in dealing with odor analysis problems [1–3], and have been introduced
to many fields such as environmental monitoring [4,5], food engineering [6–8], disease diagnosis [9–12],
explosives detection [13] and spaceflight applications [14].

Most of the time during a person’s life is spent indoors, so it is significant to monitor changes in
indoor gas composition, and it is necessary for people’s health to detect the indoor pollutant gases as
early as possible. Consequently, there has been a resurgence of interest in developing measurement
techniques for air quality monitoring. Our previous work has proved that E-noses are an effective way
to classify indoor pollutant gases [15,16].

To study the patterns of different indoor pollutant gases, many sampling experiments must be
done on each gas. In the past, we only processed labeled data by feature extraction methods [17,18],
however, in actual experiments, the numbers of collected unlabeled samples are often far greater than
that of the labeled samples, and they are easier to obtain while the cost of getting the labeled samples is
usually higher than for unlabeled ones. On the other hand, in the sampling experiments, there can be
unexpected mistakes such as the paper label identifying the target gas which is pasted on the gas bag is
lost, the label information is not written down because of a fault of operators which will lead to the loss
of the sample label, which all causes a certain amount of waste of the number of experimental samples.
Although the classification accuracy of E-noses trained by labeled samples is usually higher than that
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of devices trained with unlabeled samples, it is often difficult to obtain sufficient labeled samples.
What’s more, there is a lot of hidden information in the unlabeled samples. Therefore, researchers
have put forward algorithms to train E-noses with labeled sample as well as make full use of available
unlabeled samples.

To make full use of unlabeled samples, researchers have proposed various methods in the past.
These methods can be divided into three categories: (1) Active learning: this is a learning paradigm that
requires users’ (or some other information source) interaction to provide the responses of new data
points [19,20]; (2) Transfer learning: these are methods that focus on applying the knowledge learned
from related, but different tasks to solve the target task [21–23]. They usually require sufficient labeled
data to acquire accurate knowledge; (3) Semi-supervised learning (SSL): these techniques aim at learning
an inductive rule or try to accurately determine the label of the data from a small amount of labeled
data with the help of a large amount of unlabeled data [24–26]. For its ability to solve classification and
regression problems by learning from a set of labeled data and unlabeled samples, this last approach
has been widely adopted in various application domains such as hand-writing recognition [27] and
bioinformatics [28].

In 2012, De Vi et al. applied a semi-supervised boosting algorithm to an artificial olfaction
classification problem and proposed a novel SSL-based algorithm for an air pollution monitoring data
set [29]. This work can be thought as the first time of SSL was adopted in E-nose research. Liu et al.
also proposed a domain adaptation technique which can be seen as a SSL technique in 2014, and this
technique was adopted to eliminate the E-nose signal drift [30].

Tri-training is a SSL techniques [31] which doesn’t require sufficient and redundant samples, nor
does it require the use of different supervised learning algorithms. Inspired by tri-training, a novel
multi-class SSL technique which is called as M-training is proposed in this paper to train E-noses with
both labeled samples and unlabeled samples. The rest of this paper is organized as follows: Section 2
introduces the E-nose system and gas sampling experiments of this paper; Section 3 presents the theory
of M-training technique; Section 4 describes the results of M-training when it is used to train the E-nose
classifier for predicting the classes of target pollutant gases. Finally, we draw the conclusions of this
paper in Section 5.

2. E-Nose System and Experiments

2.1. Target Gas and Experimental Setup

Three common kinds of indoor pollutant gas including benzene (C6H6), toluene (C7H8) and
formaldehyde (CH2O) were the target gases which will be distinguished by the E-nose. The sensor
array of the E-nose presented in this paper contains five sensors: three metal oxide semi-conductor gas
sensors (TGS2620, TGS2602 and TGS2201 purchased from Figaro Company, Osaka, Japan). The TGS
2201 has two outputs defined as TGS 2201A and TGS 2201B), one humidity sensor and one temperature
sensor. The sensitive characteristics of the three gas sensors is shown in Table 1.

Table 1. Main sensitive characteristics of gas sensors.

Sensors Main Sensitive Characteristics

TGS2620 Carbon monoxide, ethanol, methane, isobutane, VOCs
TGS2602 Ammonia, formaldehyde, toluene, ethanol, hepatic gas, VOCs
TGS2201 Carbon monoxide, nitric oxide, nitrogen dioxide

Note: The response of these three sensors is non-specific. Table 1 lists their main sensitive gas, but they are also
sensitive to other gases.

A 12-bit analog-digital converter (A/D) is used as interface between the sensor array and a field
programmable gate array (FPGA) processor. The A/D converts analog signals from sensor array into
digital signal, and the sampling frequency is set as 1 Hz. As is shown in Figure 1, the experimental
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platform mainly consists of the E-nose system, a PC, a temperature-humidity controlled chamber
(coated with Teflon to avoid the attachment of VOCs), a flow meter and an air pump. There are two
ports on the sidewall of the chamber, and the target gas and the clean air are put into the chamber
through ports 1 and 2, respectively. Data collected from the sensor array can be saved on a PC through
a joint test action group (JTAG) port and its related software. An image of the experimental setup is
shown in Figure 2.
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2.2. Sampling Experiments and Data Pre-Processing

Before sampling experiments, we firstly set the temperature and humidity of the chamber as
25 ˝C and 40%. Then we can begin the gas sampling experiments, and one single sampling experiment
incorporates three steps:

Step 1: All sensors are exposed to clean air for 2 min to obtain the baseline;
Step 2: Target gas is imported into the chamber for 4 min;
Step 3: The array of sensors is exposed to clean air for 9 min again to wash the sensors and make

them recover their baseline signal.
Figure 3 illustrates the response of sensors when formaldehyde is introduced into the chamber.

One can see that each response curve rises obviously from the third minute when the target gas begins
to pass over the sensor array, and recovers to baseline after the seventh minute when clean air is
imported to wash the sensors.
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Figure 3. Response of the sensors array.

To get the real concentration of gas in the chamber, we extract each gas from the chamber and
import it into a gas bag. Then a spectrophotometric method is employed to get the concentration of
formaldehyde, and the concentration of benzene and toluene are determined by gas chromatography
(GC). For each gas, there are 12, 11 and 21 concentration points, respectively, and 12 sampling
experiments are made on each concentration point. The real concentration and the numbers of
samples of the three kinds of gas are shown in Table 2.

Table 2. Concentration of the target gas.

Gas Concentration Range (ppm) Number of Samples

Benzene [0.1721, 0.7056] 144 (12 ˆ 12)
Toluene [0.0668, 0.1425] 132 (12 ˆ 11)

Formaldehyde [0.0565, 1.2856] 252 (12 ˆ 21)

Then the maximum value of the steady-state response of sensors is extracted to create the feature
matrix of the E-nose. There are 528 samples in this matrix and the dimension of each sample is 4. We
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randomly select 75% of the samples of each gas to establish the training data set, and the rest are used
as the test data set. Detailed information is shown in Table 3.

Table 3. Amount of samples in training set and test set.

Gas Training Set Test Set

Benzene 108 36
Toluene 100 32

Formaldehyde 188 64
All-3 396 132

3. M-Training Technique

As a SSL technique, M-training retains the advantages of tri-training, while, more base classifiers
can be employed by M-training which gives it have more opportunity to learn and obtain knowledge
from the unlabeled samples.

Let L denote the labeled sample set with size |L| and U denote the unlabeled sample set with size
|U|. There are M base classifiers in M-training, denoted as ci, i “ 1, 2, ¨ ¨ ¨ , M, where M is a positive
integer, and M ě 3. M-training will degenerate to tri-training when M is set as 3. These base classifiers
have been trained by the samples from set L. During the learning process of M-training, each ci will
be the main classifier in a cycle, meanwhile, the other classifiers are employed to predict the class
label of samples from U (for simply, these classifiers are denoted as Ci, i “ 1, 2, ¨ ¨ ¨ , M). Whether one
sample of set U will be used to train the main classifier ci combining with set L depends on the degree
of agreements (made by classifiers of Ci) on its labeling, namely, if the classifiers of Ci voting for a
particular label exceeds a threshold θ, then this sample along with its label (predicted by Ci) will be
used to refine the main classifier ci combining with set L.

In the M-training technique, the misclassification of unlabeled samples is unavoidable, so ci
will receive noisy samples from time to time. Fortunately, even in the worst case, the increase in
classification noise rate can be compensated if the amount of newly labeled samples is sufficient and
meet certain conditions. These conditions are introduced as follows:

Inspired by Goldman et al. [32], the finding of Angluin et al. [33] is employed. Suppose there is a
training data set containing m samples, and the noise rate is η, then the worst case error rate ξ of the
classifier satisfies Equation (1):

m “
σ

ξ2p1´ 2ηq2
(1)

where σ is a constant, then Equation (1) can be reformulated as Equation (2):

u “
σ

ξ2 “ mp1´ 2ηq2 (2)

In each round of M-training, Ci chooses samples in U to label for ci. The amount and the concrete
unlabeled samples chosen to label would be different in different rounds because ci is refined in each
round. We denote by Li(t) and Li(t – 1) the set of samples which are labeled by Ci for ci in round t
and round t – 1, respectively. Then the training data set for ci in round t and t – 1 can be expressed
as |LY Liptq| and |LY Lipt ´ 1q|, respectively. It should be noted that Li(t – 1) will be regarded as the
unlabeled data and put back to U during round t.

Let ηL denote the classification noise rate of L, so the number of mislabeled samples in L is ηL|L|.
Let ei(t) be the upper bound of the classification error rate of Ci in round t. Assuming there are n
samples which are labeled by Ci, and among these samples, Ci makes the correct classification on n’
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samples, then ei(t) can be estimated as (n – n’)/n. Thus, the number of mislabeled samples in Li(t) is
eiptq |Liptq|. Therefore the classification noise rate in round t is:

ηiptq “
ηL |L| ` eiptq |Liptq|

|LY Liptq|
(3)

Thus, Equation (2) can be computed as:

uiptq “ miptqp1´ 2ηiptqq
2

“

ˇ

ˇ

ˇ

ˇ

LY Liptqp1´ 2
ηL |L| ` eiptq |Liptq|

|LY Liptq|
q

ˇ

ˇ

ˇ

ˇ

(4)

Similarly, uipt´ 1q can be computed by Equation (5):

uipt´ 1q“ mipt´ 1qp1´ 2ηipt´ 1qq2

“

ˇ

ˇ

ˇ

ˇ

LY Lipt´ 1qp1´ 2
ηL |L| ` eipt´ 1q |Lipt´ 1q|

|LY Lipt´ 1q|
q

ˇ

ˇ

ˇ

ˇ

(5)

If we want eiptq ă eipt´ 1q, then uiptq ą uipt´ 1q according to Equation (2), which means that
the performance of ci can be improved through utilizing Li(t) in its training. This condition can be
expressed as Equation (6):

ˇ

ˇ

ˇ

ˇ

LY Liptqp1´ 2
ηL |L| ` eiptq |Liptq|

|LY Liptq|
q

ˇ

ˇ

ˇ

ˇ

ą
ˇ

ˇ

ˇ

ˇ

LY Lipt´ 1qp1´ 2
ηL |L| ` eipt´ 1q |Lipt´ 1q|

|LY Lipt´ 1q|
q

ˇ

ˇ

ˇ

ˇ

(6)

Considering that ηL can be very small and assuming 0 ď eipt´ 1q, eiptq ď 0.5, then the first part on
the left hand of Equation (6) is bigger than its correspondence on the right hand if |Lipt´ 1q| ă |Liptq|,
and the second part on the left hand is bigger than its correspondence on the right hand if eiptq |Liptq| ă
eipt´ 1q |Lipt´ 1q|. These restrictions can be expressed into the condition shown in Equation (7), and
this condition is employed by M-training to decide whether one unlabeled sample could be labeled
for ci:

0 ă
eiptq

eipt´ 1q
ă
|Lipt´ 1q|
|Liptq|

ă 1 (7)

Note that eiptq |Liptq| may still be less than eipt ´ 1q |Lipt´ 1q| even if eiptq ă eipt ´ 1q and
|Lipt´ 1q| ă |Liptq| due to the fact that |Liptq|may be much bigger than |Lipt´ 1q|. When this happens,
a sub-sampling method presented in paper [31] is employed, and the detail operation is shown as
follows: in some cases Liptq could be randomly sub-sampled such that eiptq |Liptq| ă eipt´ 1q |Lipt´ 1q|.
Given eiptq, eipt´ 1q and |Lipt´ 1q|, let integer si denote the size of Liptq after sub-sampling, then if
Equation (8) holds, eiptq |Liptq| ă eipt´ 1q |Lipt´ 1q|will be satisfied:

si “

R

eipt´ 1q |Lipt´ 1q|
eiptq

´ 1
V

(8)

where Lipt´ 1q should satisfy Equation (9) such that the size of Liptq after sub-sampling is still bigger
than |Lipt´ 1q|:

|Lipt´ 1q| ą
eiptq

eipt´ 1q ´ eiptq
(9)

It is noteworthy that the initial base classifiers should be diverse because if all classifiers are
identical, then for any ci, the unlabeled samples labeled by classifier of Ci will be the same as ci. To
achieve the diversity of the base classifiers, each base classifier just randomly employ 75% of set L as
its initial training data set, and the training data set of each classifier will be different via this way.
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Finally, the process of M-training can be listed as follows:

Step (a): Prepare data set L, U and the test data set for E-nose; set the value of M and θ.
Step (b): Train each base classifier ci of M-training with the initial training data set Li generated

randomly from set L.
Step (c): Gain the initial classification accuracy of set L and the initial classification accuracy of the

test data set. Simple voting technique is employed to determine the predict label of one sample, and
all base classifiers of M-training are used to predict the gas during this step.

Step (d): Repeat the following process until none of ci, i “ 1, 2, ¨ ¨ ¨ , M changes:

(d.1) Compute eiptq, as it has been introduced that eiptq “
niptq ´ ni1ptq

niptq
, where niptq means the

samples of set U labeled by Ci in round t, and ni1ptq is the samples of set U labeled correctly by Ci.
However it is impossible to estimate the classification error on the unlabeled samples, and only set L is
available, heuristically based on the assumption that the unlabeled samples hold the same distribution
as that held by the samples of set U;

(d.2) If eiptq ă eipt´ 1q, any sample x of set U will be used to generate set Liptq if the agreement
of labeling this sample made by classifiers in Ci exceeds θ;

(d.3) If |Lipt´ 1q| ă |Liptq|, then there will be two cases: case (1) eiptq |Liptq| ă eipt´ 1q |Lipt´ 1q|,

classifier ci will be refined by Li Y Liptq, and Lipt´ 1q “
Z

eiptq
eiptq ´ eipt´ 1q

` 1
^

, if Lipt´ 1q “ 0; case (2)

|Lipt´ 1q| ą
eiptq

eipt´ 1q ´ eiptq
, then |Liptq| ´ si samples of Liptqwill be removed, where si is computed

by Equation (8), then ci will be refined.
Step (e): Obtain the final classification accuracy of set L and the final classification accuracy of the

test data set, and the computation process is the same as step (c).

4. Results and Discussion

The first task of this section is to decide which classifier can be used as the base classifier of
M-training. Partial least square discriminant analysis (PLS-DA) [34], radial basis function neural
network (RBFNN) [35] and support vector machine (SVM) [36,37] are considered in this paper. The
leave-one-out technique (LOO) is used to train and test the three classifiers. Classification accuracy of
the training data set and test data set is set to evaluate the performance of the three classifiers. To make
sure every classifier achieves its best working state, an enhanced quantum-behaved particle swarm
optimization (EQPSO) [38] is used to optimize the parameters. Each program is repeated for 10 times
among which the best result will be the final result of each classifier. The results are shown in Table 4.

Table 4. Classification accuracy of different classifiers (%).

PLS-DA RBFNN SVM

Classification accuracy of training data set 87.88 92.03 96.59
Classification accuracy of test data set 87.88 89.02 96.21

It is clear that the classification accuracy of SVM has the highest accuracy rate of all classifiers, so
SVM is selected as the base classifier for M-training. The value of parameters in these three methods
are set as follows: the number of latent variables of PLS-DA is 5; the goal MSE and the spread factor of
RBFNN are 0.4329 and 0.0176, respectively; RBF function is employed as the kernel of SVM and its
value is 0.2749, while the value of the penalty factor of SVM is 0.4848.

Then tri-training and M-training with a different number of base classifiers are employed to refine
the classifier of our E-nose. The flow chart of SSL process is shown as Figure 4. Half of the training data
set is defined as data set L which is used to train the base classifiers, and the rest of the training data
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set are set as set U which is used to refine the base classifiers, namely, the unlabeled rate is 50%. The

threshold θ of M-training is set as
2
3

. The classification results of both methods are shown in Table 5.
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Table 5. Performance of tri-training and M-training with different number of base classifiers (%).

Classification
Accuracy (Initial)

Classification
Accuracy (Final) Impro

Tri-training 73.48 91.67 24.76
M-training (4 base classifiers) 74.24 96.97 30.62
M-training (5 base classifiers) 74.24 96.97 30.62
M-training (6 base classifiers) 74.24 96.97 30.62

Note: Impro = (final accuracy-initial accuracy)/initial accuracy; The initial classification accuracy of the test
data set is obtained when just set L is used to train the base classifiers, and the final classification accuracy is
obtained when set U is adopted to refine the base classifiers which have been trained by set L.

As one can see, the M-training results are better than those of tri-training. The reason is analyzed
as follows: suppose there is a point in set U (whose real label is 1). There are three classifiers in
tri-training, this point will not be considered to train classifier 1 if classifier 2 predicts the label of
this point is 1 and classifier 3 predicts its label is 2. Meanwhile, suppose there are four classifiers in
M-training, and classifier 2 and classifier 3 make the same classification as the corresponding classifier
in tri-training, then this point will be considered to refine classifier 1 if classifier 4 predicts the label is 1,
so M-training has more opportunity to refine its base classifiers, and this ensures that the E-nose has
more opportunity to learn knowledge from the unlabeled points.

It can also be found from Table 5 that the classification results of M-training with four base
classifiers are the same as M-training with five or six base classifiers. Although more base classifiers
means more opportunities to learn from the unlabeled samples, the knowledge provided by unlabeled
samples is limited when the set of unlabeled samples is determined. One can enlarge the size of
unlabeled set to make the classification accuracy of E-nose more ideal.

The highest classification accuracy in Table 5 is 96.97% obtained by M-training when four base
classifiers are trained by L and refined by U (the unlabeled rate is 50%). To study how much potential
knowledge has been recovered from the unlabeled samples, we set another training process during
which there are four classifiers (SVM) and they are trained by the whole training data set (L + U). The
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final classifier result is decided by simple voting, and its corresponding classification accuracy of the
test data set is 98.48%. We can find this result is much higher than 74.24% (obtained when the four base
classifiers of M-training are just trained by set L) and is just little higher than 96.97%. This comparison
indicates that much useful knowledge has been found by the E-nose in the unlabeled data with the
help of M-training.

Finally, the performance of M-training (four base classifiers) with different unlabeled rates (75%,
50% and 25%) of the training data set is researched. An introduction about the amount of samples in
each data set is given in Table 6.

Table 6. Amount of samples in each data set.

Amount of
Samples in

Training Data Set

Amount of
Samples in L
25%/50%/75%

Amount of
Samples in U
25%/50%/75%

Amount of
Samples in Test

Data Set

Benzene 108 27/54/81 81/54/27 36
Toluene 100 25/50/75 75/50/25 32

Formaldehyde 188 47/94/141 141/94/47 64
All-3 396 99/198/297 297/198/99 132

Note: 25%/50%/75% are three different unlabeled rates.

Tables 7–9 list the results of the M-training technique with different unlabeled sample rates, and it
is clear that the unlabeled samples can improve the classification accuracy of the test data set no matter
what the unlabeled rate is. Table 10 lists the amount of samples in each ci with different unlabeled rate,
and one can find that more samples are used to train the base classifier when M-training is adopted
to train and refine E-nose. Figure 5 shows the classification accuracy of different gas in the test data
set. As can be seen, the recognition rate of these three kinds of gas, whether a single case or all three
kinds of gas, has improved in varying degrees. And on the whole, the effect is most obvious when the
unlabeled rate is 50%. Whether this is the best proportion is still need to be further verified, but it can
be determined that M-training technique can indeed improve the accuracy rate of E-nose to these three
kinds of gas.

Table 7. Classification accuracy of M-training with 75%-unlabeled rate (%).

Training Data Set Test Data Set

Classification
Accuracy (Initial)

Classification
Accuracy (Final)

Classification
Accuracy (Initial)

Classification
Accuracy (Final) Impro

Benzene 100 100 44.44 72.22 62.51
Toluene 100 100 43.75 46.88 7.15

Formaldehyde 100 100 75 95.31 27.08
All-3 100 100 59.09 80.3 35.89

Table 8. Classification accuracy of M-training with 50%-unlabeled rate (%).

Training Data Set Test Data Set

Classification
Accuracy (Initial)

Classification
Accuracy (Final)

Classification
Accuracy (Initial)

Classification
Accuracy (Final) Impro

Benzene 100 100 50 88.89 77.78
Toluene 100 100 81.25 100 23.08

Formaldehyde 100 100 84.78 100 17.95
All-3 100 100 74.24 96.97 30.62
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Table 9. Classification accuracy of M-training with 25%-unlabeled rate (%).

Training Data Set Test Data Set

Classification
Accuracy (Initial)

Classification
Accuracy (Final)

Classification
Accuracy (Initial)

Classification
Accuracy (Final) Impro

Benzene 100 100 69.44 100 44.01
Toluene 100 100 81.25 100 23.08

Formaldehyde 100 100 82.81 92.19 11.33
All-3 100 100 78.79 96.21 22.11

Table 10. Amount of samples in each ci of M-training with different unlabeled rates.

0.25 0.5 0.75

Initial Final Initial Final Initial Final

c1 223 322 (99) 149 603 (454) 74 246 (172)
c2 223 322 (99) 149 214 (65) 74 354 (280)
c3 223 322 (99) 149 407 (258) 74 236 (162)
c4 223 223 (0) 149 153 (4) 74 74 (0)

Note: 322 (99) means there are 322 samples in the training data set of c1, and 99 samples more than its initial
training data set (223).Sensors 2016, 16, 370 11 of 13 
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Figure 5. Classification accuracy of different gas in the test data set. (a), (b) and (c) show the
classification accuracy of benzene, toluene and formaldehyde, respectively, and (d) shows the
classification accuracy of all gas. In each figure, the accuracy is improved with the help of M-training,
and the improvement is most obvious when the unlabeled rate is 50%.

5. Conclusions

In this paper, we propose a novel algorithm that not only uses labeled samples to train an E-nose,
but also can correct the trained algorithm model by using unlabeled samples. In the past, researchers
trained E-noses using labeled samples, discarding the unlabeled samples, which wastes a large number
of samples because unlabeled samples also contain useful information. To make good use of the
unlabeled gas samples, a proposed E-nose semi-supervised learning technique (M-training) is used to
improve the classification accuracy of the E-nose in predicting three common indoor pollutant gases
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(benzene, toluene and formaldehyde), during which the classifier is trained with labeled samples and
refined by unlabeled samples. The data processing results of tri-training and M-training with different
numbers of base classifiers prove that the classification accuracy of the E-nose is been improved when
unlabeled samples are used to refine the E-nose by these semi-supervised methods.

In some cases, there are more opportunities for M-training to learn knowledge from the unlabeled
samples if it contains more base classifiers, but the accuracy of the classification is unlikely to reach
100% even if the number of base classifiers approaches infinity. There is a reason that the knowledge
provided by the unlabeled samples is limited as long as the set of unlabeled samples is determined, but
it can enlarge the size of unlabeled set to make the classification accuracy of an E-nose more ideal when
M-training is used to train an E-nose. All results make it clear that M-training is an effective multi-class
semi-supervised technique for E-noses used to distinguish benzene, toluene and formaldehyde.
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