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Abstract: This paper deals with an improved methodology to measure three-dimensional dynamic
displacements of a structure by digital close-range photogrammetry. A series of stereo images of
a vibrating structure installed with targets are taken at specified intervals by using two daily-use
cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in
three-dimensional space. This method combines the correlation and the least-square image matching
so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and
space resection theory are used to determine the interior and exterior orientation parameters. To verify
the proposed method, experiments have been performed to measure displacements of a cantilevered
beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with
mixed bending and torsional motions simultaneously with multiple frequencies. The results by the
present method showed good agreement with the measurement by two laser displacement sensors.
The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the
dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to
sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration
monitoring of an inaccessible or dangerous facility.

Keywords: displacement sensor; 3-D vibration; digital close-range photogrammetry; correlation
matching; least square matching; sub-pixel targeting

1. Introduction

Measurement of structural vibration is a very important subject in various science and engineering
fields. The most common sensors used to measure structural vibration may be different types of
accelerometers, which require attaching them to the structure. In many cases this kind of contact-type
sensor is inconvenient to use, and often the size and additional mass of the sensor may distort the
vibrational characteristics of the structure. In some applications, such as monitoring vibration of
a rotating shaft, proximity sensors are used to measure the displacement or velocity by non-contacting
methods, however, they have a limited measurement distance and are difficult to use for general
purposes. Recently, laser sensors are being widely used for detecting vibrational motion, but they are
relatively expensive and have some limitation in the measurement distance and direction. It is noted
that these methods do not provide a 3-D full-field measurement.

In some recent researches, a new non-contact method to measure the structural vibration has
been proposed [1]. This method utilizes the digital close-range photogrammetry which was used for
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measuring the shapes using photo images. Photogrammetry is considered as the best technique for
measuring the 3-D shape of turbine blades compared to optical triangulation and Moiré contour [2].
Photogrammetry has been used in analyzing aerial and satellite pictures, too [3–5]. Photogrammetry
can be applied to the measurement of the dynamic deformation [4,6–10]. However, it is mostly focused
on the field application of commercial high-speed camera systems without dealing with details about
the measurement theory. Jeon et al. [11] applied the image processing to measure the vibration of a beam
using a single camera, however, it was limited to 2-D measurement. Belen Ferrer et al. [12] developed
a method to measure the vibration using an image processing to detect a sub-pixel movement of
a structure. However, this method is limited to measure only the frequency from a 2-D image sequence,
and cannot be applied to measure the 3-D dynamic displacement of a structure.

Lee and Rhee [1] have developed an efficient method to measure the full-field 3-D vibration in
recent research. They introduced a theoretical basis of the digital photogrammetric method to measure
the vibration using two inexpensive general purpose digital cameras without expensive high-speed
cameras. Target matching was performed using the correlation coefficient. Then, the collinearity and
space intersection were applied to trace the spatial position of each target. Finally, they performed
an experiment to show that the theory can capture the dynamic 3-D displacements of a beam vibrating
in a pure sinusoidal pattern with its fundamental natural frequency. In their work, however, the target
matching was based on the pixel size of digital images. This means that the accuracy was limited to
the size of one pixel, therefore, it depends on the resolution of the digital image and also the distance
between the camera and the structure.

In this paper, we introduce a new methodology to improve the measurement accuracy by
applying the least-square image matching for sub-pixel targeting. To determine the orientation
parameters the space resection method is used rather than the bundle adjustment which was used
in [1]. To verify the validity of the proposed method, a series of tests were performed to measure the
dynamic displacements of a cantilever beam vibrating in mixed bending and torsional modes with
multiple frequencies under the forced vibration condition.

2. Theory of 3-D Vibrational Displacement Measurement by Dynamic Photogrammetry Using
Least Square Image Matching for Sub-Pixel Targeting

Figure 1 describes the overall procedure developed in this research for the measurement of the
dynamic displacement of a vibrating object. In order to detect three-dimensional vibration, including
both in-depth and out-of-plane motion by the dynamic photogrammetry, more than two cameras are
required: in this paper, as a first step, stereo cameras are assumed for the development of the theory.
Figure 2 shows the schematic of the vibration measurement in this study.

First of all, photogrammetric targets are installed at several fixed control points located near
the vibrating structure. These targets are not shown in Figure 2 for simplicity. These are used as
control points to determine IOPs (Interior Orientation Parameters) and EOPs (Exterior Orientation
Parameters). IOPs consist of three parameters for each camera: focal length ( fiq and displacement of
the principal point (x0i and y0i) in the CCD image plane (i = 1 for left camera, i = 2 for right camera).
EOPs include six parameters for each camera: the location (three spatial coordinates) of the lens center
and the attitude (three rotation angles) of the lens in 3-D space.

As a next step, additional photogrammetric targets are attached to the vibrating structure, of
which we want to measure the vibration, as shown in Figure 2. The dynamic movements of these
targets are to be traced by the stereo photogrammetric technique in this study.

After installation of all photogrammetric targets, photo sequence of the vibrating structure is
taken using two digital cameras, which may be either high-speed or cheap daily-use ones. The stereo
images are synchronized using an appropriate electronics or a simple digital monitor stop-watch.
In the experiment discussed later, we use the inexpensive daily-use cameras and a digital stop-watch
as depicted in Figure 2 so that sophisticated expensive devices are not used in this study at all.
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In order to detect the dynamic motion by the dynamic photogrammetry, it is a prerequisite to
determine IOPs and EOPs. In this research these parameters are computed by the space resection
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method using the collinearity condition in Equation (1), which refers to the linear alignment of the
perspective center of the camera lens, the image points on CCD, and the points in the object space
which coincide with the bundle of rays as shown in Figure 3 [13].

xijk ´ xoi“´ fi
ri,11

`

Xk ´ Xoij
˘

` ri,12
`

Yk ´Yoij
˘

` ri,13
`

Zk ´ Zoij
˘

ri,31
`

Xk ´ Xoij
˘

` ri,32
`

Yk ´Yoij
˘

` ri,33
`

Zk ´ Zoij
˘

yijk ´ yoi“´ fi
ri,21

`

Xk ´ Xoij
˘

` ri,22
`

Yk ´Yoij
˘

` ri,23
`

Zk ´ Zoij
˘

ri,31
`

Xk ´ Xoij
˘

` ri,32
`

Yk ´Yoij
˘

` ri,33
`

Zk ´ Zoij
˘

(1)

where i = 1, 2 (1 = left camera, 2 = right camera), j = 1~α (α = number of photo images), k = 1~β

(β = number of control points), xijk and yijk = image coordinates of targets, xoi and yoi = the coordinates
of the principal point (image center), Xoij, Yoij, and Zoij = spatial coordinates of the camera lens center,
Xk, Yk, and Zk = spatial coordinates of targets, fi = focal length. The information on the attitude of
cameras are included in the rotational matrix components, ri,11 , ri,12 ¨ ¨ ¨ , ri,33, which contain rotational
angles pωi, φi, κiqwith respect to the X, Y, Z coordinates, respectively [1].
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Figure 3. Collinearity condition.

The 3-D space coordinates (X, Y, Z) and image coordinates (x, y) of the fixed control points can
be determined by the total station and the image processing of the first set of stereo images (j = 1),
respectively. Then, by substituting these coordinates into the collinearity in Equation (1), IOPs (xoi, yoi,
and fi) and EOPs (Xoij, Yoij, Zoij, and ωi, φi, κi) of left and right cameras can be determined. Therefore,
the total number of orientation parameters is nine for each camera; therefore, at least nine fixed control
points are required.

Once the IOPs and EOPs are identified, the collinearity condition Equation (1) can be again
utilized to compute the spatial coordinates Xk, Yk, and Zk of targets attached to the vibrating structure
if the corresponding image coordinates xijk and yijk are pre-determined. It is noted that now the
subscript k in Equation (1) should represent the targets attached to the structure rather than the control
points. The image coordinates of targets of the first of set of stereo image are obtained using an image
processing technique. From the second set of images, the target-matching technique automatically
traces the dynamic displacements of each target. In this study this procedure consists of two sub-steps
as described in Figure 4. First, the correlation-matching is performed to roughly estimate the new
location of targets with an accuracy of the unit pixel using the normalized correlation coefficient. Then,
the least-squares-matching is applied to compute the new location with the sub-pixel precision in
a finer manner.
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In more detail, in the correlation-matching, the reference area contains a target at the center. Then
the search area is constructed where the target is likely to locate after movement. The reference area is
shifted by a pixel size step within the whole search area, and at every shift the correlation coefficient
Corr(m, n) is determined using Equation (2). The probability of good matching is higher as Corr(m, n)
approaches 1, therefore, the coordinates of targets are determined where Corr(m, n) has the maximum
value within the search area:

Corrpm, n q “
ř ř

 

Spx, yq ´ S
(  

Wpx, yq ´W
(

«

m`M1´1
ř

x“m

n`N1´1
ř

y“n

 

Spx, yq ´ S
(2 M1

ř

x“1

N1
ř

y“1

 

Wpx, yq ´W
(2
ff1{2

(2)

where Spx, yq and Wpx, yq are the pixel values in the search and reference areas, respectively. M1 and
N1 are line and column pixel size in the reference area, respectively. The mean values in Equation (2)
are computed as Equation (3):

S “

#m`M1´1
ÿ

x“m

n`N1´1
ÿ

y“n
Spx, yq

+

{pM1 ˆ N1 q, W “

$

&

%

M1
ÿ

x“1

N1
ÿ

y“1

Wpx, yq

,

.

-

{pM1 ˆ N1q (3)

In Equations (2) and (3) the coordinates px, yq are an integer pair of the multiples of unit pixel, so
the resolution of the dynamic image coordinates is the unit pixel. In this paper a further step to more
accurately determine the image coordinates is employed using the least-squares matching.

To define the discrepancy in the W(x, y) and S(x, y) between reference and search areas, every
pixel value in the reference area is expressed as the corresponding radiometrically and geometrically
transformed pixel values in the search area as follows [2]:

Wk px, yq ´ ek px, yq “ r0 ` r1Sk pxs, ysq

xs “ a1 ` a2x` a3y
ys “ b1 ` b2x` b3y

(4)

where, k “ 1 , . . . , M1N1 . ek px, yq is the noise component, and pxs, ysq is the corresponding
coordinate with position (x, y) in the reference image. r0 and r1 are radiometric-shift and -scale,
respectively, for contrast and brightness (or equivalently offset and gain). In the present experimental
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study, which will be discussed in the following section, the effect of radiometric variation is
not of concern, so these two parameters can be omitted but are included here for more general
formulation for later use. a1, a2, a3, b1, b2, and b3 are affine parameters for geometric transformation
(a rotation, non-perpendicularity of the rotated two axes, two scale changes and two translation).
Coordinates xs and ys are not integer values any more; therefore, the corresponding pixel values are
interpolated using the bilinear transformation.

Equation (4) should be linearized by Equation (5) to perform the least-squares technique (omitting
the index k for simplicity).

W px, yq ´ e px, yq “ So px, yq `
BSo px, yq
Ba1

da1 `
BSo px, yq
Ba2

da2 `
BSo px, yq
Ba3

da3 `

BSo px, yq
Bb1

db1 `
BSo px, yq
Bb2

db2 `
BSo px, yq
Bb3

db3 ` r0 ` r1So px, yq
(5)

So px, yq is the approximation of the conjugate search patch. Since the areas are nearly aligned
and are radiometrically similar, we can set initial parameter value to be a0

1 “ a0
3 “ b0

1 “ b0
2 “ r0

0 “ 0,
a0

2 “ b0
3 “ r0

1 “ 1. Equation (5) can be expressed as follows:

BSo px, yq
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1
BSo px, yq
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Bx
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x
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By
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By
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By
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x
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(6)

where,
BSo px, yq
Bx

«
S px` 1, yq ´ S px´ 1, yq

2
,
BSo px, yq
By

«
S px, y` 1q ´ S px, y´ 1q

2
.

If the transformation parameters are written as the vector of unknowns X, the partial derivatives
as the design matrix A and the pixel value differences between the reference and search images as the
vector of observations L, then linearized correction equations are given as follows [2]:

´ epk,1q “ Apk,lqXpl,1q ´ Lpk,1q (7)

where, XT “ rda1, da2, da3, db1, db2, db3, dr0, dr1s , k = M1N1, and l = number of unknown
parameters (8). Equation (7) can be expressed as the least-squares form in order to compute parameters
da1 , da2 , da3 , db1 , db2 , db3 , dr0 , dr1 using Equation (8):

X “
´

AT A
¯´1 ´

AT L
¯

(8)

The adjustment equations must be solved iteratively. In every iteration the unknowns are updated
using the result from Equation (8) such as a1

1 “ a0
1 ` da1, a1

2 “ a0
2 ` da2 , . . .. This leads to new pixel

value differences between the reference and search images until the least-squares sum of the corrections
is less than a predefined threshold (nearly zero). Finally, more accurate image coordinates after the
dynamic deformation can be determined as depicted in Figure 4.

As a next step, 3-D coordinates of targets are obtained using the space intersection, in which
the interior and exterior orientation parameters and the image coordinates of the same point in a set
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of stereo images are used. That is, once identical points are found in each stereo image by using
the correlation and least-squares matching technique as explained above, two straight lines passing
through pl-OL and pr-OR must intersect at a point P in Figure 5 [13].
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Thus, the 3-D dynamic displacement of vibrating structures can be measured with
sub-pixel accuracy.

This methodology enables the full-field measurement of the vibrating structure because there is
no limit in the number of targets. The targets are just a piece of papers or pen-marks, therefore, there
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is no mass-loading effects compared to the conventional sensors such as accelerometers. Moreover,
when unique features on its surface and shape such as corners are utilized, even the targets may not be
necessary. In the following section, an experiment is successfully performed to verify the proposed
method to measure the 3-D vibration.

3. Experiment

A series of experiments were performed to verify the proposed methodology for the 3-D vibration
measurement using two cameras. A cantilever composite beam was fixed at its lower end as shown in
Figure 6. An electrodynamic shaker was installed at its bottom part to excite the cantilever. The beam
has 12 targets, and additional targets were attached at 16 control points near the cantilever beam.
Two laser displacement sensors (Keyence LKG-5000), which are operated by optical triangulation, were
installed at two locations, on the back side of targets 18 and 19, to verify the measurement accuracy
of the proposed method. The photogrammetric system uses two cameras to take sequential photo
images and a monitor stopwatch for the temporal synchronization of the stereo images. The camera
is an inexpensive daily use camera, CASIO EX-FH20, which can take 40 fps. The resolution was
3072 pixels ˆ 2304 pixels.
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Figure 6. Cantilevered beam with multiple targets under forced excitation. Figure 6. Cantilevered beam with multiple targets under forced excitation.

The spatial coordinates of control points were determined by the total station, which is a distance
measurement device used for the 3-D land survey, as shown in Figure 7.

Forty sequential photographs which contain images of the vibrating beam, monitor stop-watch,
and fixed control points were taken using two cameras, as shown in Figure 8. In a previous
experience [1] the monitor stop-watch was proved to be reliable enough to synchronize stereo images
without many trials. Of course, an electronic synchronization would be more accurate, but this research
focuses on the improvement by adding the least square matching procedure for sub-pixel targeting
while other conditions are kept as same as possible. Nine of the 16 control points were used for the
determination of IOPs and EOPs. The other seven points were used later as checkpoints to verify the
accuracy of the determined IOPs and EOPs.
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images, respectively).

The IOPs and EOPs of the two cameras in Table 1 were computed by the space resection method using
the 3-D location of the control points and their image coordinates in the first stereo photo [14]. In order to
verify the accuracy of the computed parameters, the 3-D coordinates of the seven checkpoints were
computed by using Equation (12) and then the results were compared with the measurements by
the total station. They showed accurate enough consistency within 0.1 mm root mean square error;
therefore, it was decided that IOPs and EOPs could be a good basis to measure the vibration.

Table 1. IOPs and EOPs of the two cameras.

f
(mm)

x0
(mm)

y0
(mm)

X0
(mm)

Y0
(mm)

Z0
(mm) ω (rad) φ (rad) κ (rad)

Left Camera 6.38 0.07 0.10 1727.5 2410.3 4131.7 ´0.0225 ´0.1560 ´0.0141

Right Camera 6.53 ´0.11 ´0.04 2505.1 2427.2 4125.1 ´0.0118 0.2820 0.0116
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Next, the image coordinates of targets installed at the vibrating structure were determined by
applying the proposed method, that is, the correlation matching (Equation (2)) followed by the
least-squares matching (Equation (8)) as depicted in Figure 4. Figure 9 shows an example which
explains that the least-squares matching refines the location to the sub-pixel size accuracy. Then, as
a final step, the 3-D spatial coordinates of targets are computed by Equation (12).
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Figure 10 compares the out-of-plane dynamic displacements of the beam at targets 18 and
19 positions (see Figure 6) which are obtained using the proposed method with the laser displacement
sensor measurement. The result clearly reveals that the dynamic 3-D displacement can be very
accurately measured by the proposed method even though the structure vibrates in enough of
a complex shape with multiple frequencies. The small discrepancy could be further reduced easily
if a better-quality camera, e.g., a camera with lower lens distortion and electronic synchronization
function, is used. Figure 11 compares their spectrum, and shows good consistency; therefore, the
accuracy of the proposed method is again proved.

It is noted that the root mean square errors of the measurement by the proposed method relative
to the laser sensor are 0.20 mm and 0.17 mm for targets 18 and 19, respectively. Maximum displacement
at Target 18 is bigger (~8 mm) than that at target 19 (~2 mm), therefore, it is reasonable enough that
the displacement at Target 18 has a larger root mean square error, although some other factors, such
as different wave patterns at the two locations, may have influences on the measurement accuracy,
too. In the previous study [1] which used solely correlation matching without least square matching,
the root mean square error was 0.21 mm ([1] p. 68), which looks comparable to the present results.
However, in the previous study, the maximum displacement was only 2 mm due to the shorter
length of the cantilever beam and weaker excitation by the piezoelectric patch. Thus, the present
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results are actually more accurate considering the larger displacement and complex vibration pattern.
The spectrum in Figure 11 also shows better accuracy compared to the spectrum in the reference [1]
(Figure 9). In fact, Figure 9 clearly shows the effectiveness of the application of the least square
matching. The locations of red and blue marks in Figure 9 may be quite different in some case, but may
be very close in some other case: it would be almost random as the structure is vibrating. Therefore,
it is obvious that the proposed method utilizing the least square matching will generally have much
better accuracy while even in a worst case it will still have a slightly better accuracy compared to the
correlation matching only.
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Figure 11. Comparison of out-of-plane displacement spectra measured by the proposed method and
laser sensors at target 18 and 19 positions (for left curves of Figure 10). (a) Target 18 position; and
(b) Target 19 position.

Figure 12 shows the 3-D displacement time-histories at 12 target positions. Using Figure 12, the
3-D dynamic deformation shape of a vibrating structure, which is often referred to as an operational
deflection shape (ODS), is directly obtained as shown in Figure 13. The beam in this experiment
undergoes combined bending and torsional modes. It is revealed that even the subtle torsional motion
is well captured by the proposed method. Figure 13 can also be easily displayed as a movie file so that
one can visually understand the complex operational vibration characteristics in detail. It would be
useful for the analysis or monitoring of vibrating structures in various fields, including non-accessible
hazardous facility, automobile panels, etc.
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Figure 13. Consecutive vibration patterns during one second measured by the proposed method
(different colors represent out-of-plane displacements).
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If other type of sensors such as accelerometers or laser sensors are used to obtain the deformation
shape in Figure 13, 36 unidirectional sensors or 12 three-axes sensors will be needed, which would be
impossible or, at least, impractical. Moreover, contact-type sensors such as accelerometers would cause
severe mass loading effects, so the original structural vibration characteristics are distorted. It is noted
that even a highly-sophisticated laser scanning device cannot measure the 3-D operational deflection
shape in Figure 13.

4. Conclusions

An improved three-dimensional dynamic displacement measurement method using close-range
digital photogrammetry was proposed in this paper. The proposed method combines the correlation
matching method and the least-squares matching technique, so that the measurement accuracy
significantly increases compared to the correlation matching-only method in the previous study
by the authors. This method can be easily applied using only cheap daily-use cameras to detect
3-D vibration information without expensive high-speed cameras. A series of experiments were
successfully performed to verify the proposed method by measuring the displacement of a cantilever
beam vibrating at multiple frequencies in combined bending and torsional modes using two cameras
which take 40 frames per second. The accuracy has been verified by comparing the measurement
results to the laser sensor measurement in time and frequency domains.

The proposed method has great advantages because it can perform the full-field measurement of
three-dimensional dynamic displacements of a vibrating structure by non-contact methods. It does not
necessarily require highly-sophisticated devices such as high-speed cameras. The proposed method
can be applied to the vibration monitoring with improved accuracy in various industrial situations
as well as in a laboratory condition. Remote monitoring of the vibration of bridges or buildings or
non-accessible nuclear facilities may be good examples of the application.
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