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Abstract: A low-power and low-noise dynamic instrumentation amplifier (IA) for biopotential
acquisition is presented. A dynamic IA that can reduce power consumption with a timely piecewise
power-gating method, and noise level with an alternating input and chopper stabilization technique
is fabricated with a 0.13-µm CMOS. Using the reconfigurable architecture of the IA, various
combinations of the low-noise schemes are investigated. The combination of power gating and
chopper stabilization shows a lower noise performance than the combination of power gating and
alternating input switching scheme. This dynamic IA achieved a power reduction level of 50% from
10 µA to 5 µA and a noise reduction of 90% from 9.1 µVrms to 0.92 µVrms with the combination of
the power gating and chopper stabilization scheme.

Keywords: biopotential; dynamic instrumentation amplifier; power gating; alternating input;
chopper stabilization

1. Introduction

Currently, attempts are being made to perform comfortable and continuous health monitoring
in daily life through a wearable system [1–5]. Many biosignals, including electrocardiogram,
electroencephalogram, electromyogram, body fat, and heart rate are monitored in contemporary
commercialized wearable devices [6–8]. Such battery-operated wearable systems inherently require low
power, and, thereby, an ultra-low-power health monitoring circuit. An instrumentation amplifier (IA)
is one of the most important building blocks for biopotential signal acquisition. High signal-to-noise
ratio at the amplifier output is required for further processing in subsequent stages. Generally, a
low-noise design requires higher power consumption, because the input-referred noise can be lowered
by increasing the power consumption.

In biopotential applications, reducing the flicker noise is an important issue because the flicker
noise (1/f noise) is dominant in the low-frequency band. The dominant factors of flicker noise are
fluctuations in carrier number and mobility due to the traps at the interface of the silicon and gate
oxide [9]. Many research studies have reported a reduction in the flicker noise by various techniques,
including correlated double sampling [10], chopper stabilization [11–14], large signal excitation [15,16],
and bulk switching scheme [17].

In this paper, we present a dynamic IA scheme to reduce power consumption in an analog
readout channel using power gating (PG). In addition, to recover worsened noise level according to the
dynamic IA adaptation, chopper-stabilization (CS), and alternating input switching (AIS) techniques
are investigated. The IA is designed to be fully reconfigurable, and can be operated in various
combinations with power gating, chopper stabilization, and alternating input switching. In this paper,
the optimal combination and operating conditions between PG, CS, and AIS are also investigated.
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2. Circuit Design

2.1. Top Level Architecture

Figure 1 shows the block diagram of the biopotential readout channel with the dynamic IA. The
electrocardiogram (ECG) signal is modulated by the chopping clock, “clk_in”. The chopper operation
is controlled by programming the chopping clock. The modulated inputs, “IA_ip” and “IA_in”, are
amplified by the dynamic IA. The dynamic IA consists of a transconductance (TC) input stage and
transimpedance (TI) output stage. The amplified ECG signal is sampled and held in the “S and H”
stage. An additional amplification is performed by the programmable gain amplifier (PGA). Finally,
the high-frequency noise in the amplified ECG signal is removed by the low-pass filter (LPF). The
readout channel is designed to be fully reconfigurable. The operation mode of each sub-block can be
controlled by the control registers. The clock generator can generate the fully programmable clocks
using 32-bit bitstream registers. The internal registers can be accessed via the serial peripheral interface
(SPI). The clock timing examples for the biopotential readout channel are shown in Figure 2. The
biopotential readout channel can be configured in various operating mode for low power and low
noise applications. The PG and the appropriate sampling operations are controlled by programming
“clk_dyna” and “clk_SH”. The AIS mode is controlled by programming “clk_DI”.
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Figure 1. Block diagram of the biopotential readout channel.
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2.2. Dynamic IA

The schematic of the TC input stage, which converts the input differential voltage to output
differential current, is shown in Figure 3a. The input transistors are operated in a weak inversion
region for achieving higher transconductance (gm) efficiency. In DC operating points, the VGS (=VGB)
and VTH of the input transistors are 255 mV and 329 mV, respectively. The dynamic IA is powered
on and off by a control clock signal “clk_dyna”. When the control clock signal “clk_dyna” of a low
logic level is supplied to the power gating transistors in the TC stage, the TC stage will be powered off
and vice versa. According to the duty ratio of the control clock “clk_dyna”, the time-averaged power
consumption of the dynamic IA is reduced proportionally. The input stage transistors using alternating
input switching (AIS) scheme are composed of two MOS and two analog MUX, as shown in Figure 3b.
With the control signal “clk_DI”, either MOS “IM1” or MOS “IM2” is activated. This type of technique
with alternating input is known to be helpful in reducing low-frequency band noise [16,18].
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Figure 3. Transconductance (TC) input stage of dynamic IA. (a) Schematic of TC input stage;
and (b) input transistor with alternating input switching (AIS).
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The schematic of the TI output stage is shown in Figure 4. In this stage, the differential currents
from TC stage is converted to output voltages using the resistors, Ro. The resistors, Ro, are also used
as resistive common mode feedback. The power gating is also applied in the TI stage. When the power
gating clock “clk_dyna” is high, the gate bias voltage is applied, and the TI stage is turned on. When
“clk_dyna” is low, the gate bias voltages of PMOS and NMOS become VDD and VSS, respectively;
thus, the TI stage is turned off.
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Figure 4. Transimpedance (TI) output stage of dynamic IA.

The input impedance is mainly affected by input capacitance, input leakage current, and switching
frequency of CS or AIS. When the switching frequency of 4 kHz, the simulated input impedance of
this circuit in ECG bandwidth is 415 MΩ. The input impedance of 415 MΩ is much larger than the
typical impedance of 51 kΩ//47 nF in Ag/AgCl wet electrodes.

3. Experimental Results

Figure 5 shows the micrograph of the fabricated readout circuit in the 0.13-µm CMOS technology.
The chip size is 1.4 mm by 4.3 mm. The supply voltage is 1.2 V, and the supply current without PG
is 10 µA.

The noise spectrum is measured using a spectrum analyzer, 35670A by Keysight Technologies,
Inc. (Santa Rosa, CA, USA), and the input-referred noise is calculated and plotted according to the
various operation conditions in Figure 6. The clock configurations for operation conditions are shown
in Table 1. The bandwidth of the IA is limited by the fourth-order Bessel low pass filter with 100 Hz
cut-off frequency. The bandwidth of the filter can be digitally reconfigurable from 50 Hz to 400 Hz.
With the control clocks of “clk_dyna = L”, “clk_LSE = H”, “clk_in = H”, and “clk_TI = H”, the IA is
operated in a static condition and the input-referred noise level is 4.7 µVrms marked as “none” in
Figure 6. In the static mode with the condition of always “clk_dyna = L”, the conventional chopping



Sensors 2016, 16, 354 5 of 10

technique and the alternating input switching (AIS) technique are helpful in reducing the noise level.
To reduce the power consumption, the power gating (PG) technique is applied with a clock signal
having a duty ratio of 50% to the control signal “clk_dyna”. The PG technique reduces the power
consumption proportionally to the duty ratio of the power gating control signal; however, it increases
the noise level by almost double. The noise level of the dynamic IA is investigated with the chopper
stabilization (CS) and AIS techniques.
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Table 1. Clock configurations for various operation conditions.

PG 4 kHz + AIS PG only AIS only CS only PG 4 kHz + CS

clk_in Static “H” Static “H” Static “H” Chopper freq.
clock Chopper freq. clock

clk_DI AIS freq. clock Static “H” AIS freq. clock Static “H” Static “H”

clk_TI Static “H” Static “H” Static “H” Chopper freq.
clock Chopper freq. clock

clk_dyna 4 kHz clock PG freq. clock Static “H” Static “H” Static “H”

clk_SH 4 kHz clock with
1/4 duty ratio

PG freq. clock
with 1/4 duty ratio Static “H” Static “H” 4 kHz clock with

1/4 duty ratio
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The performance comparisons including noise efficiency factor (NEF) between the various
operating conditions at 2 kHz switching frequency are also summarized in Table 2. The NEF is
calculated as Equation (1):

NEF “ Vni,rms

d

2Itot

πUT ¨ 4kT ¨ BW
(1)

where Vni,rms is the input referred noise, BW is the 3-dB bandwidth of the amplifier, UT refers to the
thermal voltage, and Itot is the supply current of the amplifier.

Table 2. Comparison of operation conditions at 2 kHz switching frequency.

PG 4 kHz + AIS
2 kHz

PG only
2 kHz

AIS only
2 kHz

CS only
2 kHz

PG 4 kHz + CS
2 kHz

Input noise (µVrms) 3.4 9.1 2.4 0.69 0.92
Supply current (µA) 5 5 10 10 5

Bandwidth (Hz) 100 100 100 100 100
NEF 29.8 79.9 29.8 8.6 7.9

The lowest noise level of 0.69 µVrms is measured at the chopper frequency of 2 kHz, wherein
the input-referred noise is measured to be 9.1 µVrms with PG only. At the same chopper frequency
of 2 kHz, the input-referred noise is reduced to be 3.4 µVrms with the combination of PG and AIS.

The most helpful technique in the dynamic IA is the combination of the PG and CS method.
The input referred noise and NEF with the combination of PG 4 kHz and CS 2 kHz are 0.92 µVrms
and 7.9, respectively. In terms of the power consumption, PG with the half duty cycle is equivalent to
reducing the bias current to one half. When the bias current is reduced to one half, the thermal noise
component, which is dominant in chopper stabilized amplifier, will increase approximately by a factor
of

‘

2. In this case, the input referred noise with CS with half bias current is expected to be 0.97 µVrms
(=

‘

2 ¨ 0.69 µVrms). The combination of PG and CS shows better NEF and lower input referred noise
level than the expected values of CS and half bias current.

Figure 7 shows noise spectrum examples in cases of power gating with a 4 kHz clock and a
combination of power gating with 4 kHz and chopping with 2 kHz. By adding the chopping technique,
the low-frequency band noise in the power gating technique is reduced. The input-referred noise
is reduced to 0.92 µVrms with the combination of PG and CS. By applying the half duty-cycled PG
and CS, a power reduction of 50% from 10 µA to 5 µA, and a noise reduction of 90% from 9.1 µVrms
to 0.92 µVrms can be achieved.
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The measured frequency responses including gain and phase plot are shown in Figure 8. The
phase distortions are important parameter for high quality ECG recording [19,20]. Although the
post-processed digital filter can be used for reducing the phase distortions, the analog filters with
inherent phase distortions are used in this system to achieve low power, small size, and real-time
signal acquisition, which are important in wearable devices.Sensors 2016, 16, 354 7 of 10 
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Figure 8. Measured frequency response.

In the time domain, the measured waveform using ECG simulator is shown in Figure 9a.
The measured ECG waveforms for 8 h with wet electrodes are shown in Figure 9b. The Ag/AgCl
wet electrodes of 3M™ Red Dot™ [21] are used for ECG signal acquisition. The gain of the readout
channel is set to 171 V/V. The input ECG signal is preserved with a 50% power reduction compared
to the static condition and 90% noise reduction compared to the power gating condition. The transient
switching noises due to the switching operations in PG and CS are removed by the fourth-order
100 Hz low pass filter. For example, the 2 kHz switching noises are attenuated by ´104 dB
(=´80 dB/dec ¨ log(2 kHz/100 Hz) dec). The bandwidth of the filter can be digitally reconfigurable
from 50 Hz to 400 Hz.
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Figure 9. Measured ECG signals in the time domain. (a) Measured waveform using ECG simulator;
and (b) measured ECG signals for eight hours with wet electrodes.

The measured common mode rejection ratio (CMRR) is shown in Figure 10. At 60 Hz, the
differential mode gain and the common mode gain are measured to be 44.7 dB and ´46.6 dB; thus, the
CMRR is calculated to 91.3 dB.
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4. Conclusions

A low-noise and low-power dynamic IA scheme was presented. A dynamic IA that can reduce
power consumption with a timely piecewise power-gating method and noise level with an alternating
input and chopper stabilization technique is fabricated with a 0.13-µm CMOS. The combination of
power gating and chopper stabilization results in a lower noise performance than the combination
of power gating and alternating input switching scheme. With the combination of power gating and
chopper stabilization, the supply current is reduced from 10 µA to 5 µA, and the input-referred noise
is reduced from 9.1 µVrms to 0.92 µVrms. The power consumption and noise level of the fabricated
chip are summarized and compared with the recently-published results summarized in Table 3. In our
proposed architecture, we have shown that the dynamic IA technique can achieve a 50% reduction in
power consumption and recover the signal-quality deterioration by 90%.

Table 3. IA performance summary and comparison with previous works.

This Work [22] [23] [24]

Technology 130 nm 180 nm 65 nm 180 nm

Supply 1.2 V 1.2 V 1 V 1 V

IA current 10 µA (static mode) 5 µA (half
duty-cycled power gating mode) 5 µA 1.8 µA 3.5 µA

Input-referred
noise (~100 Hz)

0.6 µVrms (static mode) 0.9 µVrms
(half duty-cycled power gating mode) 1.3 µVrms 6.7 µVrms 1.3 µVrms

Input impedance 415 MΩ (simulated) 1 GΩ N/A 700 MΩ

CMRR 91.3 dB 120 dB 134 dB 60 dB
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