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Abstract: In this paper, the problem of two-dimensional (2D) direction-of-arrival (DOA) estimation
with parallel linear arrays is addressed. Two array manifold matching (AMM) approaches, in this work,
are developed for the incoherent and coherent signals, respectively. The proposed AMM methods
estimate the azimuth angle only with the assumption that the elevation angles are known or estimated.
The proposed methods are time efficient since they do not require eigenvalue decomposition (EVD)
or peak searching. In addition, the complexity analysis shows the proposed AMM approaches
have lower computational complexity than many current state-of-the-art algorithms. The estimated
azimuth angles produced by the AMM approaches are automatically paired with the elevation
angles. More importantly, for estimating the azimuth angles of coherent signals, the aperture loss
issue is avoided since a decorrelation procedure is not required for the proposed AMM method.
Numerical studies demonstrate the effectiveness of the proposed approaches.
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1. Introduction

Direction-of-arrival (DOA) estimation plays an important role in many fields such as wireless
communication, multiple-input multiple-output (MIMO) radar, sonar, etc. [1–3]. Many DOA estimation
algorithms have been proposed to address the DOA estimation problem, for example, the multiple
signal classification (MUSIC) algorithm [4,5], estimation of signal parameters via rotational invariance
techniques (ESPRIT) algorithm [6] and propagator method (PM) [7]. Particularly the root-MUSIC
algorithm, proposed in [5], can estimate more signals than elements. Based on these three classical
algorithms, a large number of two-dimensional (2D) DOA estimation algorithms [8–16] were developed
as well. Compared with the one-dimensional (1D) DOA estimation algorithms [4–7], the corresponding
2D DOA estimation algorithms face two difficulties, namely angle matching and increased complexity.
Based on the assumption that the elevation and azimuth angles are independently estimated,
many effective pair-matching methods were proposed [8,17,18]. For those methods, computational
complexity is high, since twice 1D DOA estimation algorithms are involved. An algorithm called joint
singular value decomposition (JSVD) [9] was proposed to achieve automatic pairing. However, this
algorithm needs SVD of a high-order block covariance matrix, which is computationally demanding.
The PM is a low-complexity DOA estimation algorithm because EVD or SVD is not required. In [15],
an improved PM algorithm was proposed to achieve automatic pairing of the 2D DOA estimation.
Compared with the original PM [10], this algorithm showed improved performance in both complexity
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and precision. But, in order to achieve automatic pairing, it needed to construct and compute
a high-order correlation matrix, which increased computational complexity. In [19], a DOA matrix
(DM) algorithm was presented in which elevation and azimuth angles were automatically paired.
The DM, however, still performed twice eigenvalue decompositions (EVD).

It should be noted that the algorithms [4–16,19] were designed for incoherent signals. Unlike the
incoherent signals, the rank of the covariance matrix of coherent signals is less than the number of
incident signals. In order to overcome the rank deficiency, decorrelation approaches [20–25] were
proposed. Apart from high complexity, these algorithms also suffered from aperture loss. In [20,21],
a spatial smoothing (SS) technique was developed to decorrelate the incoming signals, but 2D peak
searches are computationally intensive. In [22], an ESPRIT-like method was proposed for 2D DOA
estimation of coherent signals with a rectangular array. For solving the problem of the rank deficiency,
a pencil-based method was used to construct a high-order block Hankel matrix. However, the
problem is still computationally demanding since it performed SVD of a high-order block matrix.
In order to reduce the complexity, a unitary ESPRIT-like method [23] was presented based on the
method [22]. By unitary transformation, EVD and SVD were transformed into real-valued process, but
that only partially solved the problem. In [24], authors decorrelated the coherency of the signals and
constructed the signal subspace using block covariance matrix (BCM). Compared with the traditional
SS method, it showed improved performance in the case of low signal-to-noise ratio (SNR). However,
the computational burden still is large due to the SVD of a high-order matrix as in [22]. In [25],
fourth-order cumulants of received data from two-parallel uniform linear arrays were arranged to
reconstruct two Toeplitz matrices (it is called the TMR algorithm in this paper), the rank of which is
equal to the number of incoming signals. Although this algorithm had lower complexity than many
similar algorithms, it caused more serious aperture loss than the SS and BCM methods.

In this paper, we propose two array manifold matching (AMM) methods using parallel linear
arrays. The two methods are based on the assumption that the elevation angles are known or estimated.
The first AMM method is designed for incoherent signals. By utilizing the estimated elevation
angles, an array manifold matrix is constructed, which is used to eliminate the elevation angles in
cross-covariance matrix, then to match and estimate the azimuth angles. This AMM method is called
as unilateral AMM algorithm. The second AMM method is designed for coherent signals. Unlike the
unilateral AMM algorithm, two array manifold matrices are constructed to match and estimate the
azimuth angles. The second AMM method is referred to as bilateral AMM algorithm. The advantage
of the proposed two AMM algorithms is that EVD or peak search is not needed. Moreover, the azimuth
angles can be automatically matched with the estimated elevation angles. Combing the unilateral
AMM method with PM [7], a low-complexity PM algorithm for incoherent signals is presented, which
is called as PM-AMM. Computational complexity analysis shows that it is time efficient, but its
estimation precision is still close to that of the PM [10,15]. Combing the bilateral AMM method with
BCM method [24], a low-complexity ESPRIT-like for coherent signals is proposed, which is called
as BCM-AMM. The elevation and azimuth angles are estimated by using SVD once in BCM-AMM.
It demonstrates the lower complexity and the higher precision than the TMR algorithm [25]. The advantages
of the proposed AMM algorithms are threefold. First, they can be used in conjunction with any
1D DOA estimation algorithms and the complexity is close to that 1D DOA estimation algorithm.
Second, they can obtain automatically paired 2D DOA estimations. Finally, in the process of estimating
azimuth angles for coherent signals, bilateral AMM algorithm does not cause aperture loss.

The rest of the paper is structured as follows: in Section 2, we introduce the signal model.
In Section 3, we present the unilateral AMM algorithm for incoherent signals. In Section 4, we present
the bilateral AMM algorithm for coherent signals. In Section 5, we present the application of AMM
algorithm for L-shaped array. In Section 6, we present some simulation experiments to illustrate the
validity of proposed algorithms. We give a summary of the paper in Section 7.
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2. Signal Model and CRB

Parallel array [10,14–16,25] is one of commonly used planar arrays, and it plays an important
role in 2D DOA estimation of multiple signals because of its simple geometry. Moreover, it also has
many applications in other fields including multi-target localization by MIMO radar [2] and acoustics
detection by vector sensor array [26]. In this section, we introduce the signal model of parallel array
based on [10,14–16,25]. In addition, we suppose that mutual coupling is neglected for all proposed
algorithms in this paper.

2.1. Signal Model of Parallel Array

Consider an array consisting of G parallel uniform linear arrays. The array is located on xoz
plane as shown in Figure 1, where the first linear array is located on the z axis. The coordinates of the
sensors of the gth linear array successively are {(g ´ 1)d, 0, 0}, {(g ´ 1)d, 0, d},¨ ¨ ¨ ,{(g ´ 1)d, 0, (Mg ´ 1)d},
where d = λ/2 and λ is the wavelength of incident signals. Suppose that K far-field narrowband
signals impinging on this array and let θk and βk be the elevation angle and azimuth angle of the kth
signal, respectively.
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The observed vector at the gth linear array is zgptq “
”

zg,1ptq, ¨ ¨ ¨ , zg,Mgptq
ıT

P CMgˆ 1.
With θ “ rθ1, ¨ ¨ ¨, θKs, β “ rβ1, ¨ ¨ ¨, βKs, zgptq now is

zgptq “ AgpθqΦ
g´1pβqsptq ` ngptq g “ 1, ¨ ¨ ¨G; t “ 1, 2 ¨ ¨ ¨ T (1)

where sptq “ rs1ptq, ¨ ¨ ¨ , sKptqs
T
P CKˆ1 is the signal vector, AgpθqΦ

g´1pβq P CMgˆK is
the manifold matrix of the gth linear array in which Agpθq “

“

agpθ1q, ¨ ¨ ¨, agpθKq
‰

P CMgˆK,

Φpβq “ diag

$

&

%

e
´

j2πd cos β1

λ , e
´

j2πd cos β2

λ , ¨ ¨ ¨, e
´

j2πd cos βK
λ

,

.

-

P CKˆK, and

agpθkq “

»

—

–

1, e
´

j2πd cos θk
λ , ¨ ¨ ¨, e

´
j2πpMg ´ 1qd cos θk

λ

fi

ffi

fl

T

P CMgˆ1 is the steering vector of the

gth linear array to the kth signal, and ngptq “ rng,1ptq, ng,2ptq, ¨ ¨ ¨ , ng,Mgptqs
T
P CMgˆ1 is the noise

vector in the gth linear array, which is assumed to be uncorrelated at different sensors.

2.2. CRB

The CRB is the performance benchmark for the estimation algorithms. The CRB of 2D DOA
estimation with G parallel linear arrays is now derived. In [27], the CRB of 1D DOA estimation was
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analyzed. In [15], the CRB of 2D DOA estimation with two parallel linear arrays was developed.
By utilizing the similar approach in [15,27], the CRB of 2D DOA estimation with G parallel linear arrays
is obtained in this section. The received signal in Equation (1) can be reexpressed in a matrix form as:

»

—

–

z1ptq
...

zGptq

fi

ffi

fl

“ W sptq `

»

—

–

n1ptq
...

nGptq

fi

ffi

fl

(2)

where W “

„

AT
1 pθq, ¨ ¨ ¨ ,

´

AG´1pθqΦ
G´1pβq

¯T
T
P CpM1`¨¨¨`MGqˆK aligns this equation.

With the signal model in Equation (2), the CRB is expressed as:

CRB “
σ2

2T

!

Re
”´

DHΠKWD
¯

d P̂T
ı)´1

(3)

where P̂ “

«

P̂S P̂S
P̂S P̂S

ff

, P̂S “
1
T

t“T
ř

t“1
sptqsHptq, w “

»

–aT
1 pθq, ¨ ¨ ¨ , e

´
j2πdpMG ´ 1q cos β

λ aT
Gpθq

fi

fl

T

P CpM1`¨¨¨`MGqˆ1,

ΠKW “ IM1`¨¨¨`MG ´W
`

WHW
˘´1 WH , D “

«
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Bθ

ˇ

ˇ

ˇ

ˇ
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, ¨ ¨ ¨ ,
Bw
Bθ

ˇ

ˇ

ˇ

ˇ

θ“θK

,
Bw
Bβ

ˇ

ˇ

ˇ

ˇ

β“β1

, ¨ ¨ ¨ ,
Bw
Bβ

ˇ

ˇ

ˇ

ˇ

β“βK

ff

and

σ2 is the power of noise.
In this paper, the two proposed AMM algorithms are based on the special parallel linear arrays with

M2 “ M3 “ ¨ ¨ ¨ “ MG and A2pθq “ A3pθq “ ¨ ¨ ¨ “ AGpθq. In order to facilitate representation, we let
M1 “ M, M2 “ M3 “ ¨ ¨ ¨ “ MG “ N, A1pθq “ Apθq, a1pθq “ apθq, A2pθq “ A3pθq “ ¨ ¨ ¨ “ AGpθq “ Bpθq
and a2pθq “ a3pθq “ ¨ ¨ ¨ “ aGpθq “ bpθq in the following sections. Particularly, when
M2 “ M3 “ ¨ ¨ ¨ “ MG “ 1, the parallel linear arrays can be seen as an L-shaped array.

3. Unilateral AMM Algorithm for Incoherent Signals

In this section, we present the unilateral AMM algorithm for incoherent signals. For this AMM
algorithm, the number of linear arrays should not be smaller than 3, namely G ě 3. In Section 1, we
mentioned that the AMM algorithm is based on the assumption that the elevation angles have been
estimated. From Equation (1), we know that the vector z1ptq only contains the information of elevation
angles. Therefore, existing 1D DOA estimation algorithms can be adopted to estimate the elevation
angles with vector z1ptq. We now use the low-complexity PM [7] as an example to verify the availability
of the unilateral AMM algorithm.

3.1. The Estimation of Elevation by PM Algorithm

The correlation matrix of the first linear array and other arrays is defined by
Cg “ E

!

z1zH
g

)

P CMˆ N, g “ 2, 3, ¨ ¨ ¨ , G. Since the noises of different sensors are uncorrelated, the
correlation matrix is given by:

Cg “ E
!

z1zH
g

)

“ ARs

”

Φg´1pβq
ıH

BH (4)

Specially, the correlation matrix of the first linear array and the second linear array is:

C2 “ E
!

z1zH
2

)

“ ARsΦHpβqBH (5)

where Rs “ E
 

sptqsHptq
(

“ diag tp1, p2, ¨ ¨ ¨ , pKu.
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Partitioning the matrix A into two part yields:

A “

«

A1

A2

ff

(6)

where A1 P CKˆK is the submatrix containing the first K rows of A and A2 P CpM´KqˆK is the submatrix
containing the remaining M-K rows of A. It is easy to determine that A1 is a nonsingular matrix, which
means there must be a matrix P P CpM´KqˆK such that:

PA1 “ A2 (7)

Similarly, partitioning the matrix C2 gives:

C2 “

«

C21

C22

ff

“

«

A1RsΦHpβqBH

A2RsΦHpβqBH

ff

“

«

A1RsΦHpβqBH

PA1RsΦHpβqBH

ff

(8)

where C21 P CKˆN contains the first K rows of C2 and C22 P CpM´KqˆN contains the remaining M-K
rows of C2. It is established that C21 is a row full-rank matrix [7].

Utilizing Equation (7), the relationship of C21 and C22 is:

PC21 “ C22 (9)

Since C21 is a row full-rank matrix, P is obtained as P “ C22 pC21q
`. Denoting P0 “

«

IK
P

ff

, we

can obtain P0A1 “ A. Let P1 contain the first M-1 rows of P0, and P2 contain the last M-1 rows of P0.
Utilizing PM algorithm, we have:

A1Ωpθq pA1q
´1
“ pP1q

` P2 (10)

where Ωpθq “ diag

$

&

%

e
´

j2πd cos θ1

λ , e
´

j2πd cos θ2

λ , ¨ ¨ ¨, e
´

j2πd cos θK
λ

,

.

-

.

The estimation of θ is now can be obtained by performing the EVD of pP1q
` P2 [15].

Remark 1. From Equations (4)–(10), it is noted that this PM algorithm is based on the cross-covariance matrix
of the received vectors from two different subarrays, which is different from Wu’s PM [10] and Li’s PM [15].
In order to achieve angle matching, Wu’s PM and Li’s PM used the covariance matrix of the received vector from
whole array. That means the order of the covariance matrix is much higher than the cross-covariance matrix C2.

3.2. Unilateral AMM Algorithm for the Estimation of Azimuth Angle

According to Equations (4) and (5), a partitioned matrix C P CMˆpG´1qN is defined as:

C “
”

C2 C3 ¨ ¨ ¨ CG

ı

“

„

ARsΦHBH ARs
`

Φ2˘H
BH ¨ ¨ ¨ ARs

´

ΦG´1
¯H

BH


“ ARs

„

ΦHBH `

Φ2˘H
BH ¨ ¨ ¨

´

ΦG´1
¯H

BH
 (11)

Suppose that θ̂ “ rθ̂e1, θ̂e2, ¨ ¨ ¨ , θ̂eKs is the estimation of θ, where the arrangements of
θ̂e1, θ̂e2, ¨ ¨ ¨ , θ̂eK are arbitrary. Let Â be the manifold matrix, denoted by Â “ rapθ̂e1q, apθ̂e2q, ¨ ¨ ¨ , apθ̂eKqs,
and it is easy to show that Â is a column full-rank matrix. Then, we have:

“

Â`
‰

k,:

“

Â
‰

:,j “

#

0; k ‰ j
1; k “ j

(12)
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Assume that θ̂ek is the estimation of θt, and we can derive:

“

Â`
‰

k,: rAs:,j “
“

Â`
‰

k,: apθjq «

#

0; j ‰ t
1; j “ t

j “ 1, 2, ¨ ¨ ¨ , K (13)

According to Equation (13), we have:

“

Â`
‰

k,: C “
“

Â`
‰

k,: Adiag tp1, p2, ¨ ¨ ¨ , pKu

„

ΦHBH `

Φ2˘H
BH ¨ ¨ ¨

´

ΦG´1
¯H

BH


“
“

Â`
‰

k,: rapθ1q, ¨ ¨ ¨, apθKqsdiag tp1, p2, ¨ ¨ ¨ , pKu

„

ΦHBH `

Φ2˘H
BH ¨ ¨ ¨

´

ΦG´1
¯H

BH


«

»

–0, ¨ ¨ ¨ , 1
loomoon

the tth element

, ¨ ¨ ¨ 0

fi

fldiag tp1, p2, ¨ ¨ ¨ , pKu

„

ΦHBH `

Φ2˘H
BH ¨ ¨ ¨

´

ΦG´1
¯H

BH


“

»

—

–

0, ¨ ¨ ¨ , pt
loomoon

the tth element

, ¨ ¨ ¨ 0

fi

ffi

fl

„

ΦHBH `

Φ2˘H
BH ¨ ¨ ¨

´

ΦG´1
¯H

BH


“ pt

„

ΦHBH `

Φ2˘H
BH ¨ ¨ ¨

´

ΦG´1
¯H

BH


t,:

“ pt

„

e
j2πd cos βt

λ bHpθtq e
j4πd cos βt

λ bHpθtq ¨ ¨ ¨ e
j2πpG´ 1qd cos βt

λ bHpθtq



(14)

Since pt is constant, from Equation (14), we have:

e
´

j2πd cos βt

λ “

„

e
j2πd cos βt

λ bHpθtq e
j4πd cos βt

λ bHpθtq ¨ ¨ ¨ e
j2πpG´ 1qd cos βt

λ bHpθtq



n
„

e
j2πd cos βt

λ bHpθtq e
j4πd cos βt

λ bHpθtq ¨ ¨ ¨ e
j2πpG´ 1qd cos βt

λ bHpθtq



N`n

«

´

“

Â`
‰

k,: C
¯

n
´

“

Â`
‰

k,: C
¯

N`n

, n “ 1, 2, ¨ ¨ ¨ , pG´ 2qN

(15)

The estimation of βt now can be obtained using Equation (15) as:

β̂t “ arccos

$

’

&

’

%

´
λ

2πd
angle

»

—

–

1
pG´ 2qN

pG´2qN
ÿ

n“1

´

“

Â`
‰

k,: C
¯

n
´

“

Â`
‰

k,: C
¯

N`n

fi

ffi

fl

,

/

.

/

-

(16)

We know β̂t is matched with θ̂ek because it is obtained based on the assumption that θ̂ek is the
estimation of θt. According to Equations (11)–(16), it is seen that the estimator Equation (16) is related
to the estimated elevation angles θ̂, but it does not require the method of obtaining the elevation angles
θ̂. This is the reason why the elevation angles can be estimated by any 1D DOA estimation algorithms.
Hence, the proposed unilateral AMM algorithm can be combined with arbitrary 1D estimator such
as [4–7]. Because of the similarity in the principle, we only take the PM as an example to avoid
redundancy. In this section, we only consider the case of G = 3.

3.3. The Selection of M, N

From Section 3.1, we know that the estimation accuracy of elevation angles is affected by the
value of M. From Section 3.2, we also know that the estimation accuracy of azimuth angles is affected
by the value of N. In addition, it should be noticed that the azimuth angles are obtained by estimated
elevation angles. Hence, the accuracy of elevation angles also affects the accuracy of azimuth angles.
It is difficult to determine the exact relationship between M and N, but after intensive experiments, the
three-parallel linear array with M > N is chosen. To produce satisfactory performance, N should not
be too small. In Section 6, the results of the first simulation experiment can roughly demonstrate the
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validity of this selection. Although we are unable to obtain the exact values of M and N, an approximate
range is that N should be close to M/2.

3.4. Complexity Analysis

In Section 1, we have introduced many PM algorithms [10–15], where the algorithms [11–14] are
based on L-shaped array and the algorithms [10,15] are based on two parallel arrays. Hence, we only
compare the proposed PM-AMM to Wu’s PM [10] and Li’s PM [15] in this subsection. With T " M, K,
and the complexity of proposed PM-AMM is O{2NMT}. Suppose the number of elements for Li’s
PM [15] and Wu’s PM [10] is 2L + 1, the complexity of Li’s PM is O{[2L+1]2T} and the complexity of
Wu’s PM is O{(3L)2T}. To guarantee the same number of elements, if L is odd number, we let M = L +1
and N = L/2, and if L is even number, we let M = L and N = (L + 1)/2. Therefore, the complexity of
proposed PM-AMM is O{(L+1)LT}. The complexity comparison versus different L and T is provided in
Figure 2. It is observed that the complexity of proposed PM-AMM is far lower than that of Li’s PM
and Wu’s PM. It is in the agreement with the theoretical analysis.
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4. Bilateral AMM Algorithm for Correlated Signals

In this section, we develop the bilateral AMM algorithm for correlated signals using parallel linear
arrays. For this AMM algorithm, the number of linear arrays should not be smaller than 2, namely
G ě 2. The principle of bilateral AMM algorithm is similar to the unilateral AMM algorithm proposed
in Section 3. We also need to use an existing method to estimate the elevation angles of the correlated
signals. Here, we adopt the BCM-based ESPRIT-like [24] to estimate the elevation angles. Then we
develop the bilateral AMM algorithm to estimate the azimuth angles of correlated signals.

4.1. The Estimation of Elevation by BCM-Based ESPRIT-Like Algorithm

In this case, the correlation matrix is denoted by Cg “ E
!

z1zH
g

)

P CMˆ N , g “ 2, 3, ¨ ¨ ¨ , G as in
Section 3. Similarly, we have:

Cg “ E
!

z1zH
g

)

“ ARs

”

Φg´1pβq
ıH

BH (17)

We assume that the number of signals K and the number of coherent group q are known, also
we assume signals in the same group are coherent, but uncorrelated with the signals in other groups.
Without loss of generality, assume the largest coherent group contains Lmax coherent signals, and then
we use the C2 to reconstruct a partitioned matrix C2 P CpM`1´LmaxqˆNLmax as [24]:

C2 “ rC21, C22, ¨ ¨ ¨ , C2Lmaxs (18)
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where C2l P CpM`1´Lmaxqˆ N , l “ 1, 2, ¨ ¨ ¨ , Lmax is:

C2l “ rC2sl:M´Lmax`l,: (19)

It is easy to determine rankpC2q “ K. Using the ESPRIT-like algorithm in [24], estimations of
elevation angles are produced by SVD of the C2.

We should point out that the BCM method is similar to forward/backward spatial smoothing (SS)
technique. However, compared with the SS method, it showed improved performance in the case of
low SNR.

4.2. Bilateral AMM Method for the Estimation of Azimuth Angle

From Equation (17), the diagonal elements of matrix Rs are the powers of the K signals. In the
general case, the Rs is expressed as:

RS “

»

—

—

—

—

–

p11 p12 ¨ ¨ ¨ p1K
p21 p22 ¨ ¨ ¨ p2K

...
...

. . .
...

pK1 pK2 ¨ ¨ ¨ pKK

fi

ffi

ffi

ffi

ffi

fl

(20)

where pkk, k “ 1, 2, ¨ ¨ ¨K denotes the power of the kth signal, and it is a real number.
With Equation (20), Cg now is expressed as:

Cg “ A

»

—

—

—

—

—

—

–

p11e
j2πpg´ 1qd cos β1

λ ¨ ¨ ¨ ˚

...
. . .

...

˚ ¨ ¨ ¨ pKKe
j2πpg´ 1qd cos βK

λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

BH , g “ 2, 3, ¨ ¨ ¨ , G (21)

where “*” stands for the unknown element.
Similarly as in Section 3.2, with the notations of θ̂ “

“

θ̂e1, θ̂e2, ¨ ¨ ¨ , θ̂eK
‰

,
Â “

“

apθ̂e1q, apθ̂e2q, ¨ ¨ ¨ , apθ̂eKq
‰

, B̂ “
“

bpθ̂e1q, bpθ̂e2q, ¨ ¨ ¨ , bpθ̂eKq
‰

and assume that θ̂ek is the estimation
of θt, and we have:

“

Â`
‰

k,: rAs:,i

#

« 1, i “ t
« 0, i ‰ t

(22)

“

B̂`
‰

k,: rBs:,i

#

« 1, i “ t
« 0, i ‰ t

(23)

From Equations (22) and (23), for any g “ 2, 3, ¨ ¨ ¨ , G, we have:

“

Â`
‰

k,: Cg

´

“

B̂`
‰

k,:

¯H
“
“

Â`
‰

k,: A

»

—

—

—

—

—

—

–

p11e
j2πpg´ 1qd cos β1

λ ¨ ¨ ¨ ˚

...
. . .

...

˚ ¨ ¨ ¨ pKKe
j2πpg´ 1qd cos βK

λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

BH
´

“

B̂`
‰

k,:

¯H

«

»

–0, ¨ ¨ ¨ , 1
loomoon

the tth element

, ¨ ¨ ¨ 0

fi

fl

»

—

—

—

—

—

—

–

p11e
j2πpg´ 1qd cos β1

λ ¨ ¨ ¨ ˚

...
. . .

...

˚ ¨ ¨ ¨ pKKe
j2πpg´ 1qd cos βK

λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

–0, ¨ ¨ ¨ , 1
loomoon

the tth element

, ¨ ¨ ¨ 0

fi

fl

H

“ ptte
j2πpg´ 1qd cos βt

λ

(24)
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Utilizing w1 “ 1 and wg “
“

Â`
‰

k,: Cg

´

“

B̂`
‰

k,:

¯H
, g “ 2, 3, ¨ ¨ ¨ , G, and based on Equation (24),

we have:

wg{wg´1

$

’

’

&

’

’

%

“ e
j2πd cos βt

λ , g “ 3, ¨ ¨ ¨ , G

“ ptte
j2πd cos βt

λ , g “ 2

(25)

Since ptt is a real number, utilizing Equation (25) produces estimation of βt, given by:

β̂t “ arccos

$

&

%

λ

2πd
1

G´ 1

»

–

G
ÿ

g“2

angle

˜

wg

wg´1

¸

fi

fl

,

.

-

(26)

The estimate of β̂t is matched with θ̂ek since it is obtained based on the assumption that θ̂ek is the
estimation of θt. From Equations (20)–(26), it is seen that the estimator Equation (26) also is related to
the estimated elevation angles θ̂, but it does not need to know how to obtain the elevation angles θ̂.
Hence, this AMM algorithm also can be applied to any 1D DOA estimation algorithms of correlated
signals. In this section, we only consider G = 2, 3 in the following sections.

Remark 2. For many DOA estimation algorithms of coherent signals using decorrelation approach, loss of
aperture is a highlighted weakness. However, the estimator Equation (26) will not cause aperture loss. From
Equations (20)–(26), we also find the bilateral AMM method is suitable for incoherent signals.

4.3. Complexity Analysis

In Section 1, we have discussed several DOA algorithms [20–25] for coherent signals, where
the algorithms [20–23] are based on rectangular array, the algorithm [24] is based on two L-shaped
arrays and the algorithm [25] is based on two parallel arrays. Hence, in this work, we compare
the complexity of proposed BCM-AMM algorithm with TMR [25]. For a fair comparison, both
algorithms use two (2L + 1)-element parallel linear arrays, where T " 2L` 1. The main complexity of
TMR [25] is O

!

18pL` 1q2T` 2pL` 1q3
)

. The main complexity of the proposed BCM-AMM algorithm

is O
!

p2L` 1q2T` p2L` 1´ lmaxq
3
)

.
The complexity comparison versus different L and T with lmax “ 3 is provided in Figure 3.

It shows that the complexity of proposed BCM-AMM algorithm is far lower than that of the TMR,
which agrees with our theoretical analysis.
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H

g g
kk
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2 cos

1 2 cos

, 3, ,

, 2

t

t

j d

g g j d

tt

e g G
w w

p e g

π β
λ

π β
λ

−


= =


= =
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5. AMM Algorithm for L-Shaped Array

From Section 2, we can know that the parallel linear array can be seen as an L-shaped array with
M2 “ M3 “ ¨ ¨ ¨ “ MG “ 1. In order to make the proposed AMM algorithm more convincing, we combine
the AMM with JSVD and ESPRIT algorithm and analyse the improved performance in complexity.

We use JSVD [9] algorithm to estimate elevation angles and use proposed AMM algorithm to
estimate azimuth angles (we call this algorithm as JSVD-AMM). We use ESPRIT [6] algorithm to
estimate elevation angles and use proposed AMM algorithm to estimate azimuth angles (we call this
algorithm as ESPRIT-AMM). Consider an L-shaped array consisting of two linear arrays, namely,
M1 “ L and M2 “ M3 “ ¨ ¨ ¨ “ ML`1 “ 1. This array configuration is the same as the array used in
JSVD [9] and CCM-ESPRIT [17]. The main complexity of JSVD is O

!

L2T` p2Lq3` 2LKη
)

, where η is

the number of scanning. The main complexity of the JSVD-AMM algorithm is O
!

L2T` p2Lq3
)

.

The main complexity of CCM-ESPRIT is O
 

2L2T` 2L3` 2LKT
(

. The main complexity of the
ESPRIT-AMM algorithm is O

 

L2T` L3(. Obviously, JSVD-AMM is more effective than JSVD and
ESPRIT-AMM is more effective than CCM-ESPRIT.

6. Simulation Results

In this section, totally seven experiments are presented to demonstrate the effectiveness of
proposed algorithms. The root-mean-square error (RMSE) of DOA estimation as the performance
measure is given by:

RMSE “

g

f

f

e

1
JK

K
ÿ

k“1

J
ÿ

j“1

pθ̂jk ´ θkq
2
` pβ̂jk ´ βkq

2
(27)

where J “ 500, and θ̂jk, β̂jk are the estimations of the kth signal in the jth Monte Carlo trial. In the
first experiment, we compare the performance of the proposed PM-AMM with three-parallel array
for different values of M, N. Two uncorrelated sources are located at the angles of rθ1, θ2s “ r50˝, 60˝s,
rβ1, β2s “ r20˝, 30˝s and suppose M + 2N = 21. The RMSEs of different M, N versus SNR with T = 200
are provided in Figure 4.
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It is noted that the estimation performance when M = 11, M = 9 and M = 7 is better than that 
when M = 13, M = 5. In addition, the performance of M = 11 is slightly better than that of M = 7 and  
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Figure 4. RMSE of different M and N versus SNR.

It is noted that the estimation performance when M = 11, M = 9 and M = 7 is better than that
when M = 13, M = 5. In addition, the performance of M = 11 is slightly better than that of M = 7 and
M = 9 when SNR is low. The results approximately support our viewpoint in Section 3.3 on the value
selection of M and N. In the following two experiments, the parameter set of M = 11, N = 5 is chosen.
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In the second experiment, the pairing effectiveness and resolution of the PM-AMM algorithm
are demonstrated. We use a three-parallel array with M = 11, N = 5, and consider three uncorrelated
sources located at the angles of rθ1, θ2, θ3s “ r85˝, 95˝, 100˝s, rβ1, β2, β3s “ r45˝, 65˝, 55˝s. Figure 5a
depicts the 2D DOA estimation results of the proposed PM-AMM with T = 200 and SNR = 10 dB.
Now we keep the same elevation angles and change the azimuth angles to rβ1, β2, β3s “ r45˝, 55˝, 55˝s.
Figure 5b depicts the 2D DOA estimation results of the PM-AMM with T = 200 and SNR = 10 dB
under the new azimuth angles. From both the figures, the elevation and azimuth angles can be clearly
observed and correctly matched. Particularly, the proposed PM-AMM algorithm is able to separate the
signals with the same azimuth angles.
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In the third experiment, we compare the proposed PM-AMM algorithm with Wu’s PM [10], Li’s
PM [15] and CRB. A three-parallel array with M = 11, N = 5 is used, and two uncorrelated sources
are located at the angles of rθ1, θ2s “ r50˝, 60˝s, rβ1, β2s “ r20˝, 30˝s. For the Wu’s PM [10] and Li’s
PM [15], we use an 11-element linear array and a 10-element linear array, respectively. Figure 6 shows
the RMSEs of the proposed PM-AMM, Wu’s PM and Li’s PM versus SNR with T = 200. Figure 7 shows
the RMSEs of proposed PM-AMM, Wu’s PM and Li’s PM versus snapshots with SNR = 5 dB. Inspecting
both figures shows that the estimation precision of the proposed PM-AMM is close to that of Li’s
PM and Wu’s PM. Keep in mind that from the complexity analysis, the complexity of the proposed
PM-AMM is far lower than that of Li’s PM and Wu’s PM. Therefore, the PM-AMM is an attractive
option to practical uses.
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In the fourth experiment, the pairing effectiveness and resolution of the BCM-AMM algorithm are
demonstrated for coherent signals. A two-parallel array with M = 15, N = 15 is used, and three sources
are located at the angles of rθ1, θ2, θ3s “ r80˝, 85˝, 90˝s, rβ1, β2, β3s “ r47.5˝, 45˝, 50˝s, where the first
and third signals are coherent and they are uncorrelated with the second signal.

Figure 8a depicts the 2D DOA estimation results of proposed BCM-AMM algorithm with
T = 200, SNR = 5 dB. We now keep the same elevation angles and change the azimuth angles
to rβ1, β2, β3s “ r45˝, 45˝, 50˝s. Figure 8b depicts the 2D DOA estimation results of the proposed
BCM-AMM algorithm with T = 200, SNR = 5 dB. From two figures, the elevation and azimuth angles
can be clearly observed and correctly matched even when two signals have the same azimuth angles.Sensors 2016, 16, 274 13 of 16 

(a) (b)

Figure 8. 2D DOA Estimation results of proposed BCM-AMM algorithm. (a) Three signals with 
different elevation and azimuth angles; (b) Two signals with the same azimuth angles. 

 
Figure 9. RMSE of four algorithms versus SNR. 

 
Figure 10. RMSE of four algorithms versus snapshots. 

Figure 8. 2D DOA Estimation results of proposed BCM-AMM algorithm. (a) Three signals with
different elevation and azimuth angles; (b) Two signals with the same azimuth angles.

In the fifth experiment, we compare the BCM-AMM algorithm with TMR algorithm [25], SS-AMM
and CRB. We called the algorithm that SS technology combines with AMM as SS-AMM. For the
BCM-AMM algorithm, we use a two-parallel array with M = 15, N = 15 and a three-parallel array
with M = 14, N = 8, respectively. For the TMR algorithm [25], we use two 15-element linear arrays.
Two coherent sources are located at the angles of rθ1, θ2s “ r60˝, 70˝s, rβ1, β2s “ r50˝, 60˝s. Figure 9
shows the RMSEs of the proposed BCM-AMM algorithm and TMR algorithm versus SNR with
T = 200. Figure 10 shows the RMSEs of the proposed BCM-AMM algorithm and TMR algorithm versus
snapshots with SNR = 10 dB. The two figures show that the estimation precision of the proposed
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BCM-AMM algorithms is higher than that of the TMR. Figures 9 and 10 also show that the precision of
BCM-AMM with two-parallel array is better than the BCM-AMM with three-parallel array for coherent
signals. In addition, from Figure 9, we can find that BCM shows better performance than SS in the case
of low SNR.
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In the sixth experiment, we consider two incoherent sources located at the angles of rθ1, θ2s “ r60˝, 70˝s,
rβ1, β2s “ r50˝, 60˝s. The RMSEs of BCM-AMM for two-parallel array and three-parallel array are
provided. Since the two signals are incoherent, the ESPRIT-like algorithm is utilized to estimate
elevation angles. Therefore, the BCM-AMM algorithm should be changed to ESPRIT-AMM algorithm.
Figure 11 shows the RMSEs of proposed ESPRIT-AMM algorithms versus SNR with T = 200.
From Figure 11, it is observed that the precision of ESPRIT-AMM with three-parallel array is better
than that of the ESPRIT-AMM with two-parallel array for incoherent signals.

In the last experiment, we test the performance of JSVD-AMM and ESPRIT-AMM for L-shaped
array. We consider an L-shaped array consisting of two 10-element linear arrays, and three incoherent
sources located at the angles of rθ1, θ2, θ3s “ r40˝, 50˝, 60˝s, rβ1, β2, β3s “ r20˝, 30˝, 40˝s. Figure 12
shows the RMSEs of JSVD-AMM, ESPRIT-AMM, JSVD [9] and CCM-ESPRIT [17] versus SNR with
T = 500. Figure 13 shows the RMSEs of JSVD-AMM, ESPRIT-AMM, JSVD [9] and CCM-ESPRIT [17]
versus snapshots with SNR = 10 dB. From Figure 12, it is observed that the performance of JSVD-AMM
is better than that of the JSVD with SNR > 2.5 dB and the performance of ESPRIT-AMM is better than
CCM-ESPRIT with SNR < 15 dB. From Figure 13, it is observed that the performance of JSVD-AMM is
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better than that of the JSVD with snapshots >200 and the performance of ESPRIT-AMM is better than
CCM-ESPRIT for different snapshots. But we should not neglect that JSVD-AMM and ESPRIT-AMM
have obvious advantages in reducing complexity, which shows in Section 5.Sensors 2016, 16, 274 14 of 16 
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7. Conclusions

In this paper, AMM methods are proposed for 2D DOA estimation for parallel linear arrays.
Under the assumption that elevation angles are known a priori or estimated, the azimuth angles
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are estimated without EVD or peak search. Moreover, the azimuth angles are matched with the
estimated elevation angles automatically. Compared with existing 2D DOA estimation algorithms, the
advantages of the AMM methods are threefold. First, they can be used in conjunction with any existing
1D DOA estimation algorithms and the complexity is close to the used 1D DOA estimation algorithm.
Second, they can achieve automatically paired 2D angles. Third, in the process of estimating azimuth
angles, aperture loss is avoided for the coherent signal for the bilateral AMM algorithm.
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Notation

[‚]+ Moore-Penrose generalized inverse
[‚]T transpose
[‚]* conjugate
[‚]H conjugate transpose
E[‚] statistical expectation
[M]i, the ith row of matrix M
[M]:,i the ith column of matrix M
[v]i the ith element of vector v
IK K ˆ K identity matrix
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