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Abstract: The advantages of remote sensing using Unmanned Aerial Vehicles (UAVs) are a high
spatial resolution of images, temporal flexibility and narrow-band spectral data from different
wavelengths domains. This enables the detection of spatio-temporal dynamics of environmental
variables, like plant-related carbon dynamics in agricultural landscapes. In this paper, we quantify
spatial patterns of fresh phytomass and related carbon (C) export using imagery captured by a 12-band
multispectral camera mounted on the fixed wing UAV Carolo P360. The study was performed in
2014 at the experimental area CarboZALF-D in NE Germany. From radiometrically corrected and
calibrated images of lucerne (Medicago sativa), the performance of four commonly used vegetation
indices (VIs) was tested using band combinations of six near-infrared bands. The highest correlation
between ground-based measurements of fresh phytomass of lucerne and VIs was obtained for the
Enhanced Vegetation Index (EVI) using near-infrared band b899. The resulting map was transformed
into dry phytomass and finally upscaled to total C export by harvest. The observed spatial variability
at field- and plot-scale could be attributed to small-scale soil heterogeneity in part.
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1. Introduction

The application and enhancement of remote sensing methods and sensors have led to a better
understanding of how leaf properties (age, shape, nutrient and water status) affect leaf reflectance
and leaf emittance. Research on the contribution of plant canopy architecture, solar illumination
conditions and soil reflectance to total canopy reflectance resulted in improved estimates of canopy
parameters such as leaf area, standing phytomass, crop type and yield [1,2]. These techniques and
methods can provide a valuable contribution to the analysis of processes controlling the carbon budget
of agricultural landscapes.

Recently, Leaf Area Index (LAI) derived from multi-temporal broad-band optical and microwave
remote sensors, has been assimilated successfully in carbon cycle modeling. LAI values of winter
wheat were used to update the simulated LAI of a process-based model of cereal crop carbon budgets
to improve daily net ecosystem exchange (NEE) fluxes and at-harvest cumulative NEE at the field-scale
of different European study sites [3]. Time-series of Landsat TM and ETM+ data were used for leaf
chlorophyll (Chl) retrieval to improve model simulations of gross primary productivity (GPP) of corn.
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The satellite-based Chl estimates were used for parameterizing the maximum rate of carboxylation
(Vmax), which represents a key control on leaf photosynthesis within C3 and C4 photosynthesis
models [4]. These approaches of data assimilation are promising but rely on the availability of remote
sensing data. In the case of required time-series or time-sensitive applications such as management
decision support, crop stress or erosion related events, most remote sensing platforms provide
unfavorable revisit times (>5 days). In addition, the quality and finally the exploitability of satellite
imagery depends on current weather conditions during image acquisition. On the local scale, the use
of optical and thermal remote sensing sensors mounted on satellites and manned airborne platforms is
either limited in spatial and spectral resolution or suffer from high operational costs [5].

The development of Unmanned Aerial Vehicles (UAVs) is an opportunity to overcome some
of these limitations. The technical progress in the development of sensors, embedded computers,
autopilot systems and platforms enables the construction of lightweight remote sensing systems with
user defined flight intervals. For multitemporal data acquisition with high spatial resolution, these
systems are much more economical than manned aircraft and allow a more flexible mission design
than with the use of satellites. However, the challenge of using UAVs for environmental research is
less their operational use but (i) the generation of radiometric and geometric corrected imagery; and
(ii) the conversion of the spectral information to vegetation biophysical parameters. Previous studies
focused on these two essential aspects for different sensors mounted on UAVs. Numerous procedures
were applied to reduce the impacts of noise [6], radial illumination fall-off (vignetting) [6–8], lens
distortions [5] and bidirectional reflectance effects [7] on imagery captured by different non-calibrated
charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) sensors. For the
conversion of the pre-processed digital numbers (DN) into at-surface reflectance the above-mentioned
authors applied an empirical line approach using a linear transformation derived from ground-based
reflectance measurements of calibration targets and the respective image DNs.

Several UAV-based studies performed over agricultural fields were conducted with the aim to
estimate vegetation biophysical parameters either by object-based image analysis [9] or by using
vegetation indices (VIs) [7,10,11]. VIs are linear, orthogonal or ratio combinations of reflectance
calculated from different wavelengths of the visible (VIS) and near-infrared (NIR) part of the
electromagnetic spectrum [12] and widely used proxies for temporal and spatial variation in vegetation
structure and biophysical parameters of agricultural crops [13]. Numerous VIs have been developed
in the last decades to improve the relationships between the spectral response and the respective
characteristics of vegetation canopies such as net primary production, LAI, vegetation fraction,
chlorophyll density or the fraction of absorbed photosynthetic active radiation (FAPAR) [14–16].
Most VIs suffer from strong non-linearity and sensitivity to external factors such as solar and
viewing geometry, soil background and atmospheric effects [17]. Apart from limitations caused
by insufficient spectral resolution of available sensors, most improvements refer to the reduction
of these external factors. Jiang et al. [18] give a brief review of different VIs, their limitations and
proposed improvements.

Lelong et al. [7] implemented different VIs in generic relationships to successfully estimate LAI
and nitrogen uptake of wheat varieties grown on micro-plots. Zarco-Tajeda et al. [10,11] demonstrated
that narrow-band VIs derived from multi- and hyperspectral imagery captured during different UAV
missions enable the detection of chlorophyll fluorescence emission variability as a stress status indicator
of olive, peach and citrus trees. Although there is a growing demand on quantitative and spatially
consistent data of major components of the carbon budget [19,20], to our knowledge, UAV-based
remote sensing have not been used for the estimation of the C export by harvest of crops to date.
Apparently easy to achieve, considerable uncertainties arise from the spatio-temporal variation of
environmental factors (soils, weather conditions) and harvesting techniques (crop residues) [19].

In this case study we examined the potential of narrow-band multispectral imagery to estimate
the C export of lucerne (Medicago sativa) from plots in different terrain positions and soil types.
The output of a workflow for data pre-processing, a calibrated orthorectified image mosaic, was used
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to examine the predictive accuracy of the normalized difference vegetation index (NDVI) [21], the
transformed soil-adjusted vegetation index (TSAVI) [22], the two-band vegetation index (TBVI) [23]
and the enhanced vegetation index (EVI) [24] for fresh phytomass of lucerne. The total C export was
then calculated from relationships between ground-based measurements of phytomass and carbon
content of lucerne. Finally, yield data collected at each harvest date were used to estimate the yearly
C export.

2. Methods

2.1. Study Area

UAV imagery was acquired in the Federal State of Brandenburg (NE-Germany) at the CarboZALF
experimental area (53.3793N, 13.7856E) (Figure 1). The subcontinental climate is characterized by
a mean annual air temperature of 8.7 ˝C and a mean annual precipitation of 483 mm (1992–2011, ZALF
Research Station Dedelow). The 6 ha research area is embedded in a hummocky ground moraine
landscape characterized by intense agricultural land use. Past and recent soil erosion by water and
tillage leads to a very high spatial variability of soils and related growth conditions for crops. Only 20%
of the region are unaffected by soil erosion. The 12 plots are extensively instrumented with the aim to
conduct a long-term study (>10 years) on the impact of climate change, management and different
soil types on gas exchange, carbon budget and carbon stocks of arable land in glacial landscapes [25].
The soils of the 6 ha experimental area represent a full gradient in erosion and deposition, namely
a non-eroded Albic Cutanic Luvisols (plots 1–6), strongly eroded Calcic Cutanic Luvisols (plots 11–12),
extremely eroded Calcaric Regosols (plot 7), and a colluvial soil, i.e., Endogleyic Colluvic Regosols
(Eutric) over peat (plots 9–10). In 2014, lucerne was grown on eight plots while corn and sorghum
were grown on the remaining plots.
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of the Technical University Braunschweig (Figure 2). With a wingspan of 3.6 m and a takeoff weight 
of almost 22.5 kg including the complete battery set, the UAV is capable of carrying an additional 
payload of approximately 2.5 kg. The battery set consists of two Lithium-Polymer (LiPo) batteries 
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Figure 1. The CarboZALF experimental area near Dedelow (NE Germany): plot design
and instrumentation.

2.2. UAV-Platform Carolo P360

The Carolo P360 is a fixed wing construction, developed by the Institute of Aerospace Systems
of the Technical University Braunschweig (Figure 2). With a wingspan of 3.6 m and a takeoff weight
of almost 22.5 kg including the complete battery set, the UAV is capable of carrying an additional
payload of approximately 2.5 kg. The battery set consists of two Lithium-Polymer (LiPo) batteries
(each 10 cells and 10 Ah) for the electric drive motor, two LiPos (each 2 cells and 3.55 Ah) for the
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autopilot system including servo actuators and one LiPo (4 cells, 3.55 Ah) for the payload (sensors and
control unit). The payload, mounted inside the fuselage, is protected during takeoff and landing by
landing gear doors, opened and closed via radio control. Due to the size of the opening, the dimension
of the sensor optics is limited to 10 cm width and 24 cm length. The battery set allows flight durations
of approximately 40 min at ground speeds between 20 and 30 m¨ s´1 including the time for climbing
and landing. However, for security reasons a recommended ground speed should not fall significantly
below 24 m¨ s´1.

The combination of a strong electric motor (9.5 KW), large wheels and a rigid, spring mounted
landing gear enables the UAV to takeoff and land on short airstrips (length: 70 m, width: 30 m
including reserve) with rough surfaces. Takeoff, climbing and landing have to be performed manually
by a pilot via radio control. During the autonomous flight, the task of the backup pilot is to observe
and, in case of an emergency, abort the autonomous flight and land manually. The backup pilot is
mandatory due to regulations of the national civil aviation authorities (CAA).
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gear doors.

The autonomous flight of the UAV is controlled by a MINC autopilot. Navigation filter
and algorithms utilize data from the inertial measurement unit (IMU) and GPS measurements.
IMU measurements are combined with long time stable and precise but less frequent GPS
measurements in a discrete error state Kalman filter. This algorithm requires the GPS signal of
less than four satellites [26]. Extensions of the MINC system include a flight data recorder that stores
collected IMU and GPS data on a 256 Mb MM card in a 2 s interval for further processing.

2.3. Mounted Sensors

Sensors mounted on UAVs are limited in their dimensions and weight. Despite the use of
lightweight materials, a reduction in manufacturing quality, data storage capacity and on-board
processing features is inevitable [6]. However, the development of miniaturized electronic components
in the last decades enables scientist to mount a variety of sensors on UAVs for small-scale remote
sensing applications. The Carolo P360 is equipped with two sensors, a multispectral and a thermal
sensor. However, thermal sensor data were not used in this study.

The core of the sensor equipment is a 12-band miniature multi-camera array Mini-MCA 12
(MCA hereafter) (Tetracam Inc., Chatsworth, CA, USA). The compact modular construction of the
MCA integrates two basic modules into one rugged chassis. Each module consists of an array of six
individual CMOS sensors (1280 ˆ 1024 pixels; pixel size 5.2 µm), lenses (focal length 8.5 mm) and
mountings for user definable band-pass filters (Figure 3). Images can be stored on 2 GB CF cards for
every sensor either in DCM or RAW format. The PixelWrench2 software (Tetracam Inc., Chatsworth,
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CA, USA), shipped with the camera, enables the conversion of those images into single/multiband
TIF or JPG format. Camera settings can be modified and enable the user to select camera exposure
times between 1 ms and 20 ms (1 ms increment) and store images at a dynamic range of either 8 or
10 bit. In order to find an adequate exposure time, several ground-based tests prior to this study were
performed at blue sky conditions over vegetation plots. A high dynamic range for most bands and no
saturation at the same time was found for a fixed exposure time of 4 ms, which was then used in this
study. The dynamic range was set to 10 bit.
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Figure 3. Tetracam Inc. miniature multi-camera array Mini-MCA 12 with mounted narrow-band
(10–40 nm) filters that cover the spectral range between the visible and the near-infrared light
(470–953 nm; both center wavelengths).

The interchangeable band-pass filters, manufactured by Andover (Andover Corp., Salem,
NH, USA), were selected prior to delivery, based on their center wavelengths and bandwidths.
The 12 narrow-band filters cover, almost equally distributed, the spectral range from visible to
near infrared wavelengths with focus on the characteristic reflectance features of healthy vegetation
including the chlorophyll absorption band around 650 nm, the red-edge region between 680 nm
and 730 nm and one of the water absorption bands around 950 nm. The bandwidth (full width at
half maximum FWHM) varies from 9.1 nm to 40.8 nm with increasing bandwidths towards larger
wavelengths. The filter configuration and characteristics are given in Table 1.

Table 1. Filter configuration of the Mini-MCA 12 and optical properties of the mounted filters.
For band 2 (b), no fact sheet has been provided (N/A).

Band Center
Wavelength (nm)

FWHM * Coordinates
(Bandwidth) (nm)

Bandwidth
(10%) (nm)

Peak
Transmission (%)

b471 471 466.0–475.1 (9.1) 12.8 68.3
b515 515 N/A («10.0) N/A N/A
b551 551 545.5–555.6 (10.1) 14.8 56.4
b613 613 607.7–617.8 (10.2) 14.2 67.6
b658 658 653.4–662.9 (9.5) 13.6 69.2
b713 713 708.1–717.7 (9.6) 13.4 63.0
b761 761 756.2–766.7 (10.5) 14.7 71.9
b802 802 797.3–807.3 (10.1) 14.5 56.3
b831 831 826.3–835.8 (9.5) 13.1 55.3
b861 861 856.4–866.4 (10.1) 14.0 64.2
b899 899 891.3–907.7 (16.4) 22.9 63.6
b953 953 933.0–973.8 (40.8) 58.2 69.6

* FWHM = Full width at half maximum.
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2.4. Ground Control Software

The ground control software MAVCDesk enables the operator to plan and control a mission.
The planning of an autonomous flight encompasses the definition of waypoints, flight altitude, ground
speed and a waypoint sequence mode. All required mission settings are finally transmitted to the
autopilot via telemetry. During the mission, the telemetry antenna serves as a receiver for important
UAV status information, which enables a visual position control (Figure 4). In the case of irregular
behavior of any important flight parameter, the operator instructs the backup pilot to switch over to
manual control.
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Figure 4. Screenshot of the MAVCDesk software. (Left) Primary flight display (not active) showing
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experimental area.

2.5. Mission Settings

The UAV mission was conducted on 27 August 2014 under clear sky conditions and low wind
speeds. The ground sampling distance (GSD) of 0.1 m was chosen as a compromise of flight altitude,
cruising speed, shutter interval and high spatial resolution. The recommended cruising speed of
the UAV is 25 m¨ s´1 and the camera shutter interval is fixed at a rate of 2 s. Sufficient overlap of
consecutive images is necessary for post-processing of the imagery. Thus, we chose a flight altitude of
163 m, resulting in an overlap of approximately 50% in flight direction. To achieve a sufficient across
flight overlap of at least 60%, we selected a distance of 40 m between the flight paths. Twenty-six
waypoints were predefined, each marking a start- and endpoint of 13 parallel flight paths with a total
length of 5.8 km excluding the loop lines.

2.6. Image Processing

The final goal of post-processing of recorded MCA imagery is the conversion of measured
digital numbers (DN) into georeferenced at-surface reflectance images. This multistage procedure
consists of three major components: (i) radiometric image correction; (ii) transformation of sensor
coordinates into a geographic coordinate system and image alignment; and (iii) absolute radiometric
calibration. The radiometric image correction includes noise reduction, correction of sensor-based
illumination fall-off (vignetting) and lens distortion. The transformation of sensor coordinates
includes the fusion of recorded GPS measurements with collected images, band-wise automated
aerial triangulation (AAT), the minimizing of remaining geometric distortions and the alignment of
the 12 single bands to one multispectral image using ground control points (GCPs). Radiometric
calibration is the conversion of measured DNs into at-surface reflectance. For image correction we
followed a practical approach proposed by Kelcey and Lucieer [6], developed for a single image
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captured by a Mini-MCA 6. They used dark offset imagery to create average noise corrections and
images of a homogeneous illuminated near-Lambertian white surface to create a per-pixel flat-field
correction factor. The procedure incorporates correction techniques proposed by Mansouri et al. [27].

2.6.1. Noise Reduction

Noise is defined as unwanted electrical or electromagnetic energy that degrades the quality of
signals and data. In the case of a CMOS-based camera, noise complies with all temporal and systematic
errors added to a recorded signal during image acquisition. Noise is introduced both by the sensor
(e.g., non-uniform pixel responses) and the electronics (e.g., electrical interferences) that amplify the
output signal of the sensor for digitization [27]. Due to a random component, it is impossible to
calculate the precise proportion of sensor noise to sensor signal within an image. Prominent examples
are periodic noise, checkered patterns and horizontal band noise caused by the progressive shutter of
CMOS sensors [6].

The dark offset subtraction technique is a statistical image based approach, which reduces the
noise component of an image by subtracting a dark offset image. A dark offset image represents the
average per-pixel noise and is generated by multiple repetitions in a completely darkened environment.
The dark offset imagery was created for each sensor of the MCA in a darkened room with black painted
walls. In addition, the MCA lenses were covered with black cardboard. For each of the 12 sensors,
a total of 120 images at exposure level of 4 ms were taken to calculate the per-pixel average dark
offset. The examples in Figure 5 show the dark offset images for bands 1 and 11 with strong periodic
noise features in b471 (Figure 5a), a global checkered pattern in b899 (Figure 5b) and the overlapping
horizontal progressive shutter band noise visible in both images.
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2.6.2. Vignetting Correction

The effect of radial fall-off of light intensity from the center towards the periphery in photographed
images is known as vignetting. Different sources of vignetting contribute to a progressive reduction
of irradiation across the image plane and may cumulate up to 60% at the periphery of an image.
Although lens manufacturers go the limit to what is technically feasible, the geometry of the sensor
optics contributes most to this effect [6,28]. In order to minimize the vignetting, an image based
correction method was applied to each of the 12 bands of every single image captured during the
mission. The method basically uses a look-up table (LUT) for each band, composed of correction factors
for each pixel derived from flat field imagery. The proper generation of flat field imagery requires
an evenly illuminated white surface with Lambertian properties and constant spectral characteristics.
However, for practical considerations, a white surface with near Lambertian properties may serve to
generate acceptable flat field imagery.
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Numerous artificial white and black materials (various types of paper, rubber and plastic) were
examined regarding their spectral properties. A halogen lamp was used for an even illumination of the
targets and an ASD FieldSpec 4 Wide-Resolution spectrometer (ASD Inc., Boulder, CO, USA) was used
to collect spectral reflectance data. The instrument measures the spectral radiance (W¨m´2¨ sr´1¨nm´1)
over the wavelength range of 350–2500 nm with a spectral resolution of 3 nm at 700 nm and 30 nm at
1400 nm and 2100 nm, respectively. In order to yield the relative reflectance of a target (vegetation,
calibration panels, soil), the measurement of the spectral radiance from a reference panel with
Lambertian characteristic and constant spectral properties over VIS and NIR wavelengths was required.
Therefore, a Spectralon® reference panel was mounted on a tripod for collecting reference spectra prior
to every single measurement of a target. Without fore optics, the bare fiber has a 25˝ field of view.

A matt white Bristol Cardboard with a density of 625 g¨m´2 was found to show the highest and
most uniform reflectance over the same wavelength range from 466 nm to 978 nm that is covered by
the filter configuration of the MCA.

Vignetting imagery was created under diffuse illumination conditions using the matt white Bristol
Cardboard. The camera was operated manually at a distance of approximately 1 m with the sensors
pointing downwards to the Cardboard. Between each triggering the orientation of the camera has been
changed slightly to minimize possible heterogeneities on the surface of the cardboard. During image
acquisition we ensured that the cardboard completely covered the field of view of all 12 bands. In a first
step, the per-pixel average was calculated from a total of 10 images for each of the 12 sensors at different
exposure levels, followed by a subtraction of the respective dark offset imagery.

To account for the horizontal band noise induced by the progressive shutter of the camera,
a shutter correction factor has been calculated in a second step. Each flat field image has been averaged
along the y-axis (row-wise). While most profiles showed a behavior that could be approximated
by a 3-grade polynomial function, satisfying approximation for b761, b899 and b953 could only be
achieved by a 5-grade polynomial function. For the sake of consistency, we used a 5-grade polynomial
for the approximation in all 12 bands. Figure 6 shows the y-axis average and its approximation
for two examples, b831 and b899, respectively. For each row, the shutter correction factor has then
been calculated by dividing the row-wise average by the approximation. Assuming a multiplicative
row-wise brightness modification of the shutter, each row of the average flat field image was then
multiplied by the respective correction factor.
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Finally, the correction factor LUT for each sensor was then calculated by dividing all pixel values
of the flat field imagery by the maximum pixel value that occurred in the respective image assuming
the maximum value (the brightest pixel) to be an unaffected representation of the measured radiance.
Figure 7 depicts an example for flat field images generated for b831 and b899.
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Figure 7. (a) Flat field image generated for vignetting correction of b831; and (b) for vignetting
correction of b899.

The example in Figure 8 demonstrates the effect of the consecutive correction steps (noise and
vignetting) to an uncorrected single image recorded in b831. Due to its relatively small contribution,
noise reduction is almost invisible in the resulting image. However, the successful correction of the
vignetting effect, especially in the upper and lower left corners, is evident.
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Figure 8. (a) Example for an uncorrected image (RAW format) recorded in b831; and (b) the respective
image after noise reduction and consecutive vignetting correction.

2.6.3. Lens Distortion Correction

Lens distortions arise from the symmetry of a photographic lens. The most frequent distortions
are radially symmetric and known as barrel or pincushion distortion. In the case of a barrel distortion,
image magnification decreases with distance from the optical axis. It increases in the case of
a pincushion distortion. Both effects result in a radial displacement of measured per-pixel radiance.

A commonly applied correction technique for both types of distortion is the plumb-line approach
described in the Brown–Conrady model [29], which is implemented in the PhotoScan-Pro V.1.2.
software (Agisoft LLC, St. Petersburg, Russia). Since no correction factors are provided in the Exif
tags of the imagery, the required internal and external orientation of each camera (band) is estimated
automatically from the geometry of an image sequence during the image alignment process [30].
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This first step in the PhotoScan-Pro workflow only requires the input of the focal length (8.5 mm) and
the pixel size (5.2 µm) together with the GPS coordinates recorded for each individual image.

2.6.4. Mosaicking and Georeferencing

Due to the proprietary nature of the software, the underlying algorithms are not known in detail.
Anyway, the program workflow involves common photogrammetric procedures in a Structure from
Motion (SfM) workflow, including the search for conjugate points by feature detection algorithms used
in the bundle adjustment procedure, approximation of camera positions and orientation, geometric
image correction, point cloud and mesh creation, automatic georeferencing and finally the creation of
an orthorectified mosaic [31]. This workflow (lens distortion correction included) was applied to each
of the 12 bands independently. The result of the workflow applied to b761 and the reconstructed flight
path from the recorded GPS locations used for image alignment is illustrated in Figure 9.
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Figure 9. Image mosaic of b761. Overlay: Reconstructed flight path from recorded GPS locations
(black dots).

The ERDAS Imagine software (Hexagon Geospatial, Norcross, GA, U.S.) was then used to improve
the spatial accuracy and to transform the single bands to the local coordinate system ETRS 89 UTM 33
using precisely measured GCPs. Finally, the 12 bands were stacked to a single multispectral image.

2.6.5. Radiometric Calibration

The retrieval of biophysical parameters of vegetation canopies requires an absolute calibration of
the collected imagery because a recorded DN is not only a function of the spectral characteristics of
vegetation or soils but also of environmental condition [32]. These include in particular the atmospheric
conditions during the flight and the respective illumination geometry (solar zenith and sensor viewing
angles). Several approaches exist to calculate the at-surface reflectance either by using radiative
transfer models (RTM) or a combination of RTM and ground-based in situ measurements of the
reflectance of a calibration target, a so-called in-flight calibration [33]. Both approaches require
a well-calibrated sensor and on-site measurements of the atmospheric conditions at the date of image
acquisition. To overcome these requirements, attempts were made to establish linear relationships
between ground-based reflectance measurements and recorded DNs [34]. This empirical line approach
accounts for both the influence of illumination geometry and atmosphere [32]. Prerequisite is the
availability of low and high reflectance targets, with homogenous spectral characteristics over the
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wavelength range covered by the sensor. The approach has been applied successfully to different
former UAV missions using the MCA [5,6,8] and is well suited for UAV remote sensing applications
for several reasons: (i) the spectra of different materials potentially suited as targets can be examined
prior to UAV missions; (ii) the spectra of selected calibration targets can be measured close to the time
of image acquisition; and (iii) due to the high spatial resolution of images, the dimensions of the targets
remain small and easy to carry.

The targets, in the following referred to as calibration panels, were constructed from thin
chipboards with a dimension of 0.5 m ˆ 0.5 m. The chipboards were coated with the matt white Bristol
cardboard already used for the vignetting correction and with black cardboard with almost uniform
low reflectance in the respective wavelength range. Five pairs of black and white calibration panels
were placed in the four corners and the center of the study area. The spectral characteristics of each
panel were measured during a time period of one hour around image acquisition. The measured
reflectance of the white and black calibration panels tends to be lower under laboratory conditions
than under clear sky conditions. This may be caused by non-Lambertian reflectance characteristics of
the used materials which may also be a reason for the disparate reflectance values of the five black and
white calibration panels over the relevant wavelength range (450–1000 nm). Slight angular deviations
from the horizontal plane of the calibration panels showed undesired impacts on the reflectance
especially of the white ones, partially exhibiting reflectance greater than one. Instead of using an
averaged reflectance of all calibration panels, the reflectance of the one pair (P1), which comes closest
to the respective laboratory reflectance was used (Figure 10).

The DN of the pixel with the highest value within the white calibration panels and the lowest value
within the black calibration panels was plotted against the corresponding ground-based reflectance,
calculated by averaging over the rounded FWHM bandwidths, for each of the 12 bands. The resulting
12 empirical lines were finally used to perform a band-by-band conversion of per-pixel DN into
per-pixel reflectance.
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2.7. Ground-Based Measurements

2.7.1. Fresh, Dry Phytomass and Total Carbon Content of Lucerne

Lucerne belongs to the legume family and is usually grown for fodder production. Within crop
rotations, lucerne is frequently grown for soil improvement due to its nitrogen-fixing properties. It was
grown on eight equally managed plots, each fertilized with 300 kg¨ha´1 phosphate and 110 kg¨ha´1

potash. The date of the UAV mission corresponded with the growth stage of beginning flowering
(BBCH—Code 61), and was conducted one day before the fourth harvest.
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Fresh phytomass was sampled at 22 permanent observation sites after collecting spectral data.
Plants were cut at ground level within an area of 0.25 m2 from two locations close to the permanent
sites. After weighing, the samples were chaffed in order to guarantee uniform drying. Dry phytomass
and the corresponding water content were determined after oven drying at 60 ˝C until constant
weight (48 h). This intermediate step is required to estimate the amount of carbon content of each of
the samples.

The carbon content of green lucerne was determined in an earlier study (2013, beginning flowering)
at the CarboZALF experimental area by the ZALF Institute for Landscape Biogeochemistry (data not
published). Samples of lucerne were analyzed in the ZALF central laboratory according to standard
methods (spectral elementary analysis, DIN ISO 10694:1995). The total carbon content ranges between
41% and 46%. The mean of 43% (SD = 0.4, N = 100) is in good agreement with a reported mean of 45%
used for most diverse crops in regional studies [35,36] and was finally multiplied with the amount of
dry phytomass calculated for each pixel.

2.7.2. Total Carbon Content of Lucerne per Vegetation Period

In order to estimate the total C export of the entire growing season, the averaged total carbon
per plot calculated from MCA imagery were multiplied by factors derived from time-series of
independently collected ground-based measurements of dry phytomass. These samples were routinely
collected before each of the four harvest dates at least four representative locations within the individual
plots. To determine dry phytomass, 1 m2 of plants was cut at ground level and oven dried at 60 ˝C
(until constant weight (48 h). The factors were determined by dividing the sum of dry phytomass of
all harvest dates by the dry phytomass collected at the fourth harvest date.

2.7.3. Spectral Response of Vegetation and Bare Soil

Spectral reflectance measurements of vegetation, calibration targets and bare soils were collected
using an ASD FieldSpec 4 Wide-Resolution spectrometer. Since the distance between fiber optics and
canopy was approximately 0.8 m, the collected spectra represented an average reflectance from a circle
of 0.36 m in diameter. For compensation of slight movements of the fiber optics introduced by the
operator while collecting the spectra, a number of 10 repetitions were set to default.

The sampling of vegetation spectra was performed between 11:00 a.m. and 1:00 p.m. local time,
˘1 h before and after image acquisition. Forty-four spectra were taken at 22 permanent observation
sites representing the natural variability of site properties. Each is represented by two spectral
measurements for compensation of slight variations of standing fresh phytomass in its surrounding.
The mean spectra of the two repetitions were then averaged to a single spectral response curve that
represents the characteristics of the fresh phytomass at the site. The spectral measurements of the ten
calibration panels (five white and five black panels) were taken during the same period (11:00 a.m. and
1:00 p.m. local time) as the vegetation spectra. The panels were placed in pairs (a white and a black)
close to the four corners and the center of the study area.

The spectral response of bare soil was collected at 18 September between 11:00 a.m. and 1:00 p.m.
local time under clear sky conditions. Sample locations were identical to those selected for the collection
of vegetation spectra. One day after the seeding of winter wheat, the topsoil showed a gentle surface
roughness. From this, little influence on light scattering can be assumed. Topsoil conditions varied in
moisture (7% to 12%) according to differences in terrain position and soil properties. The spectra were
then used to calculate slope and intercept of the soil-line required for the calculation of the TSAVI.
The best correlation (R2 = 0.99) between the b658 and one of the six NIR bands was found for b756

(Figure 11). The resulting parameters of the regression (a = 1.07; b = 0.02) were then used for the
calculation of TSAVI.
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2.8. Description and Calculation of VIs

The NDVI is an intrinsic vegetation index that simply accounts for the chlorophyll absorption
feature in the red (R) and the structural information inherent in high NIR reflectance of a green
vegetation canopy. It does not involve any external factor other than the measured spectral reflectance.

NDVI “ pNIR´Rq{pNIR ` Rq (1)

The TSAVI incorporates slope and intercept of the soil line together with an adjusted coefficient to
account for first-order soil background variation.

TSAVI “ apNIR´ aR´ bq{rpR ` apNIR´ bq ` 0.08p1 ` a2qs (2)

where a is the slope and b is the intercept of the soil line. The value 0.08 is an adjusted coefficient.
The TBVI is a general formulation of the NDVI and was used to examine the predictive accuracy

of other provided band combinations than used by the NDVI.

TBVIi,j “ pRefj´Refiq{pRefj ` Refiq (3)

where i, j = 1, . . . ., N, where N is the number of narrow bands and Ref is the reflectance measured in
a narrow band.

EVI, originally developed as a standard satellite vegetation product for the Moderate Resolution
Imaging Spectroradiometer (MODIS), combines atmospherically corrected blue (B), R and NIR
reflectance with coefficients of an aerosol resistance term and a soil-adjustment factor. The use
of the EVI has been motivated by studies reporting a trend to more linear relationships with vegetation
biophysical parameters such as standing biomass and LAI of crops and a wider range of values at the
same time [4,37].

EVI “ 2.5 ppNIR´Rq{pNIR ` C1R´C2B ` Lqq (4)

where 2.5 is a gain factor. C1 and C2 are coefficients of the aerosol resistance term and L is the soil
background reflectance adjustment where C1 = 0.06; C2 = 0.08 and L = 1.

In order to investigate the potential of the six available bands in the NIR, six variations of the
NDVI, the TSAVI and the EVI were calculated. Variations of the TBVI were calculated for all band
combinations except those covered by the NDVI variations (the R band in combination with the six
NIR bands).
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3. Results and Discussion

3.1. Radiometric Calibration

The empirical line approach used for sensor calibration produces a set of 12 linear relationships
between DNs and ground measured reflectance of a white and black calibration panel. Figure 12
shows the empirical lines for bands b471–b713 (Figure 12a) and bands b761–b953 (Figure 12b).
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Figure 12. Relationship between ground measured reflectance of black and white calibration panels
and the respective digital numbers acquired by Mini-MCA 12. (a) Bands 1–6; and (b) Bands 7–12.

Raw imagery DNs of the white panels for bands 1–6 showed values close to saturation (DN 1024).
After flat-field correction those pixels showed values higher than 1024. This is caused by flat-field
correction factors >1, in cases where the white panel was situated close to the periphery of an image.
Image DNs of the calibration panels and the corresponding ground measured reflectance are listed in
Table 2 together with the respective regression.

Table 2. Image digital numbers and ground measured reflectance of the white and black calibration
panels in bands 1–12 and the respective regressions (empirical lines).

Band DN Mini-MCA 12 Reflectance ASD Fieldspec

White Panel Black Panel White Panel Black Panel Regression

b471 1299.5 87.1 0.968 0.062 R = 0.000748 * DN ´ 0.003615
b515 1269.1 55.4 0.917 0.059 R = 0.000707 * DN + 0.019753
b551 1355.0 62.6 0.909 0.060 R = 0.000657 * DN + 0.018536
b613 1345.2 74.1 0.910 0.060 R = 0.000669 * DN + 0.009897
b658 1330.0 74.0 0.911 0.060 R = 0.000678 * DN + 0.010134
b713 1247.4 70.4 0.923 0.070 R = 0.000725 * DN + 0.018933
b761 933.6 64.9 0.936 0.080 R = 0.000985 * DN + 0.015794
b802 733.6 76.8 0.941 0.082 R = 0.001307 * DN ´ 0.018208
b831 722.7 71.6 0.943 0.083 R = 0.001321 * DN ´ 0.011693
b861 765.1 82.6 0.945 0.084 R = 0.001262 * DN ´ 0.020314
b899 656.6 75.7 0.947 0.084 R = 0.001485 * DN ´ 0.028555
b953 499.0 64.6 0.945 0.080 R = 0.001991 * DN ´ 0.048845

The spatial subset depicted in Figure 13 shows a composite from MCA b658 (R), b551 (G) and b471

(B) after calibration, band alignment, layer stacking and transformation from geographical coordinates
(WGS 84) to projected coordinates (ETRS 89 UTM 33).
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Figure 13. RGB composite image of the CarboZALF experimental area from calibrated Mini-MCA
12 bands b658, b551 and b471.

3.2. Empirical Line Quality Assessment

An examination of calibrated MCA spectra and the corresponding ground-based measurement
reveals good agreement. Generally, the spectra of both ground-based and calibrated MCA reflectance
show the characteristic features of a green vegetation canopy with different amounts of biomass and
soil covers (Figure 14). The depicted examples represent sites with high (28), medium (1) and low (5)
amounts of fresh phytomass of lucerne.

Reflectance in the VIS is low in the blue and red domain and shows the characteristic peak in the
green domain. After the transition from VIS to NIR wavelengths around 712 nm, NIR reflectance varies
between 0.33 and 0.65 at 761 nm and between 0.38 and 0.71 at 899 nm. The water absorption band
around 953 nm reveals differences between the spectra regarding the relative decline of the reflectance
compared to b899. The example of a bare soil reflectance curve in Figure 14 indicates the general ability
of calibrated MCA imagery to produce realistic spectra not exclusively for vegetation. The spectrum
represents a small area free of vegetation within plot 7 and shows the typical monotonous increase of
reflectance from VIS to NIR wavelengths within a realistic range of values.
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Figure 14. Comparison of the spectral response of lucerne extracted from calibrated Mini-MCA
12 bands with ground measured ASD Fieldspec reflectance and with bare soil reflectance (extracted
from calibrated Mini-MCA 12 bands; ASD Fieldspec reflectance not available). The selected sites
represent high (28), medium (1) and low (5) amounts of fresh phytomass of lucerne. The bare soil
spectrum represents an area free of vegetation within plot 7.
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However, the VIS spectral response of lucerne in calibrated MCA imagery is generally higher
than the ground based reflectance. In the NIR domain, MCA acquired reflectance closely matches
the ground-based measurements. Coefficients of determination reveal high correlations between
ground-based and image reflectance for the six NIR-bands b761–b953, poor correlations for the four
VIS bands b471–b613 and the NIR band b713 and a moderate correlation for the red band b658 (Table 3).
The corresponding root mean square errors (RMSE) are low in terms of absolute reflectance but differ
extremely in relation to the range of values in the respective bands. The mean relative error (MRE %)
illustrate the discrepancy between the VIS (33%–104%) and the NIR bands (4%–23%). We assume the
poor matching in the VIS bands are partially caused by the saturated pixels of the white panels used
for the creation of the empirical lines. Additional greyscale panels in the medium reflectance range
(0.3–0.7) would have been helpful to make the empirical line relationship more robust [38]. Nonetheless,
additional sources of error might be present since other authors reported similar discrepancies for the
VIS response of the MCA [39].

Table 3. R2, RMSE and MRE [%] for the relationships between the reflectance acquired by the
12 Mini-MCA bands and ground-based measurements at the 22 permanent observation sites.

b471 b515 b551 b613 b658 b713 b761 b802 b831 b861 b899 b953

R2 0.16 0.10 0.04 0.19 0.40 0.11 0.88 0.91 0.90 0.89 0.88 0.84
RMSE 0.001 0.003 0.007 0.004 0.003 0.016 0.028 0.025 0.026 0.027 0.027 0.027
MRE% 51.2 104.4 58.0 33.0 82.6 22.7 4.0 3.6 4.3 3.8 4.4 4.6

3.3. Ground-Based Measurements of Vegetation

The different amounts of fresh phytomass of lucerne, sampled at 22 locations across the different
plots reflect the spatial heterogeneity of naturally occurring site properties (terrain and soil). Although
all plots were treated equally, the averaged fresh phytomass of each permanent observation site ranges
between 440 g¨m´2 and 2080 g¨m´2. The overall mean is 1469 g¨m´2 and the coefficient of variation
(CV) is 34%. The amount of dry phytomass ranges between 158 g¨m´2 and 426 g¨m´2. The overall
mean is 329 g¨m´2 with a CV of 23%. The variation in the corresponding water content ranges
between 282 g¨m´2 and 1709 g¨m´2. With a CV of 38%, the variation is similar to the variation in fresh
phytomass. The statistic evaluation of the data shows a strong linear correlation (R2 = 0.89) between
fresh and dry phytomass with a RMSE of 24 g¨m´2 (Figure 15).
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3.4. VI Performance

Coefficients of determination were calculated for the expected exponential relationships between
ground measured fresh phytomass and all band combinations of the four VIs, as described above.
The results indicate clear differences between the VIs and, with the exception of TBVI, only little
differences between the variants using one of the six NIR bands for VI calculation. Regardless of the
used NIR band, the best relationships are obtained for EVI, followed by TSAVI using the soil-line
and NDVI. Coefficients of determination calculated for EVI range between 0.86 (b761 and b953) and
0.88 (b802, b861 and b899). Lower R2s can be observed for TSAVI and NDVI but again, MCA b761 and
b953 (0.80 for TSAVI; 0.71 for NDVI) are less suited than b802 and b899 (0.82 for TSAVI; 0.72 for NDVI).
Due to the construction of TBVI exclusively from NIR bands only five band combinations with b953

are possible. Low correlations were obtained when using combinations with b761 and b861 (R2 = 0.42
and 0.38, respectively), moderate correlations for the combinations with b802 and b831 (R2 = 0.65) and
a high correlation (R2 = 0.77) for the combination with b899 (TBVIb899/b953 hereafter).

The small differences between the results obtained for EVI, TSAVI and NDVI variants can be
explained by the low variation of canopy reflectance in the different NIR bands and the corresponding
low reflectance in the R band (and B band in the case of EVI). The high correlation of the TBVIb899/b953
may be explained by the relatively large difference in reflectance compared to other NIR band
combinations. The distance increases with higher amounts of fresh phytomass due to the maximum
of NIR reflectance in b899 observed for all measured spectra and the relatively strong decline of the
reflectance in b953, caused by the respectively higher absolute water contents. However, the highest
correlations between the examined VIs and ground-based measurements of fresh phytomass were
found for the variants using NIR band b899. Regardless the mathematical construction of VIs from
available broad or narrow band sensors the disadvantage concerning the non-linearity caused by
saturation effects, especially in the case of dense vegetation canopies, is still present. Saturation levels
are reported in numerous studies using field measurements of biophysical canopy parameters or
leaf and canopy radiative transfer model [17,40,41]. The studies compared the predictive power and
stability of several narrow- and broad-band VIs for estimation of LAI under different environmental
conditions (canopy architecture, soil background and illumination geometry). Values for NDVI of 0.90
and 0.75 for TSAVI when using a single soil line are typical for dense vegetation canopies (LAI > 2).
The observed saturation effect for the relationship between VIs and fresh phytomass in this study
is caused by the strong linear relationship between LAI and fresh phytomass (R2 = 0.88; LAI was
measured simultaneously to fresh phytomass).

In this study, most NDVI values range in a narrow span between 0.89 and 0.91 when fresh
phytomass exceeds 1200 g¨m´2, which holds true for 15 out of 22 samples (Figure 16a). The same
effect can be observed for the TSAVI where the same 15 samples range in a span between 0.70 and
0.74 (Figure 16b). These findings indicate that both NDVI and TSAVI are not reliable estimators
for fresh phytomass of a dense green vegetation canopy typical for lucerne. In terms of R2 s, the
TBVIb899/b953 performs better than the NDVI but worse than the TSAVI. The lower R2 compared with
TSAVI is caused by a larger scatter in the data. This is probably the result of the small differences in the
reflectance in b899 and b953. Consequently, results are more sensitive to remaining noise in the data after
sensor calibration than the results for VIs calculated from NIR and VIS bands with large differences in
reflectance. Nonetheless, TBVIb899/b953 exhibits a trend to more linearity than both NDVI and TSAVI
(Figure 16c). Although developed for broad MODIS bands with the respective optimized coefficients
to reduce impacts of soil and aerosol, EVI is the best predictor for fresh phytomass (Figure 16d).
As reported in literature [4,37,42] the relationship is more linear and the range of values is wider (0.43)
than observed for NDVI (0.25) and TSAVI (0.22). The RMSE and MRE for fresh phytomass using EVI
are 193 g¨m´2 and 11%, respectively.
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Figure 16. Relationships obtained between (a) NDVI; (b) TSAVI; (c) TBVIb899/b953; and (d) EVI
constructed from VIS bands in combination with NIR band b899 (except TBVIb899/b953) and fresh
phytomass of lucerne at the 22 permanent observation sites.

3.5. Spatial Variability of Fresh Phytomass

The relationship between ground-based measurements of fresh phytomass and EVI calculated
from calibrated MCA imagery was used in a first step to produce a map of fresh phytomass of lucerne
for the eight plots of the CarboZALF experimental area (Figure 17). The high resolution enables a clear
spatial differentiation of areas with extremely low (<250 g¨m´2) and high amounts of fresh phytomass
(>3000 g¨m´2). The spatial patterns across and within the individual plots will be discussed in the
context of total C export by harvest. The eye-catching area in the southwest corner of plot 9 with
extremely low amounts of fresh phytomass relates to an inundated spot (two months) as a result of
high rainfall in spring. This part will be excluded in the further evaluation.
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3.6. Total C Export by Harvest—Quantities and Spatial Variability

To convert fresh phytomass into a map of total C export, the linear relationship between fresh and
dry phytomass depicted in Figure 14 was used. The result was then multiplied by the averaged total
carbon content (44%) to quantify the C export. Due to the linear transformation, the spatial patterns
across and within the individual plots remain the same (Figure 18). The majority of values (99%)
range between 75 g¨m´2 and 225 g¨m´2. In order to evaluate effects of terrain and prevalent soil
type on the total C export, the median (M) for each individual plot was calculated (observations were
normally distributed). The lowest C export is at plot 7 (M = 124 g¨m´2), which represents an extremely
eroded soil at steep slope. The C export from colluvial soils in the hollow (plot 9, M = 164 g¨m´2;
plot 10, M = 163 g¨m´2) is only slightly higher than from non-eroded soils at the flat hilltop (plot 1,
M = 162 g¨m´2; plot 5, M = 154 g¨m´2 and plot 4, M = 151 g¨m´2). The internal spatial heterogeneity
is higher at flat hilltop positions (plots 1, 4 and 5) and at steep slopes (plot 7). The plots in other terrain
positions (plots 9, 10 11 and 12) appear more homogenous with coincidently higher phytomasses.

Although plots 12 and 11 are located in a similar flat slope position, the difference between the
respective exports (M = 157 g¨m´2 and 146 g¨m´2 respectively) is higher than from other adjacent
plots (9, 10 and 4, 5). This effect may be the result of a manipulation experiment that was conducted in
2010 to simulate landscape-scale erosion processes [25]. However, the interpretation of this effect is
beyond the scope of this paper.

Weather conditions in 2014 were ideal for growing since plant growth was not limited by rainfall
input. Therefore, differences across the plots are not very distinct. Generally, the observations match
the spatial arrangement of soil types in the respective terrain positions, which is characteristic for this
hummocky soil landscape. The Calcaric Regosol (plot 7) represents widespread extremely eroded soils
with very dense parent material (glacial till) at 30 cm depth. Therefore, the rooting space is rather
limited. The Endogleyic Colluvic Regosol (plots 9 and 10) in the hollow has the highest organic matter
and nutrient stocks compared to other soils and shows local groundwater level is approximately 80 cm,
hence additional water supply for an enhanced plant growth by capillary rise. The strongly eroded
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Calcic Cutanic Luvisol (plots 11 and 12) at midslope and the non-eroded Albic Cutanic Luvisols at
the flat hilltop are generally fertile and characterized by high available water capacities and good
root penetration.Sensors 2016, 16, x 20 of 24 
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the dependency becomes more obvious when the development of dry phytomass over the entire 
growing season is taken into account. The amounts generally decrease continuously from the first to the 
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Figure 18. Spatial distribution of total exported carbon by harvest within the eight plots of lucerne at
the CarboZALF experimental area.

3.7. Total C Export by Harvest Per Year—Temporal Trends and Spatial Variability

For the estimation of the C export over the entire growing season, the samples collected at the
four harvest dates were used (from monitoring program in 2014). While the relationship between
terrain position/prevalent soil type and exported carbon by the fourth harvest shows a weak trend,
the dependency becomes more obvious when the development of dry phytomass over the entire
growing season is taken into account. The amounts generally decrease continuously from the first to
the fourth harvest date. However, the differences between soils become obvious over time (Figure 19).
The strongest decline can be observed for the extremely eroded soil (plot 7) hereafter referred to
as C1. Whereas soils with additional water supply, either by groundwater (plots 9 and 10) or
lateral water fluxes in 1.5m depth (plot 12, without manipulation), showed the lowest decline over
time (C3). The non-eroded soils at the plateau (plots 1, 4, 5) and the manipulated plot 11 behaved
intermediate (C2).

The averaged export of total carbon for the fourth harvest (27 August 2014) ranges between
124 g¨m´2 from C1 and 161 g¨m´2 from C3 (Table 4). With 156 g¨m´2, C2 cannot be distinguished
clearly from C3. Multiplying these values with the case specific factors calculated from the summed
phytomass divided by the phytomass from the fourth harvest, the total exported carbon per year
ranges between 624 g¨m´2 from C1 and 718 g¨m´2 from C2, which is slightly more than the 697 g¨m´2

from C3. This is caused by the higher mean dry phytomass estimated from UAV imagery for the plots
belonging to C2 (363 g¨m´2 vs. 316 g¨m´2).
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Figure 19. Temporal decline of above ground dry phytomass of lucerne between the first and fourth
harvest in 2014.

Table 4. Yearly estimates of dry phytomass production and C export from four different Terrain/Soil
type combinations (C1–C4) calculated from UAV imagery and ground based monitoring data.

Monitoring 2014 UAV Mission (14-08-27)

Case Terrain position Soil type (FAO) Dry phytomass factor Dry phytomass C export
4. harvest per year 4. harvest 4. harvest per year
[g¨m´2] [g¨m´2] [g¨m´2] [g¨m´2] [g¨m´2] CV [%]

C1 Steep slope Calcaric Regosol 280 1409 5.03 288 124 624 21
C2 Flat hilltop Albic Cutanic Luvisol 316 1452 4.60 363 156 718 17
C3 Midslope/hollow Calcic Cutanic

Luvisol/Endogleyic
Colluvic Regosol

361 1556 4.32 376 161 697 14

C4 Midslope Calcic Cutanic
Luvisol-manipulated

307 1456 4.75 339 146 693 14

Altogether, the differences are relatively small between the groups due to weather conditions in
2014, which were almost optimal for plant growth. Nevertheless, differences in site properties (terrain
and soil) are known to result in quite different growth conditions [43,44] and seasonal and intra-annual
changes in weather conditions affect the within-field variability of phytomass production [45,46].
Taylor et al. [47] reported higher within-field variation of crop yield in dryer years, which was spatially
associated with soil properties. The effect was less pronounced in wetter years with adequate water
supply, which was most recently confirmed in a study by Stadler et al. [48]. In addition, soil related
within-field variability was found to be more pronounced and visible (beginning senescence) at the
end of the growing season [44,45]. As a consequence, mapping of small-scale variability of crop
characteristics and finally C-export is most effective in a narrow time window. UAV-based remote
sensing meets all requirements for this purpose and helps to reduce time consuming and expensive
ground-based measurement campaigns.

4. Conclusions and Outlook

In this case study, we presented a successful approach of how to use the combination of UAV-based
high resolution remote sensing data and ground truth measurements for the estimation of the total C
export by harvest of lucerne. The image pre-processing of the 12-band multispectral images has led to
a considerable reduction of noise and vignetting effects. Together with the subsequent mosaicking and
band alignment, the workflow is operational and will reduce the pre-processing time in future UAV
missions. The conversion of recorded digital numbers to at-surface reflectance was only successful for
the six NIR bands (b761-b953) and the R band b658. However, these were the most important bands for
the calculation of the VIs used in this study. Nevertheless, improvements of the experimental design
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to obtain the empirical lines for absolute radiometric calibration of the remaining bands in the VIS
are necessary.

The strong correlation between fresh phytomass of lucerne and the EVI (R2 = 0.88) using the NIR
band b899 demonstrated the power of this VI even in the case of a dense green vegetation canopy.
The map of the total C export revealed the potential of high spatial image resolution to: (i) map high
small-scale variability within and across the different plots (75 g¨m´2 and 225 g¨m´2); and (ii) identify
the spatial pattern as a result of different terrain positions and ascociated soil types.

Future UAV missions should include important annual crops such as winter wheat or corn.
The temporal flexibility of the UAV should be exploited for intra- and inter-annual studies of the
temporal carbon dynamics, coupled with research campaigns focus on other components of the carbon
budget (e.g., gas exchange measurements). The fixed-wing Carolo P360 proved to be a valuable
instrument for mapping vegetation parameters over small experimental areas. The high cruising speed
and the potential flight endurance of at least 30 min. have the potential to map larger areas which
cover the full spectrum of terrain position/soil type combinations in this heterogeneous soil landscape
under equal imaging conditions.

Finally, the respective results should be coupled with other available sources of spatially consistent
proximal and remote sensing data and assimilated in state of the art models to gain improved insight
into the processes controlling the carbon budget of agricultural landscapes.
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