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Abstract: Heterogeneous wireless sensor networks (HWSNs) can achieve more tasks and prolong the
network lifetime. However, they are vulnerable to attacks from the environment or malicious nodes.
This paper is concerned with the issues of a consensus secure scheme in HWSNs consisting of two
types of sensor nodes. Sensor nodes (SNs) have more computation power, while relay nodes (RNs)
with low power can only transmit information for sensor nodes. To address the security issues of
distributed estimation in HWSNs, we apply the heterogeneity of responsibilities between the two
types of sensors and then propose a parameter adjusted-based consensus scheme (PACS) to mitigate
the effect of the malicious node. Finally, the convergence property is proven to be guaranteed, and
the simulation results validate the effectiveness and efficiency of PACS.

Keywords: security; relay nodes; data falsification; distributed estimation; heterogeneous wireless
sensor networks

1. Introduction

With the features of being low cost, easy to deploy and the self-organization of sensor nodes,
wireless sensor networks (WSNs) are widely used to estimate the physical parameters in hazardous and
remote areas, such as military defense, intelligent transportation, industrial production, environment
monitoring, smart homes, and so on [1–5]. In most applications, the environment may be complicated
and needs different kinds of sensors. Therefore, it is wiser to use a combination of different sensors:
numbers of cheap, low-end sensors and some expensive, high-quality sensors, making up the
heterogeneous wireless sensor networks (HWSNs) [6–9].

In WSNs, it is often necessary for some or all of the nodes to calculate some functions with certain
parameters. Additionally, distributed estimation is an effective tool to exchange information among
sensor nodes in the network. It is a well-studied domain and has attracted much attention [10–16].
However, in most applications, the networks are deployed in a harsh environment or a hostile region.
Due to the restrictions of the computation abilities, storage capacity and battery power of sensor nodes,
they are unable to be loaded with firewall-like security tools [17]. There inevitably exists a security
problem in distributed networks. For example, if a sensor is intruded in an HWSN, other kinds of
sensors are affected, and this may cause network congestion, network lifetime reduction, sensing
inaccuracy, etc. [18–20]. Therefore, the study of the security of distributed estimation in HWSNs is very
important for addressing the issue of the growing malicious attack threat.
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As we know, distributed estimation in the presence of malicious nodes has attracted considerable
attention in homogeneous wireless sensor networks [21–23]. Generally, fault monitoring algorithms are
based on a detection threshold or state estimate residuals to distinguish attackers from honest nodes. In
an HWSN, with different types of sensors, data are integrated in different ways. Therefore, the detection
algorithms in homogeneous wireless sensor networks are not suitable for HWSNs. Nevertheless, some
security schemes have been proposed for HWSNs. Incorporating pairwise keys used for sensor nodes
communicating with each other has been studied in [24]. Key management schemes for providing
security operations in the HWSN have been considered [25]. Some researchers were concerned with
mutual authentication frameworks [26]. These secure schemes based on authentication and key
management cost much energy and storage capacity, while sensor nodes have the restrictions of
computation abilities, storage capacity and battery power. The schemes were not practical for low-cost
sensors. Some secure schemes based on a distributed consensus estimation algorithm have also been
proposed for wireless sensor networks. A weighted averaging-based consensus scheme (WACS) [27]
was proposed to mitigate the negative impact of malicious nodes for homogeneous wireless sensor
networks. The scheme was based on weighted average parameters, which were prescribed as fixed
values within a certain range, and the parameters affected the convergence speed or there was the
effect of the weighted averaging-based consensus scheme (WACS). The results with the WACS finally
converged to the average of the initial values of all sensor nodes. If the initial values were forged
by attackers, the scheme could do nothing to protect the network from attackers injecting false data
into the sensing stage. Considering the restrictions of the computation abilities, storage capacity, the
battery power of sensor nodes and the security of the network, this paper focuses on security issues
in HWSNs.

In this paper, we consider distributed estimation in the HWSNs consisting of two types of sensors:
sensor nodes (SNs) and relay nodes (RNs). SNs have a good hardware architecture and are high
quality, and they can sense the surrounding parameters and are responsible for data fusion. RNs
are inexpensive and low end, and their main role is to relay the information for SNs. In the case
the network is attacked by malicious nodes, we present a data falsification attack, that is malicious
nodes manipulate false data in the network and damage the consensus of the whole system. Then,
we propose a parameter adjusted-based consensus scheme (PACS) to decrease the negative effect
of the data falsification attack. The main difference from the existing algorithm is that we explicitly
consider the heterogeneity of responsibilities between the two types of sensors. With the network
topology, we demonstrate the transformation of the distributed consensus method to overcome the
challenges produced by the heterogeneity. Additionally, by adjusting the weights of sensor nodes, we
illustrate how the PACS can decrease the effect of malicious nodes and avoid excluding the honest
nodes with large deviations to participate in the distributed consensus. We evaluate the effectiveness
and efficiency of the PACS.

The reminder of the paper is outlined as follows. The network model and the attack model
are introduced in Section 2. In Section 3, we propose the secure scheme. Section 4 provides some
simulations. The conclusion and future work are presented in Section 5.

2. System Model

2.1. Network Model

For the large-scale network, the long distance transmission costs much energy and may result in
separate groups of sensors. A popular method is to deploy relay sensors for connecting the separate
groups. Thus, the whole network can be connected. Here, we consider a connected HWSN with a
combination of different sensors: sensor nodes (SNs) and relay nodes (RNs). The network contains N
nodes, which consists of M numbers of SNs and (N−M) numbers of RNs. IS = {1, 2, ..., M} represents
the set of SNs, and IR = {M + 1, M + 2, ..., N} represents the set of RNs. Each SN can perceive the
surrounding parameters, while RNs cannot sense the parameters, but can relay information for the
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network. We use an undirected graph G = (V , E) to describe the network. V denotes the set of nodes,
and V = IS ∪ IR, where IS represents the set of SNs and IR represents the set of RNs; E ∈ V × V
denotes the set of edges referring to the communication links. If there exists an edge connecting
two nodes, the two nodes can communicate with each other. If (i, j) ∈ E where i 6= j (i.e., node j
can transfer information with node i), we call node j a neighbor of node i. Ni = {j|(j, i) ∈ E} ⊂ V
represents the neighbor set of node i. The number of elements in Ni is denoted by |Ni|.

Define the Laplacian matrix of G as L = (lij)N×N , then:

lij =


−1, if j 6= i, j ∈ Ni
|Ni|, if j = i
0, otherwise

(1)

Each node i ∈ IS is supposed to begin with a private value xi(0) by sensing the environment. The
aim for the network is to converge to a common value relying on xi(0) by the incorporation of each
node. During the distributed consensus estimation, at each iteration step k, each sensor node updates
and exchanges its values with neighbors according to a prescribed strategy, which can be modeled by
a discrete-time equation, and each node i updates its estimation as follows:

xi(k + 1) = xi(k) + ε ∑
j∈Ni

aij(xj(k)− xi(k)), if i ∈ IS (2)

and:
xi(k + 1) = ∑

j∈Ni

γijxj(k), if i ∈ IR (3)

where:
0 < ε < (max

i
|Ni|)−1 =

1
∆

(4)

xi(k) represents the state value of node i at time step k. ∆ represents the maximum degree of the
network, and aij denotes the amplitude of the signal received by sensor i from sensor j. γij is the
corresponding weight satisfying γij > 0, and ∑j∈Ni

γij = 1, ∀i ∈ IR. We set the notation γij = 0,
for j /∈ Ni. For all j ∈ Ni, we have that ∑N

j=1 γij = 1, ∀i ∈ IR. It is clear that each node updates its
estimates by the linear combination of its neighbors’ state values and its own values.

To simplify the consensus scheme, we combine Equations (2) and (3) and get the consensus
equation that only contains the SNs, but implies the state of RNs.

xi(k + 1) = xi(k) + ε

 ∑
j∈N S

i

aij(xj(k)− xi(k)) + ∑
k∈N R

i

∑
j∈Nk

S

aikγkj(xj(k)− xi(k))

 (5)

N S
i represents the sensor neighbor set of node i, while N R

i represents the relay neighbor set of node i.

2.2. Attack Model

A familiar attack called data falsification is considered in this paper. A false state value may be
manipulated in the sensing stage or in the state updating progress by a data falsification attacker.
We can see that the data falsification attack is easy to implement if a sensor node has been captured.
Moreover, due to noise in the environment, there is usually a large error when a sensor node perceives
parameters. Therefore, it is hard to distinguish whether a sensor node is captured by data falsification
or not. Since this kind of attack can effect the consensus process and cause long-term impacts, it can be
destructive to the network. Three types of data falsification will be presented in the following [28].

Perception Data Falsification (PDF) Attack: This attack changes the value of xi(0), i ∈ IS. An attacker
aims to forge a false sensing data and to disseminate it to its neighbors. However, in the information
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fusing phase, malicious nodes correctly update their estimates and send the estimated value to their
neighbors. This kind of attack is easy to implement, but difficult to distinguish from honest nodes with
a large deviation. To avoid mistaking honest nodes with a large deviation, the objective of our scheme
in this paper is to decrease, but not to eliminate the attackers.

Iteration Data Falsification (IDF) Attack: False data are injected both in the sensing stage and at
each iteration step by attackers. This type of attack can impact the consensus process; therefore, it can
compromise the network for a long time.

Random Data Falsification (RDF) Attack: The attacker injects forged data or correctly executes a
distributed estimation process in a random way. This type of attack is difficult to be detected because
of its concealed feature.

In this paper, a distributed secure scheme based on parameter adjustment is presented to decrease
the effect of the data falsification attack. We adjust the parameters in the distributed consensus
algorithm (Equation (5) in Section 2.1). Abnormal nodes are distinguished from honest nodes via an
adaptive local threshold. If a node is considered to be abnormal, the weight is reduced. In this way, we
propose the PACS to decrease the effect of malicious nodes and to ensure the security of the network.

3. Secure Scheme

In this section, we propose a PACS for protecting the network from the data falsification attack.
Then, its effectiveness is demonstrated by analyzing the algorithm.

3.1. Parameter Adjusted-Based Consensus Scheme

Detection algorithms are designed to assort abnormal nodes and honest nodes in the network.
With the characteristics of the consensus algorithm, the state values of all of the nodes in the network
converge to a common value, and the difference among all of the states is reduced to zero. Based on
this characteristic, this paper presents a detection algorithm by comparing a localized threshold to
the difference produced by each node state and its neighbors’, and the threshold adaptively shrinks
to zero.

We now elaborate the consensus secure scheme based on the detection algorithm below. In the first
stage, the node i ∈ IS makes a measurement independently and transfers the measurement value to
its neighbors. Then, node i compares the state value to its neighbor’s value. The set of nodes satisfying
|xj(k) − xi(k)| < λi(k) is denoted as N T

i , and the set of nodes satisfying |xj(k)− xi(k)| ≥ λi(k) is
denoted asN F

i . αi(k) and βi(k) represent the number ofN F
i andN T

i , respectively. If βi(k) + 1 ≥ αi(k),
the measurement of the node i ∈ IS is correct, and its state update equation is demonstrated as follows.

xi(k + 1) = xi(k) + σ(k)

 ∑
j∈N ST

i

aij(xj(k)− xi(k)) + ∑
j∈N SF

i

aij

a(k)
(xj(k)− xi(k))

+ ∑
k∈N R

i

∑
j∈Nk

ST

aikγkj(xj(k)− xi(k)) + ∑
k∈N R

i

∑
j∈Nk

SF

aik
a(k)

γkj(xj(k)− xi(k))


(6)

σ(k) > 0 represents the weight. N ST
i denotes the set of sensor nodes inN T

i , andN SF
i denotes the set of

sensor nodes in N F
i . a(k) is a parameter that can affect the consistency coefficient. From the equation,

we can see that if a(k) becomes larger, the effect of the corresponding node becomes smaller. If a node
is detected to be abnormal at the iteration step k, the corresponding coefficient a(k) becomes larger,
and finally, its influence can be reduced. Additionally, a(k + 1) = a× a(k), where a is an integer whose
value is larger than one. If a node stops injecting false data at the iteration step, the corresponding
coefficient a(k) decreases. If a(k) > 1, a(k + 1) = (1/a)× a(k) at the iteration step until a(k) = 1. If
a(k) = 1 and the node performs normally, a(k) stays at one.
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We define P(k) = I − σ(k)L. Then, we can get the compact form of Equation (6):

x(k + 1) = P(k)x(k) (7)

Meanwhile, if the nodes satisfy βi(k) + 1 < αi(k), the nodes are considered to be incorrect, and
their update equation remain as Equation (5).

To determine the threshold λi(k) of each node ni, we give the equation as follows.

λi(k) =
1
|Ni| ∑

j∈Ni

∣∣∣∣∣xj(k)−
xi(k) + ∑j∈Ni

xj(k)
|Ni|+ 1

∣∣∣∣∣ (8)

Considering that malicious nodes inject false data with a large deviation from the sensing data of
authentic nodes, we can detect the attacker by comparing the threshold with the difference between
the neighbors’ states and the state of node i. Furthermore, as the consensus is carried out, the localized
threshold λi(k) will decease to zero, and the attackers are given no tolerance.

The whole procedure of PACS is concluded in the following Algorithm 1.

Algorithm 1: Parameter Adjusted-Based Consensus Scheme (PACS).

Require: Graph G = (V , E), M SNs, N −M RNs
Ensure: x(k)

1: set k = 0
2: for i ∈ IS do
3: set a(k) = 1, a > 1, αi = 0 and βi = 0
4: i makes the measurement and gets the initial xi(0), then transmits xi(0) to its neighbors.
5: end for
6: for the consensus is not reached do
7: for i ∈ IS do

8: λi(k) = 1
|Ni | ∑

j∈Ni

∣∣∣∣xj(k)−
xi(k)+∑j∈Ni

xj(k)
|Ni |+1

∣∣∣∣
9: for j ∈ Ni do

10: if |xi(k)− xj(k)| > λi(k) then
11: αi = αi + 1
12: if a(k) = 1 then
13: a(k) = a
14: else
15: a(k) = a× a(k)
16: end if
17: else
18: βi = βi + 1
19: if a(k) > 1 then
20: a(k) = 1

a a(k)
21: else
22: a(k) = 1
23: end if
24: end if
25: end for
26: if βi + 1 > αi then
27: xi(k) updates its state according to Equation (6) and transmits the state estimation

to its neighbors.
28: Update L̂ii and ensure the sum of i-th row sum is 1.
29: end if
30: end for
31: set k = k + 1
32: end for



Sensors 2016, 16, 252 6 of 17

3.2. Performance Analysis

In this section, we analyze the performance of the proposed PACS. We consider that node v1

is an abnormal node injecting false data in the sensing stage. The neighbors of v1 are denoted by
v2, v3, ..., v|N1|+1. Then, at the iteration step k, we can get the Laplacian matrix L(k) as follows:

lij =



− aij

ak , if j 6= 1, i ∈ N S
1

− aij

ak γkj, if j 6= 1, i ∈ N R
1

lij − aij +
aij

ak , if j = i 6= 1, j ∈ N S
1

lij − aijγij +
aij

ak γij, if j = i 6= 1, j ∈ N R
1

lij, otherwise

(9)

According to the proposed algorithm, if the state value is considered abnormal at each iteration k,
the corresponding parameter of x1(k) decreases. Additionally, P(k) is also changed. We suppose that
the HWSN is not dominated by attackers.

Firstly, we illustrate that the network can reach convergence. Note that there are n eigenvalues
of L(k) at the first place. According to the Gershgorin circle theorem [29] and γij < 1, we get the
following inequations:

|ξm − |Nj|+ 1−
aij

ak γij| ≤ |Nj| − 1 +
aij

ak γij, ∀j ∈ N R
1 (10)

|ξm − |Nj|+ 1−
aij

ak | ≤ |Nj| − 1 +
aij

ak , ∀j ∈ N S
1 (11)

|ξm − |Nj|| ≤ |Nj|, ∀j /∈ N1 (12)

where ξm (1 ≤ m ≤ n) is an eigenvalue of L(k) at the first place. Because of 0 < σ(k) < (maxiNi)
−1,

we can get that 0 ≤ ξm ≤ 2(maxiNi)
−1. The eigenvalue of P(k) is ξ∗m = 1 − σ(k)ξm, so we can

obtain that −1 < ξ∗m < 1. Moreover, the network is connected, and rank(G) = n− 1 [4]. Thus, L has
only a single zero eigenvalue, and P(k) has only one single eigenvalue, which is 1. The network can
reach convergence.

With the consensus-based estimation, x1(k) finally converges to a normal range, and P(k) keeps a
common value P0 when k is large enough. We assume P(k) keeps a common value P0 for k = k0. Thus,
we can get the result of the consensus.

x(k) = lim
k→∞

Pk
0

k0−1

∏
k=1

P(k)x(0) (13)

Secondly, we prove the efficiency of the scheme by computing limk→∞ Pk
0 ∏k0−1

k=1 P(k). A lemma is
introduced as follows.

Lemma 1. [13] Given a primitive nonnegative matrix P0, if there exist eigenvectors u and wT satisfying
P0u = u and wT P0 = wT , then limk→∞ Pk

0 = uwT

wTu holds.

If the graph G is a strongly connected component, we can get that P0 is a primitive nonnegative
matrix [13]. The eigenvectors u = 1 and wT = [1, ak, ...ak] satisfy the conditions in Lemma 1. Thus, we
can obtain the following equation:

lim
k→∞

Pk
0 =

uwT

1 + ak(N − 1)
(14)
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According to the result of limk→∞ Pk
0 , we can compute x(k). For the convenience of discussion,

a two-hop network is considered. A theorem is presented as below. Additionally, a row vector zT
i is

defined as follows:

zT
i =


z1, if i = 1
z2, if 1 < i ≤ 1 + |N1|
z3, if 1 + |N1| < i ≤ N

(15)

where z3 ≥ z2 ≥ akz1. If a network has more hops, we can extend
zT = [z1, z2, ..., z2, z3, ..., z3, ..., zn, ..., zN ] satisfying zN ≥ ... ≥ z3 ≥ z2 ≥ akz1, and a similar
conclusion can be made. Define that N G

i = {j|j 6= 1 and j ∈ Ni/N1, ∀1 < i ≤ |N1| + 1} and
N H

i = {j|j ∈ Ni
⋂N1, ∀|N1|+ 1 < i ≤ N}. The numbers of the above set are denoted as |N G

i | and
|N H

i |, respectively. The element number of the two-hop node set in the neighboring set of one-hop
nodes is constant. Meanwhile, the element number of the one-hop node set in the neighboring set of
two-hop nodes is constant, too. Thus, we get |N G

2 | = |N G
i |; |N

H
3 | = |N H

i | is invariable. Additionally,
the following theorem is drawn.

Theorem 1. Given a row vector zT satisfying z3 ≥ z2 ≥ akz1 and ψT = zT P(k) satisfying:

ψT
i =


ψ1, if i = 1
ψ2, if 1 < i ≤ 1 + |N1|
ψ3, if 1 + |N1| < i ≤ N

(16)

then ψ3 ≥ ψ2 ≥ akψ1 and ψT1 = zT1 as long as σ(k) ≤ 1
|N G

2 |+|N H
3 |

and σ(k) ≤ 1
|N1|+1 .

Proof. Since ψT = zT P(k), for all j ∈ N S
1 , we can get the following equation:

ψ1 = z1 − σ(k)a1jz1|N1|+
a1j

ak σ(k)|N1|z2 (17)

and:
ψj = ψ2 = σ(k)z1 + z2 −

a1j

ak σ(k)z2 + σ(k)|N G
2 |(z3 − z2), ∀j ∈ N G

i (18)

ψj = ψ3 = z3 + σ(k)|N H
2 |(z2 − z3), ∀j ∈ N H

i (19)

From the above equations, we have that:

ψT1 = ψ1 + |N1|ψ2 + (N − 1− |N1|)ψ3 = z1 + |N1|z2 + (N − 1− |N1|)z3 = zT1 (20)

For all j ∈ N R
1 , the corresponding equations similar to the above Equations (17)–(20) are holds.

Since the matrix P(k) eliminating the first column and the first row is a symmetric matrix, we get
|N1||N G

2 | = (N − 1− |N1|)|N H
3 |.

Then, we compare akψ1, ψ2 and ψ3; for all j ∈ N S
1 .

ψ2 − akψ1 = (z2 − akz1)[1− σ(k)](
a1j

ak + |N1|) + σ(k)|N G
2 |(z3 − z2) (21)

Since σ(k) ≤ 1
|N1|+1 , σ(k) ≤ 1

|N1|+a−k . Additionally, z3 ≥ z2 ≥ akz1, we can get that ψ2 − akψ1 ≥ 0.

ψ3 − ψ2 = (z3 − z2)[1− σ(k)(|N H
3 | − |N G

2 |)] + σ(k)(
a1j

ak z2 − z1) (22)

Because of σ(k) ≤ 1
|N G

2 |+|N H
3 |

and z3 ≥ z2 ≥ akz1, the inequation ψ3−ψ2 ≥ 0 holds. When j ∈ N R
1 ,

the calculating process is similar; the inequations ψ2 − akψ1 ≥ 0 and ψ3 − ψ2 ≥ 0 hold, too.
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Define that the network finally converged to x(k).

x(k) = uΓTx(0) (23)

where u = [1, 1, ..., 1]T and ΓT = wT

1+ak(N−1) ∏k0−1
k=1 P(k) = [Γ1, Γ2, ..., ΓN ]. Since a > 1, we derive that

ΓN ≥ ... ≥ Γ2 ≥ aΓ1 and Γ1 + Γ2 + ... + ΓN = 1. Thus, Γ1 ≤ 1
N . Therefore, the weights of the

misbehaving nodes can be reduced, but the misbehaving nodes are not eliminated by the proposed
scheme. Γ2 ≥ aΓ1; the effect of the misbehaving nodes becomes smaller when a becomes larger.
Additionally, our scheme is especially efficient when the false nodes attack the network continuously.

4. Evaluation

This section presents numerical examples to illustrate the PACS algorithm. We validate the
efficiency of PACS by comparing the consensus results without attackers and with data falsification
attackers. The algorithm presented by Olfati-Saber [13] is called the Olfati algorithm here. The
proposed PACS and the Olfati algorithm are compared in this section.

4.1. Experiments Setup

We get the experiment reports at an apartment in Shanghai Jiao Tong University (SJTU). We use
nine USRPs (Universal Software Radio Peripherals) with a broadband antenna (70–1000 MHz) and a
TVRX daughterboard (50–860-MHz receiver) to detect three channels of TV broadcasts and three relay
nodes to transmit information. The nodes are deployed in a 10 m × 10 m area. Energy detection is
adopted here because of its short sensing time and simplicity. Although the positions of some nodes
are very close, there are big differences among the sensing reports. Table 1 shows the sensing reports
of close node pairs; (5, 6) and (8, 9) could be quite different. These features illustrate that it is hard to
distinguish the diversity of sensing reports caused by data falsification or not, and it is impractical to
judge malicious nodes only by using a threshold. Therefore, we design a consensus secure scheme to
overcome the diversity of sensing data and the unsafe factors in the network. The consensus algorithm
can solve the problem of the sensing data diversity. Additionally, the adjusted parameters in the
consensus algorithm can reduce the effect of uncertainties in the network.

Table 1. The sensing reports of sensor nodes (5, 6, 8, 9).

Region 662–670 MHZ 750–758 MHZ 798–806 MHZ

5 3.3626 8.4791 4.1553
6 6.5966 1.9973 8.2043
8 3.8923 4.2489 5.0492
9 2.8713 8.7158 3.9781

Throughout the numerical examples, the initial sensing value (i.e., xi(0)) is the average of
300 sensing reports for the band of 750–758 MHz. We set 10% as the initial link loss rate of each
link, i.e., aij = 0.90. Then, we use the off-line data analysis to validate the efficiency of the proposed
scheme. Weights for RNs are set to be γij = aij/Σj∈Ni aij, ∀i ∈ IR. The algorithm is implemented with
the decreasing weight sequence σ(k) = 1/10, k ≤ 20 and σ(k) = 1/(k− 1), k > 20, and a = 5.

4.2. Numerical Example 1

In this experiment, we select 12 sensors: nine SNs and three RNs; shown in Figure 1. Firstly, we
illustrate the results with PACS. Figure 2a shows the result without attackers. The network converges
to 4.9864. Then, we consider the network attacked by Node 4. The attacker executes the PDF attack
and forges 16.5966 as the sensing value. Figure 2b shows the results, and the consensus value is 5.0013.
Furthermore, Node 4 is set to broadcast the adjusting value with x4(k) = x4(k) + ω4(k) where ω4
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is randomly selected in [−0.5, 0.5] in the case of the IDF attack. The estimated value of the attacker
may fluctuate in the data fusion process, but the network converge to 4.9543, as fast as in Figure 2c.
Then we take the RDF attack into account; the attacker manipulates the sensing state value and adds
Gaussian white noise to the states in each iteration step randomly. The result by PACS is demonstrated
in Figure 2d. The network can converge to 5.0007 very quickly. We can see that the differences between
the convergence value with attackers and without attackers are less than 0.1 (i.e., the error is less than
2%). It is considered that the proposed scheme defends against the data falsification attack effectively.

Figure 1. A network with eight honest sensor nodes, three relay nodes and one attacker.

Then, considering the same attack with the above simulation, we show the simulation results
with the Olfati algorithm. Figure 3a shows the result without attackers. The consensus results under
three different types of attackers are shown in Figure 3b–d, respectively. We can see that the attacks
make the network converge to a wrong value or even destroy the convergence of the network.
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Figure 2. Convergence of parameter adjusted-based consensus (PACS): (a) without attackers; (b) with
one Perception Data Falsification (PDF) attacker; (c) with one Iteration Data Falsification (IDF) attacker;
(d) with one Random Data Falsification (RDF) attacker.
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4.3. Numerical Example 2

We consider more sensors as in Figure 4. Firstly, the results of PACS are demonstrated. Figure 5a
shows the results of the PACS algorithm on the network without attackers. The consensus result is
4.7543. Additionally, the convergence is quick, although there are more sensor nodes in the network.
Then, we consider the case that there are three attackers executing three different attacks: the SDF, ISF
and RDF attack, respectively. Figure 5b demonstrates that the value of xi(k) converges to 4.8561, and
the difference between this value with the result without the attack is 0.1018 (i.e., the error is less than
2.14%). We can see that the scheme has a quite good resistance against the variety of data falsification
attacks that exists in the network simultaneously.
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Figure 3. Convergence of the Olfati algorithm: (a) without attackers; (b) with one SDF attacker; (c) with
one IDF attacker; (d) with one RDF attacker.
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Figure 4. A network with 27 honest sensor nodes, 13 relay nodes and three attackers.
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Figure 5. Convergence of PACS in numerical Example 2: (a) without attackers; (b) with three attackers.

Then, the results of Olfati algorithm on the network without attackers is shown in Figure 6a. The
consensus speed is small, because the scale of the network is large. The consensus result is 4.7617. The
same attackers are considered to execute the same types of attacks as the above. The results of the
Olfati algorithm are shown as Figure 6b; the network cannot reach a consensus obviously.
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Figure 6. Convergence of Olfati in numerical example 2: (a) without attackers; (b) with three attackers.

5. Conclusions and Future Work

In this paper, we propose a secure scheme to reduce the destructive impact of the abnormal nodes
in HWSNs. We utilize an undirected graph to represent the HWSNs and then introduce three different
kinds of data falsification. A distributed detection algorithm with a local threshold is presented for
classifying malicious nodes from honest ones. PACS is proposed to protect the network from the
malicious nodes by decreasing their weights in the distributed estimation. The convergence property
of PACS is proven to be guaranteed, and the simulation results illustrate the effectiveness and efficiency
of the proposed scheme. We will study the issues of the attack under random graph topologies in
heterogeneous wireless sensor networks in future work.
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