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Abstract: In this paper, we present a vehicle active safety model for vehicle speed control based
on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG)
sensors and sparse representation. The proposed system consists of three main steps, namely
wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy.
First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system
with eight channels is designed for collecting the driver’s EEG signal. Second, wavelet de-noising
and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier
Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step,
sparse representation classification combined with k-singular value decomposition (KSVD) is firstly
introduced in PSD to estimate the driver’s vigilance level. Finally, a novel safety strategy of vehicle
speed control, which controls the electronic throttle opening and automatic braking after driver
fatigue detection using the above method, is presented to avoid serious collisions and traffic
accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle
active safety model.

Keywords: wearable electroencephalographic; vigilance detection; vehicle active safety; vehicle
speed control; sparse representation; brain-computer interface

1. Introduction

A growing number of traffic accidents have become a serious social safety problem in recent years.
One of the main factors has been the obvious drop in the driver’s perceptual senses, such as feeling,
recognition, and automobile control abilities, as they feel sleepy. Statistics show that the leading cause
of fatality and injury in traffic accidents is the driver’s diminished vigilance level [1,2]. Analysis of
literature suggests that driver vigilance contributes to approximately 43% of vehicle crashes and 27%
of near crashes [3]. Fatal crashes reported from Washington D.C. indicate that driver fatigue caused
a large proportion of crashes (i.e., 10% in 2005 and 16% in 2009, for total 5474 fatigue-related fatalities
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in 2009) [4]. In Europe, statistics report that about 10% to 20% of all traffic accidents are caused by
driver’s fatigue due to a diminished vigilance level. The National Sleep Foundation (NSF) reported
that 51% of Americans have driving while feeling drowsy and 17% admit that they had actually fallen
asleep [5].

Technologies such as pretension seat belt, airbag, antilock brake system, traction control system,
and electronic stability programs, can protect people in collisions only to a certain extent. It is
important to develop systems that actively detect a driver’s level of vigilance and control the vehicle
speed when he is driving fatigued. Over the past several decades, many researchers have focused on
driver’s vigilance detection. They solved this problem by sending a warning to driver when the driver
appears drowsy. Nevertheless, these technologies are not helpful in the control of vehicle because the
majority of drivers believe that they are able to control the vehicle. However, they actually are not.
With increasing vehicle speed, the dynamic vision, vision of the driver in motion, and dynamic vision
field (vision field of the driver in motion) decrease. Generally, dynamic vision is 10%–20% lower than
a static vision. For instance, when vehicle speed is 60 km/h, the driver can see traffic signs within
200 m. When vehicle speed is up to 80 km/h, the driver can only see traffic signs within 160 m ahead.
Therefore, it is necessary and efficient to control the vehicle speed or decelerate to prevent a collision
when the driver is drowsy.

1.1. Driver Vigilance Detection Technologies

Currently, technologies of detecting driver vigilance are developing rapidly. The most popular
approaches are classified into three categories [6–8]. The first category focuses on the movements of
the vehicle [9], such as detecting the lane departure, steering wheel movement, the pressure of driving
pedal. If the movement of the vehicle is abnormal, the driver is regarded as drowsy. Although this
technology provides a noninvasive way for correcting the driver, it is difficult to construct a common
model for drowsy driving due to variability of an in dividual’s driving behavior and changes of
road circumstances.

The second category analyzes the changes of driver’s physical behaviors [10–15], such as eye
tracking, yawning, percent eye closure (PERCLOS), blink frequency, nodding frequency, face position,
and the inclination of the driver’s head. In literature [10–15], measuring eyelid movement, face
expression and head pose using video cameras are effective ways o driver vigilance detection based
on machine vision and computer hardware technologies. The use of multiple visual parameters and
the information fusion of various driver facial visual cues, were used to model driver vigilance and to
predict driver fatigue [14,15]. Usually, in such an algorithm, a video is used to analyze and classify the
vigilance level of the driver. Video is susceptible to environmental and driving conditions such as light
conditions, glasses worn by the driver, and so on. Furthermore, false estimation can also be caused by
variability of the driver’s behavior, such as sleepiness with eyes open.

The last category is the physiological signal [16–28] for driver drowsiness detection, using
electrocardiosignal (ECG), electrooculographic (EOG), electroencephalographic (EEG), and heart
rate variability (HRV). These systems are more reliable because physiological drowsiness signs are well
known and rather similar from one driver to another. EEG is always regarded as a “gold standard”
of vigilance detection. In [16], Šušmáková described the relationship between human sleepiness and
EEG. It indicated that some existent rhythm components, theta (4 Hz–8 Hz), alpha (8 Hz–14 Hz),
and beta (14 Hz–34 Hz) in EEG had a close relationship with the driver’s vigilance levels. There is
a positive correlation between the power of theta or alpha rhythm and drowsiness, and a negative
correlation between the power of beta rhythm and being awake. In this category, the first and most
important part is the acquisition of EEG of driver. However, the traditional laboratory equipment is
too large and troublesome to use. To extend the application of EEG to the drowsy driving field, many
researchers began to develop portable equipment for EEG collection. Lin et al. have designed a series
of wearable BCI systems in [17,18] to detect driver vigilance. Their system possesses three functions.
The first function is EEG acquisition and amplifying, and the second function is data transmission
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implemented in CPLD (complex programmable logic device), etc. The third function is vigilance
detection implemented in OMAP (open multimedia architecture platform), etc. In literature [19–21],
Rodger et al. had also made significant improvement of interface neuro-physiological behavior
performance over existing techniques, which authors proposed a NeuroIS knowledge discovery
approach, a study on emotion and memory, improving memory, and software training results for BCI
systems. Independent component analysis (ICA), wavelet, and filters are usually used in interference
removal. Next, a vigilance detection algorithm is implemented to distinguish different states of the
driver [4,22–27]. In [4], the author explores many experimental results to verify the relationship
between EEG power spectrum density (PSD) and drowsiness. The power of alpha and beta rhythm
in an alert state is greater than in a drowsy state. The power of the theta rhythm in an alert state is
lower than in a drowsy state. In [22], Jung et al. proposed a model of estimating alertness based on
EEG power spectrum as early as 1997. In their paper, principal component analysis (PCA) is used for
EEG feature extraction, and artificial neural networks (ANN) are used to establish an alertness model.
The results show that continuous, accurate, noninvasive, and nearly real-time estimation of vigilance
levels using EEG is feasible. In [23], as a kind of EEG feature, power spectrum density is extracted
to construct a drowsy model for vigilance classification. Yu et al. use continuous wavelet transform
(CWT) to extract the rhythm features of EEG and use sparse representation classification to accomplish
the classification task in [24]. To enhance the performance of sparse representation classification,
k-singular value decomposition (KSVD) proposed by Aharon, et al. in [25] is explores. A multi-channel
EEG signal model during a working memory task was presented in literature [26]. In [27], a mobile
healthcare device for dirver vigilance detection using wavelet-based EEG and respiration signals was
presented. The driver’s health condition was analyzed from evaluating the heart rate variability in
the time and frequency domains. In [28], a new evaluation model of driver fatigue is established with
integration of four fatigue-based indicators with a dynamic Bayesian network (DBN). The results show
that it is more accurate to evaluate driver fatigue than the sole EEG-based indicator. The difficulties
of these physiological signal measures as on-road driver vigilance detection monitors are in how to
obtain EEG recordings comfortably under driving conditions and classify the driver drowsiness with
so many EEG signals. Nevertheless, the physiological signal measures are believed accurate, valid,
and objective in determining driver vigilance.

1.2. Vehicle Speed Control Algorithms after Driver Vigilance

After the driver is drowsy, some proposed systems give warnings to the driver in order to avoid
traffic accidents [9,15,17]. Despite warning of fatigue driving, most drivers believe they can drive safely.
Under the circumstances when the driver’s response and vigilance continue to slow down, the vehicle
active safety strategy is an important optional system that provides speed control in order to prevent
traffic collisions. Adaptive cruise control (ACC) and stop-and-go strategies are related to vehicle speed
control. The former is mainly involved in the inter-distance control on the road where the automoble
drives at a constant speed, whereas the latter deals with vehicle commuting in municipal areas with
frequent stops, decelerations, and accelerations [29]. In [30], Li proposed an active control strategy to
keep vehicles away from possible collisions owing to distracted driving or drivers’ attention. In [31],
the literature examines drivers’ adaptation using a conceptual model of adaptive behavior. In [32],
Zhang et al. present a reversing speed control for vehicle safety. The final simulation and experimants
show the validity of the vehicle reversing speed control. McCall et al. proposed a novel safety system
to reduce rear-end collisions based on predictive braking assistance in [33]. In [34], Keller et al. present
a active pedestrian safety system that fuses sensors, state analysis, decision support, and autombile
control. In [35,36], Naranjo et al. proposed an ACC system that was used for vehicle safety. The related
work treats the vehicle speed control by environment perception [37], road condition detection [38,39],
and driver active state detection [40].

Despite the success of the existing approaches/systems for driver vigilance detection and vehicle
speed control, a variety of factors still challenge researchers. Much research has been conducted on
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driver vigilance detection systems, focusing on the following three main problems: (1) how to find
a higher-reliability and lower-cost comfortable wearable EEG system that are currently widely used to
get the EEG signal of driver; (2) how to detect and recognize the driver fatigue from so much data; and
(3) how to apply the vehicle speed control algorithm after driver fatigue detection using the above
method in preventing collisions. Until now, few have investigated deeply and systematically vehicle
active safety technology based on vigilance detection using wireless wearable EEG signals. The existent
lane departure warning system and vehicle collision warning system are established on the driving
state and environment to avoid collision. It is imperative to take measures to reduce collisions based
on the study of the driver’s vigilance state using EEG signals. In this paper, we introduce an active
safety method for vehicle speed control based on driver vigilance detection using wearable EEG and
sparse representation. A homemade eight-channel low-cost comfortable wearable brain–computer
interface (BCI) hardware system is developed to collect the EEG signal of driver. We can transmit the
data of BCI hardware to a personal computer (PC)/field-programmable gate array (FPGA)/digital
signal processor (DSP) via a Bluetooth interface. Then wavelet de-noising and down-sample algorithm
are utilized to enhance the quality of EEG data and Fast Fourier Transformation (FFT) is adopted to
extract the EEG power spectrum density (PSD). Sparse representation classification combined with
KSVD is, firstly, implemented in PSD to estimate the driver vigilance level. After driver vigilance
detection and recognition, a novel vehicle speed control strategy will make a decision to decelerate
or brake. The results of the practical test and simulation show the feasibility of the proposed vehicle
active safety model.

The rest of this paper is organized as follows. In Section 2, the general system architecture is
presented. Section 3 focuses on low-cost wearable BCI system for EEG collection using our homemade
eight-channel BCI system. Sparse representation classification for vigilance detection is described in
Section 4, and vehicle speed control strategy is proposed in Section 5. The system simulation and
validation are reported in Section 6. Finally, some conclusions are given in Section 7.

2. System Architecture

The general architecture of our system shown in Figure 1, includes three major steps: (1) a wearable
BCI system for EEG collection; (2) driver vigilance detection using sparse representation classification
combined with KSVD; and (3) a vehicle speed control strategy.

In the first step, when a driver is driving, a homemade eight-channel wearable BCI system is used
to collection the EEG signals of the driver and then transmits its recorded data to PC/FPGA/DSP via
a Bluetooth interface. Our BCI system consists of eight stainless steel dry electrodes. It incorporates
the use of a wearable EEG device to record EEG signals from the head region of the driver. To extend
the application of EEG to the drowsy driving field, the portable system is developed for EEG collection
with all of the chips (including Bluetooth model and batteries) in a small bag. In order to acquire the
data from different vigilance levels, we set the experimental conditions as the left of Figure 1. In this
paper, we define two vigilance levels: alert and drowsy. In our experiment and simulation, we use
a PC to process simulation data. The improved versions will be completed in the later experiment
using DSP or FPGA.

The second step is driver’s vigilance detection using sparse representation classification combined
with KSVD. As shown in the middle block of Figure 1, after the EEG original data is collected using our
eight-channel wearable BCI equipment, de-noising is implemented to remove some interference using
wavelets. Then the data is down-sampled to 128 Hz in order to reduce the computation load. PSD is
extracted as a feature of each state using FFT. Sparse representation classification combined with KSVD
is implemented in PSD to estimate the driver’s vigilance level, and the dictionary is prepared before
classification and is trained using KSVD.

The final step is the vehicle speed control strategy in the right block of Figure 1. Despite the
success of the existing approaches/systems for driver vigilance detection and ACC system, there
are few studies about vehicle active safety technology based on vigilance detection that are deeply
and systematically based on vigilance detection using wireless wearable EEG signals. In this paper,
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an active safety strategy for vehicle speed control based on vigilance detection using EEG and sparse
representation is developed.

After driver vigilance detection, a vehicle speed control strategy determines what steps it takes to
control the speed of vehicle as shown in Figure 1. According to the following car speed and distance
detected by a binocular camera system, the vehicle deceleration model gives a safe deceleration method
in the course of speed control. After the driver continues drowsy driving, the electronic control unit
(ECU) receives the driver vigilance detection information from the second step and automatically
controls vehicle speed. When the driver is detected in deep drowsiness, the ECU will control the
throttle opening and auto brake to make the car decelerate or brak slowly to reduce the accident rate.

Sensors 2016, 16, 242 5 of 25 

 

distance detected by a binocular camera system, the vehicle deceleration model gives a safe 

deceleration method in the course of speed control. After the driver continues drowsy driving, the 

electronic control unit (ECU) receives the driver vigilance detection information from the second step 

and automatically controls vehicle speed. When the driver is detected in deep drowsiness, the ECU 

will control the throttle opening and auto brake to make the car decelerate or brak slowly to reduce 

the accident rate. 

 

Figure 1. Flowchart of the proposed vehicle active safety model. 

3. Wearable BCI System for EEG Collection 

EEG data is very important to our driver vigilance detection. The basic scheme of our EEG-based 

BCI system is proposed as in Figure 2. The wearable BCI system consists of EEG cap, reference 

electrodes, and a processing model as shown in Figure 2a. In Figure 2b, the positions of eight dry 

electrodes installed in EEG cap are corresponding to the cerebrum areas of O1, O2, C3, Cz, C4, P3, 

Pz, and P4. The installation positions on the head have a close relationship with driver vigilance level 

detection. In our system, the wearable EEG cap is suitable to comfortably collect the driver’s brain 

signal data. It has eight single-channel EEG collection modules. As shown in Figure 2c for a single 

module, the structure has a five-part structure: (1) a stainless steel dry electrode; (2) TGAM module 

(the chip used to process EEG signal); (3) Bluetooth module; (4) reference electrode, and (5) battery 

module. The EEG signal is obtained by the stainless steel dry electrodes firstly, and then amplify and 

filter by the ThinkGear asic module (TGAM) model with the hardware filtering 3 Hz to 100 Hz and  

sampling rate of 512 Hz. Next, the EEG signal is transmitted to our PC via Bluetooth. The reference 

electrode provides reference potential for our stainless steel dry electrode. The system is powered by 

eight 3-V DC batteries. Figure 2d shows the processing module, including TGMA, Bluetooth, and 

batteries installed into some boxes, which are designed by SolidWorks software and manufactured by 

a 3D printer. At last, all chips of TGAM, Bluetooth, and batteries are arranged into a bag shown in 

Figure 2a to make our equipment more wearable. Although there are many commercial solutions, in 

our paper we want to design a low-cost wearable EEG system for our research. The cost of our 

homemade wearable EEG system is very cheap. Although it is not the cheapest, we think our 

homemade wearable EEG system has cost advantages compared with some of the commercial 

solutions. At the same time, the homemade wireless wearable EEG system is necessary for our future 

research. Our research is vehicle safety and the speed control module needs some interface via EEG. 

Our homemade wearable EEG system can meet our requirements. 

To improve the efficiency of our homemade wearable BCI system in data acquisition accuracy, 

a 64-channel EEG provided by BRAIN PRODUCTS (BP) was used in our previous study and analysis, 

Figure 1. Flowchart of the proposed vehicle active safety model.

3. Wearable BCI System for EEG Collection

EEG data is very important to our driver vigilance detection. The basic scheme of our EEG-based
BCI system is proposed as in Figure 2. The wearable BCI system consists of EEG cap, reference
electrodes, and a processing model as shown in Figure 2a. In Figure 2b, the positions of eight dry
electrodes installed in EEG cap are corresponding to the cerebrum areas of O1, O2, C3, Cz, C4, P3, Pz,
and P4. The installation positions on the head have a close relationship with driver vigilance level
detection. In our system, the wearable EEG cap is suitable to comfortably collect the driver’s brain
signal data. It has eight single-channel EEG collection modules. As shown in Figure 2c for a single
module, the structure has a five-part structure: (1) a stainless steel dry electrode; (2) TGAM module (the
chip used to process EEG signal); (3) Bluetooth module; (4) reference electrode, and (5) battery module.
The EEG signal is obtained by the stainless steel dry electrodes firstly, and then amplify and filter by
the ThinkGear asic module (TGAM) model with the hardware filtering 3 Hz to 100 Hz and sampling
rate of 512 Hz. Next, the EEG signal is transmitted to our PC via Bluetooth. The reference electrode
provides reference potential for our stainless steel dry electrode. The system is powered by eight 3-V
DC batteries. Figure 2d shows the processing module, including TGMA, Bluetooth, and batteries
installed into some boxes, which are designed by SolidWorks software and manufactured by a 3D
printer. At last, all chips of TGAM, Bluetooth, and batteries are arranged into a bag shown in Figure 2a
to make our equipment more wearable. Although there are many commercial solutions, in our paper
we want to design a low-cost wearable EEG system for our research. The cost of our homemade
wearable EEG system is very cheap. Although it is not the cheapest, we think our homemade wearable
EEG system has cost advantages compared with some of the commercial solutions. At the same time,
the homemade wireless wearable EEG system is necessary for our future research. Our research is
vehicle safety and the speed control module needs some interface via EEG. Our homemade wearable
EEG system can meet our requirements.
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To improve the efficiency of our homemade wearable BCI system in data acquisition accuracy,
a 64-channel EEG provided by BRAIN PRODUCTS (BP) was used in our previous study and analysis,
in the course of which we have a clear understanding about drowsiness-related EEG signals. As shown
in Figure 3, the commercial BP system consists of BrainCap, BrainAmp, and the Recorder Analysis
Software. In Figure 3a, BrainCap is an EEG acquisition cap with 64 channels and high-quality Ag/AgCl
sensors. BrainAmp is used to amplify the EEG signal in Figure 3b. Recorder is software used to view,
accept, reserve, and process EEG signals.

In this paper, we acquire EEG signal from both equipments. We called the signal set Setijk, where
i = {BP, wearable homemade BCI system (HBS)} indicates the type of apparatus, j = {a, d} shows the
state of subject (a is the state of alert, d is drowsy), and k = {O1, O2, C3, Cz, C4, P3, Pz, P4}, representing
the number of channels.
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4. Driver Vigilance Detection

After we get the EEG original signal, data processing is processed using MATLAB R2012a in three
main steps described as follows.

4.1. Data Preprocessing

This process contains de-noising and downsampling. Discrete wavelet transformation (DWT)
is an excellent time-frequency analysis tool in various fields of signal processing, for example, for
de-noising of EEG. In this paper, we explore the application of the wavelet de-noising method for EEG
signals according to its multi-resolution for the non-stationary EEG signal. A six-layer decomposition of
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db5 wavelet is implemented in the original EEG signal to get the sub-bands’ wavelet detail coefficients
(Di, i = 1, 2, 3, 4, 5, 6) and approximation coefficients (Ai, i = 1, 2, 3, 4, 5, 6). The decomposition space
tree and frequency range are shown in Figure 4. The range of EEG frequency is from 0.5 Hz to 50 Hz.
By reconstructing the decomposition coefficients of d3, d4, d5, d6, we can extract the useful EEG signal
and remove some low frequency and high frequency interference, as mentioned above.

In addition, SetHBS is downsampled to a sampling rate of 128Hz and SetBP is downsampled to
a sampling rate of 100 Hz to reduce the computation load.
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4.2. Feature Extraction

It is very important to know the relationship between EEG and drowsiness for feature extraction.
Firstly, SetBP is analyzed using eeglab v12.0.0.0b (toolbook) of MATLAB to reveal the features of the
EEG. Figure 5 shows the power scalp topographies of some frequency components in the states of
(a) alert and (b) drowsy.

In Figure 5, we can observe many significant differences of the frequency distribution on the
scalp. In the alert case, the more low frequency components are found in the area of the forehead, the
more high-frequency components are distributed in the area of occipital. In the case of drowsiness,
low-frequency components and high-frequency components in the area of the forehead and occipital
region are approximately uniform. We can distinguish between different states from two areas of
occipital and forehead using power spectral density of different frequency components. Since the
signal in the forehead area is susceptible to the eye movement artifacts [18], the PSD of the occipital
area (O1, O2) is adopted to distinguish between the two states. Then, the feature of the EEG signal
at time t was the average PSD of the previous s s and t s. The PSD of each second is calculated using
a 128-point FFT and then converted into a logarithmic scale. Next, a Rectangle Window is used to
extract PSD of theta, alpha, beta rhythms, reported as the significant index for the driving error. At last,
we stack the feature into a feature set F.
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Figure 5. Power scalp topographies of some frequency components. (a) Power scalp topographies of
the alert state; (b) Power scalp topographies of the drowsy state.
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4.3. Driver Vigilance Detection Based on Sparse Representation Classification Combined with KSVD

Driver vigilance detection is the most important part in our vehicle active safety model. The sparse
representation classification algorithm, one of the most popular classifiers used in pattern recognition
in recent years, is used for the problem of vigilance classification. Moreover, KSVD is utilized to
learn an over-complete dictionary for each level of the vigilance state. Meanwhile, L0 minimization
is used in solving the sparse representation problem. A minimal residual method is engaged to
solve the classification problem for driver vigilance detection. In this paper, the sparse representation
classification combined with KSVD is firstly introduced to implement in PSD to estimate the driver
vigilance level. Although other algorithms have been used previously for the same task, we want to try
to construct a novel algorithm for driver vigilance detection using sparse representation classification
and KSVD.

4.3.1. Sparse Representation

In a sparse representation model, an EEG feature y (y P Rp) belonging to the set of Fijk, can be
represented as a linear combination of atoms from an over-complete dictionary DIC = [d1, d2, . . . , dw]
(DICPRpˆw, w > p), as Equation (1), where dw is the atom of the dictionary, w is the number of atoms,
and p is the length of dw:

y “ d1α1 ` d2α2 ` . . . ` dwαw “ DICα (1)

where α = [α1, α2, . . . , αw] is the sparse coefficient matrix, which only in a small fraction are non-zero.
The optimum solution of sparse coefficients can be formulated as Equation (2), which denotes a L0

minimization problem:
α1 “ arg min

ˇ

ˇ

ˇ

ˇα
ˇ

ˇ

ˇ

ˇ0 s.t. DICα “ y (2)

Here ||α||0 is the number of non-zero coefficients in α. α1 is the approximate value of α.
Orthogonal matching pursuit (OMP) is used to solve the L0 problem. Then we can get approximately
reconstructed signal via Equation (3):

y1 “ DICα1 (3)

4.3.2. Dictionary

From the sparse representation model mentioned above, the dictionary plays an important role
in the process of sparse decomposition and signal reconstruction. To match each state, w features
are randomly selected from each Fijk to stack into dictionary DICijk. In order to avoid dictionary
redundancy, KSVD is used in our paper to learn an over-completed, but small, dictionary. Two-thirds
of each Fijk are used to train and update the atoms of DICijk. Then we can get an excellent sparse
decomposition performance at the corresponding state.

4.3.3. Sparse Representation Classification

To extend the application of sparse representation, sparse representation classification was first
proposed by Wright et al. for face recognition in [41]. In the case of vigilance detection, we will
introduce a SRC model as follows. Here, DICa = [da1, . . . ,daw] represents the dictionary of alert
state and DICd = [dd1, . . . ,ddw] represents the dictionary of alert or drowsy. We form these two
sub-dictionaries as DIC = [DICa DICd]. In this way, a test sample y can be represented as Equation (4):

y “ DICα “
ÿ

da1αa1 ` ¨ ¨ ¨ ` dawαaw ` dd1αd1 ` ¨ ¨ ¨ ` ddwαdw (4)

By combining Equations (2) and (3), we can get the sparse coefficient α1 “ rαa1, . . . , αaw, αd1, . . . , αdws.
So, α1a “ rαa1, . . . , αaw, 0, . . . , 0s can be regarded as the sparse coefficients under DICa, and

α1d “ r0, . . . , 0, αd1, . . . , αdws can be regarded as the sparse coefficients under DICd. The class of



Sensors 2016, 16, 242 9 of 25

y is calculated by Equation (5) and is determined by the minimal residual of y and its reconstructed
signal y1 under coefficients of αa and αd:

classpyq “ argminxresidualx||y´DICα1x||2 (5)

where x = [a, d].
If the driver is alert, the non-zero sparse coefficients will concentrate on these sections

corresponding with DICa. Then the residual in the condition of αa is smaller than in the condition
of αd in theory. We can determine what state the driver is in. After that, our proposed vehicle speed
control strategy receives the driver’s vigilance level to determine when and how we should decelerate
our vehicle speed to ensure safety.

5. Vehicle Speed Control Strategy

In this section, a novel safety strategy of vehicle speed control, which controls the electronic
throttle opening and automatic braking after driver fatigue detection using the above method, is
presented to avoid serious collisions and traffic accidents. As shown in Figure 6, if the driver’s
drowsiness is confirmed, the algorithm gives different operating commands, including deceleration
and braking. The ECU receives these operation commands and controls the vehicle to avoid traffic
accidents. Auto-braking and deceleration, a vehicle deceleration algorithm based on the car following
security distance model, and the relationship between vehicle speed is presented in this section.
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Different operations are used to prevent traffic accidents from happening in different
circumstances. For example, immediate braking is used under emergency situations. In those cases,
the accelerator is cut off and the braking system begins to work automatically. In other words, at that
moment, an acceleration pedal operation will be replaced by an automatic braking operation, as in the
right block of Figure 1. Speed control is used in the whole driver vigilance detection process to get
an appropriate speed of the vehilce.

5.1. Vehicle Deceleration Algorithm

In this subsection, we analyze the vehicle deceleration algorithm. Due to the danger of sudden
deceleration, the first and most important part in our vehicle speed control strategy is the safety of
deceleration. However, this poses two challenges, one of which is how we can determine the speed
difference (∆V) between initial speed and end speed after deceleration. Another is to choose a proper
accelerometer to avoid rear-end collisions in the course of deceleration. From the theory in [42], we
have the relationship between accidental risk and speed, as shown in Figure 7. We find that the
accidents occurring in the case of moderate or high speed driving are more severe than in the case of
low speed.
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Another study from Joksch [43] indicates that the relationship between the speed difference and
probability of fatality in Figure 8. This means that we should keep the speed difference with other
vehicles less than 20 km/h as much as possible. Thus, it is proper to choose ∆V = 20 km/h to reduce
the speed of vehicle in the case of drowsiness. Additionally, a car-following safety distance model
is adopted to calculate an accelerometer to avoid the rear-end collision in the course of deceleration.
Some parameters are defined as follows:

‚ t1: The driver reaction and brake coordination time of following vehicle;
‚ t2: The acceleration increase time of following vehicle;
‚ t3: The uniform deceleration time of following vehicle;
‚ t f ollowing: The total time of following vehicle deceleration;
‚ v21: The initial speed of following vehicle;
‚ v22: The final velocity of following vehicle calculated by v12 = v21 ´ 20 Km/h;
‚ s1: The distance traveled by the following vehicle during t1;
‚ s2: The distance traveled by the following vehicle during t2;
‚ s3: The distance traveled by the following vehicle during t3;
‚ s f ollowing: The distance traveled by the following vehicle during the whole process;
‚ am: The maximum accelerometer of the following vehicle;
‚ v11: The initial speed of the front vehicle;
‚ v12: The final velocity of front vehicle calculated by v12 = v21 ´ 20 Km/h;
‚ a f : The accelerometer of the front vehicle;
‚ Dmin: The minimum safety distance of the front-following vehicle after deceleration;
‚ L: The needed distance of front-following vehicle before deceleration; and
‚ s f ront: The distance traveled by the front vehicle during the whole process.

Generally, under the assumption that the following driver immediately decelerates, the
deceleration process of the following vehicle can be divided into three stages: (1) driver’s reaction and
brake coordination stage; (2) acceleration increase stage; and (3) uniform deceleration stage.
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Driver’s reaction and brake coordination stage (t1): the following driver gets the deceleration
information of the front car and then controls the vehicle. The travel distance s1 during t1 can be
represented as Equation (6):

s1 “ t1v21 (6)

Acceleration increase stage (t2): the acceleration of the following car increases from zero to am.
The travel distance s2 during t2 can be calculated by Equation (7):

s2 “ v21t2 `
am

6
t2

2 (7)

Uniform deceleration stage (t3): the speed slows down at an accelerometer of am to ve. The travel
distance s3 and t3 can be calculated by Equations (8) and (9):

s3 “ ´
1

2am
pv2

21 `
a2

m
4

t2
2 ` v21amt2q (8)

t3 “
2pv22´ ´ v21q ´ amt2

2am
(9)

Therefore, we can get s f ollowing and t f ollowing using Equations (10) and (11):

s f ollowing “ s1 ` s2 ` s3 “ v21pt1 `
t2

2
q `

v2
22 ´ v2

21
2am

`
am

24
t2
2 « v21pt1 `

t2

2
q `

v2
22 ´ v2

21
2am

(10)

t f ollowing “ t1 ` t2 ` t3 “ t1 ` t2 `
2pv22´ ´ v21q ´ amt2

2am
(11)

When the driver is detected to be in danger case, we let the front car decelerate from v11 to
v12 during t f ollowing, and we can get the accelerometer of a f from Equation (12) and s f ront from
Equation (13):

a f “
v12 ´ v11

t f ollowing
(12)

s f ront “
v2

12 ´ v2
11

2a f
(13)

By combination of Equations (11) and (12), a f is simplified as Equation (14):.

a f “
2ampv21 ´ v11 ´ 20q

amp2t1 ` t2q ` 2pv22 ´ v21q
(14)

By combination of Equations (13) and (14), s f ront is simplified as Equation (15):

s f ront “
1

4am
pv21 ´ v11 ´ 20qpamp2t1 ` t2q ` 2pv22 ´ v21qq (15)

As shown in Figure 9, L can be calculated through Equation (16) by combining Equations (10)
and (15):

L “ Dmin ` s f ollowing ´ s f ront “ Dmin ` v21pt1 `
t2

2
q `

v2
22 ´ v2

21
2am

´
v2

12 ´ v2
11

2a f
(16)

If the actual distance La of front-following vehicle is longer than the need distance L, it is safe.
Table 1 shows the range of some parameters used in this paper. Furthermore, a binocular vision

system is used to obtain La. In the binocular vision system, the binocular-cameras is a homemade
device at our lab. The binocular digital cameras have 320 ˆ 240 resolution, and our algorithm is
implemented and coded with C++ and the OpenCV library on a laptop computer equipped with
an Intel i5 2.5 GHz CPU and 4 GB RAM. The parameter v21 can also be obtained by using the binocular
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vision in our experimental system. In this paper, L1 and L2 represent the distance of front-following car.
They are measured with time internal of 0.5 s. The parameter v21 can be represented as Equation (17):

v21 “ v11 ` 2pL2 ´ L1q (17)
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Table 1. The range of parameters and value used in this paper.

t1 t2 am Dmin

Range 0.5~1.5 0.2/0.7 0~6.0 2~5
Value 1.2 0.2 4.5 5

5.2. Vehicle Speed Control Strategy

The vehicle speed control strategy is used to determine how we should control the speed of the
vehicle after driver vigilance detection. Firstly, we define three situations as follows:

‚ Situation 1: If the driver is detected to be drowsy for a constant n s, the driver is regarded
as drowsy and the “deceleration” command is sent to the ECU. In this paper, the parameter
n is variable according to different conditions, and we set n at 3 s in our experimental and
simulation system.

‚ Situation 2: After Situation 1, if the driver is detected to be not completely alert in next u + z s
(z is the time after u. u ď k, z < m, and u + z ě k), the driver is regarded as very drowsy and the
“braking” command is sent to the ECU in Figure 6.

‚ Situation 3: After Situation 1, if the driver is detected to be not completely alert in the next u s but
alert in m s after u (u ď k), the driver is regarded as awake and the “releasing maximum speed
limit” command is sent to ECU.

u and z are time variables for drowsy time and waking time, which are used to record the time
that the driver is detected as being in the alert or drowsy state. The parameters k and m are thresholds.
The variable k is the time used to wake up driver when the driver is drowsy, and the variable m is the
minimum time for the driver to be woken up. If the waking up time is less than m, the driver has not
been awoken.

As shown in Figure 10, we introduce a novel vehicle speed control strategy as follows:
When Situation 1 occurs, the ECU automatically operates the binocular cameras in our

experimental system to acquire the v21 and La. If La > L, the ECU controls vehicle deceleration
to v22 Km/h with the acceleration of a f , and then keeps the maximum speed limit at v22 km/h. At the
same time, the ECU controls the vehicle horn to wake the driver up. If Situation 2 happens, it indicates
that the driver has not been woken up by the horn during time k or the waking up time is less than m.
The ECU accepts the “braking” command and operates the binocular cameras to acquire the v21 and
La. If La > L, the ECU controls vehicle braking slowly with the acceleration of a f for avoiding traffic
accidents because of driver deep drowsiness.

Otherwise, if Situation 3 occurs, it indicates that the driver has been woken up by the horn during
time k and keeps awake at least for time m. In this condition, the ECU releases the maximum speed
limit. Then, the vehicle is controlled by the driver normally. Based on the above vehicle speed control
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strategy, the system can control electronic throttle opening and automatic braking to reduce accident
rate for avoiding drowsy driving. This makes driving safer and more reliable.

The detail of the flowchart of our vehicle speed control strategy is shown in Figure 10. The variable
of drowsy_flag is a flag of whether Situation 1 occurs.

To further illustrate flowchart of our vehicle speed control strategy, the vehicle speed control
model based on the vehicle dynamic is shown in Figure 11 and executed in our simulation and
experimental system. The red box 1 in Figure 11 is the operation command input port used to receive
the command, which is determined by our vehicle speed control strategy. The binocular camera
detection model which was coded with C++ and OpenCV library in red box 2, is used to measure La

and v21 of following car when operation commands is received. The operation selection model shown
in red box 3 judges which commands is received and exports control information to vehicle dynamic
model in red box 4. The vehicle dynamic model performs operation to meet the received command for
safer driving.
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6. System Simulation and Validation

We have implemented an experimental environment to evaluate the proposed system’s
performance. The experimental environment consists of three parts as shown in Figure 12a. The first
part is a homemade wearable BCI model for EEG collection. The second part is EEG signal data
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preprocessing and the driver vigilance detection model. The last part is the vehicle speed control
module that controls the electronic throttle opening and automatic braking to reduce the accident rate.
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configuration; (h) The test vehicle configuration; (i) The driver vigilance detection experiment.

6.1. Experiment of Homemade Wearable BCI Model for EEG Collection

As shown in Figure 12, we use the real driving environment and complementary simulation
in the laboratory to our proposed method. Figure 12d–f illustrate the EEG collection and vigilance
detection experiments of our system simulation and validation. In order to confirm the validation
of our homemade wearable EEG BCI system, complementary experiment and simulation using BP
equipment are shown in Figure 12c. BP is a 64-channel EEG commercial unit that the psychological
research and counseling center of Southwest Jiaotong University bought from Germany. Our algorithm
is implemented on a laptop computer equipped with an Intel i3 1.9 GHz CPU and 4 GB RAM.
This system has been field tested on our homemade experimental vehicle in Figure 12d–f, and been
done simulation on a DODGE SUV vehicle as shown in Figure 12g,h. The experimental vehicle is
a DODGE SUV equipped with binocular cameras and other sensors to detect the safety distance for the
vehicle deceleration algorithm and vehicle speed control. Figure 12i shows the sample image frame
from the experiment for driver vigilance detection.

In our experiment, ten qualified drivers, having no neurological diseases, wore the wireless
wearable BCI system in Figure 12d–f to collect the EEG signal in Table 2. The experiments of
EEG collection and diver vigilance detection are the actual data and field testing. The homemade
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experimental vehicle is designed to test driver vigilance for avoiding traffic risk of actual fatigue
driving tests. The experimental conditions are set as follows:

‚ Condition 1: (1) sleep deprivation; (2) test time is the next day between 4 a.m and 6 a.m;
‚ Condition 2: (1) having a normal night sleep; (2) test time is the next day between 9 a.m and

11 a.m.

Table 2. Ten Drivers Served in The Experiment.

Driver Sum Subject Number Age

10

Male 7

26
26
38
42
23
23
24

Female 3
24
24
25

During the whole experiment process, the investigators observe and record the subjects’ physical
behaviors, yawns, and the inclination of head, as a drowsiness index in the next study. Finally, each
Setijk composed of 20 min sessions is collected from both nits. SetBP contains 63 channels EEG/EOG
signals with a sampling frequency of 1000 Hz. SetHBS includes two EEG channels, O1 and O2, with
a sampling frequency of 512 Hz. Figure 13 shows the original EEG signal collected from a 24 year old
experimental driver. Figure 13a is the alert signal, Figure 13b is the drowsy signal. The signal in the
red box is alpha activity bursting in the drowsy state. Taking into account the risk of actual fatigue
driving tests, simulation in the scenario is used to test driver vigilance for avoiding traffic risks of
actual fatigue driving tests. This is the limitation of the presented simulation and we will construct an
optimization experiment in future research.
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6.2. Experimental Results for EEG Preprocessing and Driver Vigilance Detection Model

6.2.1. Preprocessing Experiment

In this subsection, the goal of preprocessing is to improve the original data quality. The original
EEG signal selected from SetHBS is used in this experiment. Figure 14 shows the original signal
and its decomposition signal at each level of one experimental driver. Figure 14 shows the original
signal. The six level decomposition signal is uses db5. In Figure 14, the reconstructed signal a6 is the
reconstructed signal of approximate coefficients at level 6. The reconstructed signals of d6 to d1 are
the reconstructed signals of detail coefficients at levels 6 to 1, as shown in Figure 14. The frequency
range of each reconstructed signal is shown in Figure 4. Since the hardware filter of our homemade
equipment is 3–100 Hz, the signal of 0–3 Hz can be regarded as noise. In addition, the frequency range
of the EEG is between 0.5 and 50 Hz.
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Figure 14. Original signal and its decomposition signal at each level.

The high-frequency signal (>50 Hz) can be regarded as interference. Therefore, by extracting the
decomposition signal of d3 (32–64 Hz), d4 (16–32 Hz), d5 (8–16 Hz), d6 (4–8 Hz), we can get the useful
EEG signal and remove some low- and high-frequency interference. Figures 15a and 15b show the
original signal and de-noising signal of the above experimental driver. It gives good performance of
de-noising. Figure 16 shows the spectrum of them. As shown in Figure 16a, the low-frequency noise is
too large to overwhelm EEG signal. In Figure 16b, the frequency of EEG is retained well and some
of low frequency and high frequency noise are removed. Furthermore, we implement the de-noising
algorithm in signals shown in Figure 13 to verify the de-noising performance in two states. Figure 17
shows a de-noising signal of alert and drowsy states We can see the alpha band is more obvious from
other bands in the drowsy state.
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6.2.2. Feature Extraction Experiment

Under the assumption of the driver’s state at time t remains the same state with the previous
b and s, the feature of the EEG signal at time t is calculated as the average PSD of previous b s and
t s. The PSD is calculated using FFT. Generally, the more data is used in feature extraction, the more
precise the feature. Meanwhile, this means that more time is spent. Figure 18 shows the PSD of the
whole testing data. Figure 19 shows the PSD of t-th s under different b (b = [0, 2, 4, 6, 8]). The blue line
represents the PSD of driver alert state and red line represents driver drowsy state. When b = 0 or b = 2
or b = 4, the discrimination of whether the driver is alert or drowsy is not distinct. When s increases
to b = 6 or b = 8, the discrimination is much obvious. As shown in Figure 18, the power of theta and
alpha rhythms in the driver drowsy state is greater than in the driver alert state. The power of the
beta rhythm in the driver drowsy state is smaller than in the driver alert state. In addition, with the
increase of b, the tendency of PSDs in Figure 19 gradually meet the PSD tendency shown in Figure 18.
To estimate the running time of different b, the average time of 10,000 runs of the PSD algorithm is
calculated, as shown in Table 3. The running time increases with the increase of b. That is, we should
find a trade-off between the precision and time.
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Table 3. Running time of different b.

b(s) 0 2 4 6 8

Time(s) 0.0006 0.0015 0.0020 0.0022 0.0025

6.2.3. Classification Experiment

Orthogonal matching pursuit (OMP) is used to solve the L0 problem. Let q represent the number
of atoms in each linear combination. The greater the numbers of atoms, the easier the accuracy of
the signal can be reconstructed. The class of the driver vigilance level is determined by Equation (5).
The classification accuracy rate of our proposed algorithm is calculated by Equation (18):

accuracy rate “
No. o f correctlly detection

No. o f total detection
(18)

Tables 4 and 5 show the classification rate of O1 and O2 from SetHBS. Driver 1, Driver 2, Driver 3,
and Driver 4 are the number of different persons of ten qualified drivers. We can see that with the
increase of b, the classification rate increases corresponding with the results discussed in the subsection
of the feature extraction experiment. Although other algorithms have been used previously for the
same task, we wanted to try to create a novel algorithm for driver vigilance detection using sparse
representation classification and KSVD. In our lab, we have a strong research basis on the sparse
representation classification algorithm, and we find that sparse representation classification combined
with KSVD has good performance in driver vigilance classification. Thus, in this paper, we firstly
introduced the proposed method to driver vigilance detection. At the same time, for our vehicle active
safety model, we think the classification accuracy rate is suitable to vehicle speed control. As in the
red box of Table 5, when b ě 7, our equipment gives an excellent classification efficiency which is
up to around 93%, and it is match the result of feature extraction experiment (the PSD are obvious
difference as Figure 19d,e). These results indicate that the proposed method has good performance in
driver vigilance detection. The classification rates of SetBP, O1 and SetBP, O2 are shown in Tables 6
and 7. In our experiment, the experiments demonstrate the validation of the driver vigilance detection
algorithm based on using EEG and sparse representation.

Table 4. Classification accuracy rate (%) of SetHBS,O1.

b(s) Driver1 Driver2 Driver3 Driver4

0 74.72 56.85 72.72 46.42
1 74.64 77.24 73.14 62.58
2 78.57 61.11 76.43 73.18
3 81.38 61.54 75.14 67.15
4 85.63 78.87 84.30 72.79
5 85.59 52.48 88.30 71.11
6 90.75 72.85 88.23 82.83
7 91.59 87.05 97.04 78.94
8 93.02 83.33 82.73 84.84

Table 5. Classification accuracy rate (%) of SetHBS,O2.

b(s) Driver1 Driver2 Driver3 Driver4

0 74.42 47.65 59.88 72.72
1 78.92 66.14 76.13 77.77
2 81.43 69.04 78.85 79.60
3 87.97 92.80 79.31 85.43
4 91.38 62.90 76.30 85.33
5 92.22 71.54 89.53 82.55
6 94.80 97.54 87.71 82.43
7 95.65 95.04 96.47 93.87
8 95.35 96.66 98.22 94.55
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Table 6. Classification accuracy rate (%) of SetBP,O1.

b(s) Driver5 Driver6 Driver7 Driver8

0 66.82 64.02 67.76 56.54
1 70.09 69.16 69.16 73.83
2 75.70 74.77 73.83 73.83
3 75.59 79.81 73.24 79.34
4 73.71 80.28 77.93 62.91
5 69.48 67.14 82.63 69.95
6 69.34 90.09 85.38 83.96
7 92.45 91.04 94.34 85.38
8 95.75 99.06 94.34 85.38

Table 7. Classification accuracy rate (%) of SetBP,O2.

b(s) Driver5 Driver6 Driver7 Driver8

0 62.15 59.81 64.95 71.03
1 66.36 65.42 69.16 68.69
2 73.36 74.77 76.17 78.50
3 75.59 76.53 80.75 80.28
4 77.46 81.22 77.93 79.81
5 69.95 82.63 80.75 82.63
6 75.00 78.77 82.08 89.15
7 82.55 88.21 91.51 90.09
8 95.28 93.87 97.17 81.13

6.2.4. Vehicle Speed Control Experiment

To simplify the validity of our vehicle deceleration model, we assume that:

1. v11 = 95 km/h, v21 = 100 km/h, La = 10.5 m (The distance of L is calculated through Equation (16)
and equal to 10.39 m, so condition of L < La is satisfied);

2. When drowsiness is detected, the front car decelerates and an accelerometer of a f is calculated by
Equation (16);

3. The following car catches the information of the front car and immediately decelerates.

Figure 20 shows the vehicle following model based on the dynamics using MATLAB/simulink.
The simulation results in Figure 21 shows in the course of deceleration, the speeds of two cars slow
down to 80 km/h in Figure 21a, and the distance between the two cars decreases from 10.5 m to 5 m in
Figure 21b,c. The deceleration model is valid for the avoidance of a rear-end collision when driver
vigilance is detected.
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experiment and simulation show the validity of our vehicle speed control strategy when the driver 

is deeply drowsy. 

Figure 21. Changes of two cars in the course of deceleration. (a) Change of speed; (b) Change of
distance; (c) Change of distance.

We assume that the vigilance level list is detected as Figure 22a. The “0” represents alert and the
“1” represents drowsiness. To facilitate simulation, we set n = 3 s, k = 10 s, and m = 10 s. The command
list is shown in Figure 22b. Where, “1”, “2”, and “3” represent deceleration, braking, and releasing the
maximum speed limit, respectively. As shown in Figure 22a, the driver is detected to be drowsy for 3 s
from the 7th s to the 9th s It meets the criteria for Situation 1, and the deceleration command occurs in
the 9th s. Similarly, at the 21st, 28th, and 38th s, in turn, it meets the criteria for Situation 3, 1, and 2,
and the commands are releasing maximum speed limit, decelerating, and braking.

Since we cannot predict the behavior of the driver after the speed limit is released, we cannot
forecast the behavior of the vehicle. We only verify the commands during 24 s to 38 s in the red
box of Figure 22 below the speed limit. Figure 23 shows a simplified model of vehicle speed control,
which is designed for the case of red box in Figure 22b. In this model, we assume that v11 = 95 km/h,
v21 = 100 km/h, L < La at time 24 s Figure 24a,b show the change of acceleration and speed. At the 28th
s, the ECU receives the deceleration command and controls the vehicle deceleration to 80 km/h.
At the 38th s, the ECU receives the braking command and controls the vehicle braking slowly.
The experiment and simulation show the validity of our vehicle speed control strategy when the
driver is deeply drowsy.
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7. Conclusions

In this paper, we have presented a vehicle active safety model for drowsy driving based on driver
vigilance detection using wearable EEG and sparse representation. The methods have three steps,
namely, wearable EEG collection, vigilance detection, and vehicle speed control strategy. In the first
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step, a homemade low-cost, comfortable, wearable BCI system with eight channels is designed for
collecting the driver’s EEG signal. In the vigilance detection step, wavelet analysis is used for de-nosing
and FFT is introduced to calculate the PSD for extracting EEG features. Next, sparse representation
classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to
estimate the driver’s vigilance level. In the last step, a novel safety strategy of vehicle speed control,
which controls the electronic throttle opening and automatic braking after driver fatigue detection
using the above method is presented to avoid serious collisions and traffic accidents. The final
experimental results show the validity of our method under the simulated and realistic conditions.
From both theoretical analysis and practical experiments, it shows that the proposed system has not
only good performance of EEG collection and vigilance detection, but also effective controls of vehicle
speed. The result of the experiment shows that the proposed homemade wearable BCI system is
accurate for EEG collection. The sparse representation is an effective method for vigilance detection.
At the same time, the vehicle speed control strategy is effective when the driver is drowsy. The vehicle
deceleration algorithm is effective in preventing collisions in the course of speed control.

Acknowledgments: This work was supported by the National Natural Science Foundation of China under Grant
No.51175443, by the Science and Technology Projects of Sichuan under 2015RZ0017,2016GZ0023 and 2016GZ0018.

Author Contributions: Zutao Zhang and Dianyuan Luo designed the wireless wearable EEG sensors and the
algorithm of driver vigilance detection. Yagubov Rasim, Yanjun Li, Guanjun Meng and Jian Xu designed the
experimental system and analyzed the data. Chunbai Wang provided valuable insights in this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kong, W.; Lin, W.; Babiloni, F.; Hu, S.; Borghini, G. Investigating driver fatigue versus alertness using the
granger causality network. Sensors 2015, 15, 19181–19198. [CrossRef] [PubMed]

2. Li, G.; Chung, W.Y. Detection of Driver Drowsiness Using Wavelet Analysis of Heart Rate Variability and
a Support Vector Machine Classifier. Sensors 2013, 13, 16494–16511. [CrossRef] [PubMed]

3. Harrison, M. Distracted Driving 2009; Traffic Safety Facts, Research Note; NHTSA: Washington, WA, USA,
2010.

4. Lin, C.T.; Wu, R.C.; Liang, S.F.; Chao, W.H.; Chen, Y.J.; Jung, T.P. EEG-based drowsiness estimation for safety
driving using independent component analysis. IEEE Trans. Circuits Syst. I Regul Pap. 2005, 52, 2726–2738.

5. Lin, C.T.; Chang, C.J.; Lin, B.S.; Hung, S.H.; Chao, C.F.; Wang, I.J. A real-time wireless brain-computer
interface system for drowsiness detection. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 214–222. [CrossRef]
[PubMed]

6. Picot, A.; Charbonnier, S.; Caplier, A. On-line detection of drowsiness using brain and visual information.
IEEE Trans. Syst. Man Cybern. A Syst. Hum. 2012, 42, 764–775. [CrossRef]

7. Zhang, Z.T.; Zhang, J.S. A new real-time eye tracking based on nonlinear unscented kalman filter for
monitoring driver fatigue. J. Control Theory Appl. 2010, 8, 181–188. [CrossRef]

8. Pilutti, T.; Ulsoy, A.G. Identification of driver state for lane-keeping tasks. IEEE Trans. Syst. Man Cybern. A
Syst. Hum. 1999, 29, 486–502. [CrossRef]

9. Lee, J.W.; Lee, S.K.; Kim, C.H.; Kim, K.H.; Kwon, O.C. Detection of drowsy driving based on driving
information. In Proceedings of the 2014 International Conference on Information and Communication
Technology Convergence, Busan, Korea, 22–24 October 2014; pp. 607–608.

10. Ji, Q.; Lan, P.; Looney, C. A probabilistic framework for modeling and real-time monitoring human fatigue.
IEEE Trans. Syst. Man Cybern. A Syst. Hum. 2006, 36, 862–875.

11. Sigari, M.H.; Fathy, M.; Soryani, M. A driver face monitoring system for fatigue and distraction detection.
Int. J. Veh. Technol. 2013, 2013. [CrossRef]

12. Fu, X.P.; Guan, X.; Peli, E.; Liu, H.B.; Luo, G. Automatic calibration method for driver’s head orientation in
natural driving environment. IEEE Trans. Intell. Transp. Syst. 2013, 14, 303–312. [CrossRef] [PubMed]

13. Zhang, Z.T.; Zhang, J.S. Sampling strong tracking nonlinear unscented kalman filter and its application in
eye tracking. Chin. Phys. B 2010, 19, 324–332.

http://dx.doi.org/10.3390/s150819181
http://www.ncbi.nlm.nih.gov/pubmed/26251909
http://dx.doi.org/10.3390/s131216494
http://www.ncbi.nlm.nih.gov/pubmed/24316564
http://dx.doi.org/10.1109/TBCAS.2010.2046415
http://www.ncbi.nlm.nih.gov/pubmed/23853367
http://dx.doi.org/10.1109/TSMCA.2011.2164242
http://dx.doi.org/10.1007/s11768-010-8043-0
http://dx.doi.org/10.1109/3468.784175
http://dx.doi.org/10.1155/2013/263983
http://dx.doi.org/10.1109/TITS.2012.2217377
http://www.ncbi.nlm.nih.gov/pubmed/24639620


Sensors 2016, 16, 242 24 of 25

14. Khushaba, R.N.; Kodagoda, S.; Lal, S.; Dissanayake, G. Driver drowsiness classification using fuzzy
wavelet-packet-based feature-extraction algorithm. IEEE Trans. Biomed. Eng. 2011, 58, 121–131. [CrossRef]
[PubMed]

15. Bergasa, L.M.; Nuevo, J.; Sotelo, M.A.; Vazquez, M. Real-time system for monitoring driver vigilance.
IEEE Trans. Intell. Transp. Syst. 2006, 7, 63–77. [CrossRef]

16. Šušmáková, K. Human sleep and sleep EEG. Meas. Sci. Rev. 2004, 4, 59–74.
17. Lin, C.T.; Chuang, C.H.; Huang, C.S.; Tsai, S.F.; Lu, S.W.; Chen, Y.H.; Ko, L.W. Wireless and wearable EEG

system for evaluating driver vigilance. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 165–176. [PubMed]
18. Lin, C.T.; Ko, L.W.; Chung, I.F.; Huang, T.Y.; Chen, Y.C.; Jung, T.P.; Liang, S.F. Adaptive EEG-based alertness

estimation system by using ICA-based fuzzy neural networks. IEEE Trans. Circuits Syst. I Regul. Pap.
2006, 53, 2469–2476. [CrossRef]

19. Rodger, J.A.; Rodger, J.A. Reinforcing Inspiration for Technology Acceptance: Improving Memory and
Software Training Results through Neuro-Physiological Performance. Comput. Hum. Behav. 2014, 38, 174–184.
[CrossRef]

20. Rodger, J.A.; Gonzalez, S.P. A study on Emotion and Memory in Technology Adoption. J. Comput. Inf. Syst.
2014, 54, 31–41.

21. Rodger, J.A. NeuroIS Knowledge Discovery Approach to Prediction of Traumatic Brain Injury Survival Rates:
A Semantic Data Analysis Regression Feasibility Study; Springer International Publishing: Entlebuch,
Switzerland, 2015; pp. 1–8.

22. Jung, T.P.; Makeig, S.; Stensmo, M.; Sejnowski, T.J. Estimating alertness from the EEG power spectrum.
IEEE Trans. Biomed. Eng. 1997, 44, 60–69. [CrossRef] [PubMed]

23. Lin, F.C.; Ko, L.W.; Chuang, C.H.; Su, T.P.; Lin, C.T. Generalized EEG-based drowsiness prediction system
by using a self-organizing neural fuzzy system. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2044–2055.
[CrossRef]

24. Yu, H.; Lu, H.; Ouyang, T.; Liu, H.; Lu, B.L. Vigilance detection based on sparse representation of EEG.
In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Buenos Aires, Argentina, 31 August–4 September 2010; pp. 2439–2442.

25. Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for
sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [CrossRef]

26. Al-Qazzaz, N.K.; Hamid, B.M.A.S.; Ahmad, S.A.; Islam, M.S.; Escudero, J. Selection of mother wavelet
functions for multi-channel eeg signal analysis during a working memory task. Sensors 2015, 15, 29015–29035.
[CrossRef] [PubMed]

27. Lee, B.G.; Lee, B.L.; Chung, W.Y. Mobile healthcare for automatic driving sleep-onset detection using
wavelet-based eeg and respiration signals. Sensors 2014, 14, 17915–17936. [CrossRef] [PubMed]

28. He, Q.C.; Li, W.; Fan, X.M.; Fei, Z.M. Driver fatigue evaluation model with integration of multi-indicators
based on dynamic Bayesian network. IET Intell. Trans. Syst. 2015, 9, 547–554. [CrossRef]

29. Martinez, J.J.; Canudas-de-Wit, C. A safe longitudinal control for adaptive cruise control and stop-and-go
scenarios. IEEE Trans. Control Syst. Technol. 2007, 15246–15258. [CrossRef]

30. Li, X.; Wu, S.; Li, F. Fuzzy based collision avoidance control strategy considering crisis index in low speed
urban area. In Proceedings of the IEEE Conference and Expo on Transportation Electrification Asia-Pacific
(ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 1–6.

31. Xiong, H.; Boyle, L.N. Drivers’ adaptation to adaptive cruise control: Examination of automatic and manual
braking. IEEE Trans. Intell. Trans. Syst. 2012, 13, 1468–1473. [CrossRef]

32. Zhang, Z.T.; Xu, H.; Chao, Z.F.; Li, X.P.; Wang, C.B. A novel vehicle reversing speed control based on obstacle
detection and sparse representation. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1321–1334. [CrossRef]

33. Mccall, J.C.; Trivedi, M.M. Human behavior based predictive brake assistance. In Proceedings of the IEEE
Intelligent Vehicles Symposium, Tokyo, Japan, 13–15 June 2006; pp. 8–12.

34. Keller, C.G.; Dang, T.; Fritz, H.; Joos, A.; Rabe, C.; Gavrila, D.M. Active pedestrian safety by automatic
braking and evasive steering. IEEE Trans. Intell. Trans. Syst. 2011, 12, 1292–1304. [CrossRef]

35. Naranjo, J.E.; González, C.; García, R.; Pedro, T.D. ACC+stop&go maneuvers with throttle and brake fuzzy
control. IEEE Trans. Intell. Trans. Syst. 2006, 7, 213–225.

36. Naranjo, J.E.; Gonzalez, C.; Garcia, R.; Pedro, T.D. Cooperative throttle and brake fuzzy control for
ACC+stop&go maneuvers. IEEE Trans. Veh. Technol. 2007, 56, 1623–1630.

http://dx.doi.org/10.1109/TBME.2010.2077291
http://www.ncbi.nlm.nih.gov/pubmed/20858575
http://dx.doi.org/10.1109/TITS.2006.869598
http://www.ncbi.nlm.nih.gov/pubmed/24860041
http://dx.doi.org/10.1109/TCSI.2006.884408
http://dx.doi.org/10.1016/j.chb.2014.05.049
http://dx.doi.org/10.1109/10.553713
http://www.ncbi.nlm.nih.gov/pubmed/9214784
http://dx.doi.org/10.1109/TCSI.2012.2185290
http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.3390/s151129015
http://www.ncbi.nlm.nih.gov/pubmed/26593918
http://dx.doi.org/10.3390/s141017915
http://www.ncbi.nlm.nih.gov/pubmed/25264954
http://dx.doi.org/10.1049/iet-its.2014.0103
http://dx.doi.org/10.1109/TCST.2006.886432
http://dx.doi.org/10.1109/TITS.2012.2192730
http://dx.doi.org/10.1109/TITS.2014.2360337
http://dx.doi.org/10.1109/TITS.2011.2158424


Sensors 2016, 16, 242 25 of 25

37. Tang, X.F.; Gao, F.; Xu, G.Y.; Ding, N.G.; Cai, Y.; Ma, M.M.; Liu, J.X. Sensor systems for vehicle environment
perception in a highway intelligent space system. Sensors 2014, 14, 8513–8527. [CrossRef] [PubMed]

38. Castillo Aguilar, J.J.; Cabrera Carrillo, J.A.; Guerra Fernández, A.J.; Carabias-Acosta, E. Robust road condition
detection system using in-vehicle standard sensors. Sensors 2015, 15, 32056–32078. [CrossRef] [PubMed]

39. Chen, Y.; Wang, J.M. Adaptive vehicle speed control with input injections for longitudinal motion
independent road frictional condition estimation. IEEE Trans. Veh. Technol. 2011, 60, 839–848. [CrossRef]

40. Zhang, Z.T.; Zhang, J.S. Driver fatigue detection based intelligent vehicle control. In Proceedings of the 18th
International Conference on Pattern Recognition, Hong Kong, China, 20–24 August 2006; pp. 1262–1265.

41. Wrigth, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation.
IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 201–226.

42. Solomon, D. Accidents on Main Rural Highways Related to Speed, Drivers, and Vehicle; Washington Bureau of
Public Roads: Washington, WA, USA, 1964.

43. Joksch, H.C. Velocity change and fatality risk in a crash—A rule of thumb. Accid. Anal. Prev. 1993, 25,
103–104. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s140508513
http://www.ncbi.nlm.nih.gov/pubmed/24834907
http://dx.doi.org/10.3390/s151229908
http://www.ncbi.nlm.nih.gov/pubmed/26703605
http://dx.doi.org/10.1109/TVT.2011.2106811
http://dx.doi.org/10.1016/0001-4575(93)90102-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Driver Vigilance Detection Technologies 
	Vehicle Speed Control Algorithms after Driver Vigilance 

	System Architecture 
	Wearable BCI System for EEG Collection 
	Driver Vigilance Detection 
	Data Preprocessing 
	Feature Extraction 
	Driver Vigilance Detection Based on Sparse Representation Classification Combined with KSVD 
	Sparse Representation 
	Dictionary 
	Sparse Representation Classification 


	Vehicle Speed Control Strategy 
	Vehicle Deceleration Algorithm 
	Vehicle Speed Control Strategy 

	System Simulation and Validation 
	Experiment of Homemade Wearable BCI Model for EEG Collection 
	Experimental Results for EEG Preprocessing and Driver Vigilance Detection Model 
	Preprocessing Experiment 
	Feature Extraction Experiment 
	Classification Experiment 
	Vehicle Speed Control Experiment 


	Conclusions 

