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Abstract: Coordinate transformation plays an indispensable role in industrial measurements,
including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied
methods of coordinate transformation are generally based on solving the equations of point clouds.
Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices.
In this paper, a novel coordinate transformation method is proposed, not based on the equation
solution but based on the geometric transformation. We construct characteristic lines to represent the
coordinate systems. According to the space geometry relation, the characteristic line scan is made to
coincide by a series of rotations and translations. The transformation matrix can be obtained using
matrix transformation theory. Experiments are designed to compare the proposed method with other
methods. The results show that the proposed method has the same high accuracy, but the operation
is more convenient and flexible. A multi-sensor combined measurement system is also presented
to improve the position accuracy of a robot with the calibration of the robot kinematic parameters.
Experimental verification shows that the position accuracy of robot manipulator is improved by
45.8% with the proposed method and robot calibration.

Keywords: coordinate transformation; robot calibration; photogrammetric system; multi-sensor
measurement system

1. Introduction

Multi-sensor measurement systems usually have different coordinate systems. The original data
must be transformed to a common coordinate system for the convenience of the subsequent data
acquisition, comparison and fusion [1,2]. The transformation of coordinate systems is applied in many
fields, especially vision measurement and robotics. For example, two images need to have a unified
coordinate system for image matching [3]. In camera calibration, the coordinate systems of the image
plane and the object plane need to be unified for the inner parameter calculation [4]. In robot systems,
the coordinate system of the robot twist needs to be transformed to the tool center position (TCP)
to obtain the correct pose of robot manipulators [5,6]. A minor error introduced by an imprecise
coordinate transformation could cause problems such as the failure of image matching and track
breaking [1]. Especially in an error accumulating system such as series industry robots, the coordinate
transformation error would accumulate in each step and thereby decrease the position accuracy of the
robot manipulator. Therefore, research on coordinate transformation has been of interest to researchers
in recent years.
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Industrial robots are well-known to have weak position accuracy compared with their repeatability
accuracy. The positioning accuracy degrades with the number of axes of the robotic arm due to error
accumulation. Various methods have been presented to improve the position accuracy of robots,
such as establishing a kinematic model of the robot and calibrating the kinematic parameters [7].
Denavit and Hartenberg [8] first proposed the D-H model, which was revised to a linear model by
Hayati [9]. It provides the basis for the kinematic calibration. Due to the geometry and non-geometry
errors of the robot, the traditional robot self-calibration method based on the D-H model cannot
accurately describe the robot pose. To avoid the influence of the robot body, many researchers have
utilized external measuring instruments to calibrate the robot online [10,11]. To achieve the aim of
calibration, the primary process is to unify the coordinate systems of a calibrated instruments and
the robot. Only in this way is it possible to use the measurement results to correct the kinematic
parameters of the robot. With an inaccurate coordinate transformation method, the transformation
error might merge into the revised kinematics parameters, thereby failing to improve the positioning
accuracy of the robot through the calibration of kinematic parameters. Therefore, an accurate method
of coordinate transformation is indispensable in the field of robot calibration. The well-developed
and widely-used methods of coordinate transformation at present might be classified into several
categories: the Three-Point method, Small-Angle Approximation method, Rodrigo Matrix method,
Singular Value Decomposition (SVD) method, Quaternion method and Least Squares method [2].
The Three-Point method uses three non-collinear points in space to construct an intermediate reference
coordinate system [12,13]. The transformation relationship between the initial coordinate system and
the target coordinate system is obtained by their relationship relative to the intermediate reference
coordinate system. Depending on the choice of the public points, the accuracy of the Three-Point
method might be unstable. The Small-Angle Approximation method means that the rotation matrix
can be simplified by using the approximate relationship of a trigonometric function (sinθ “ θ, cosθ “ 1)
when the angle between the two coordinate systems is small (less than 5˝). It is more suitable for the
coordinate transformation of small angles. The Rodrigo matrix is a method of constructing a rotation
matrix by using the anti-symmetric matrix [14,15]. Despite its high accuracy and good stability, the
algorithm might be complex and difficult. The Singular Value Decomposition method (SVD) is a
matrix decomposition method that can solve the minimization of the objective function based on
the minimum square error sum [16]. The method is accurate and easy to implement, but it might be
difficult to work out the rotation matrix under a dense public point cloud. The Quaternion method
uses four element vectors (q0, q1, q2, q3) to describe the coordinate rotation matrix [17,18]. The aim of
the algorithm is to solve for the maximum eigenvalue and the corresponding feature vector when
the quadratic is minimized. It is a simple and precise method, but there might be no solution due
to the use of ill conditioned matrices. In practice, complex calculations and unstable results would
make the application more difficult and complicated. Therefore, researchers are searching for a simpler
and more stable method of coordinate transformation. For example, Zhang et al. proposed a practical
method of coordinate transformation in robot calibration [19]. This method rotates three single axes of
the robot to calculate the normal vectors in three directions, combined with the data of the calibration
sensor. Then, combined with the own readings of the robot, the rotation matrix and translation matrix
are obtained. The method avoids the need to solve an equation and complex calculations, but it might
be affected by any manufacturing errors of the robot and requires a calibration sensor with a large
measuring range that can cover the full working range of the robot.

2. Online Calibration System of Robot

Industrial robots have the characteristics of high repeatability positioning accuracy and low
absolute positioning accuracy. This is due to the structure of the robot, manufacturing errors, kinematic
parameter error and environmental influence [10]. To improve the absolute positioning accuracy of the
robot, the use of an external sensor to measure the position of the robot manipulator it any effective
approach. This paper proposes an on-line calibration system for the kinematic parameters of the robot
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using a laser tracker and a close-range photogrammetric system, as Figure 1 shows. According to the
differential equations constructed by the kinematic parameters of each robot axis, the final mathematic
model of kinematic parameters of the robot is established. The position errors of the robot manipulator
are obtained by comparing the coordinates in the robot base coordinate system and the measurement
sensor system. Then, the errors, including the coordinate transformation error, target installation
error and position and angle errors of the robot kinematic parameters, are separately corrected. In the
robot calibration, on the one hand, the coordinate transformation error directly affects the final error
correction of the kinematic parameters. On the other hand, the coordinate systems of sensors are
often required to transform in the on-line combined measurement system. Therefore, the premise of
obtaining the position errors of a robot manipulator is to unify the coordinate systems of the various
measurement sensors by an accurate, fast and stable coordinate transformation algorithm.
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Figure 1. Online calibration system of robot kinematic parameters.

In combination with the characteristics of the robot, we propose a practical coordinate
transformation method. It extracts the characteristic lines from the point clouds in different coordinate
systems. According to the theory of space analytic geometry, the rotation and translation parameters
needed for the coincidence of the characteristic line scan be calculated. Then, the coordinate
transformation matrix is calculated. The coincidence of the characteristic lines represents the
coincidence of the point clouds as well as the coincidence of the two coordinate systems.

This method has some advantages. First, it does not require the solution of equations and
complex calculations. Second, because the transformation matrix is obtained from the space geometry
relationships, it would not be affected by robot errors or other environmental factors. The result is
accurate and stable. Third, it does not require a sensor with a large field of view. Fourth, the algorithm
is small and fast without occupying processor time and resources, and can be integrated into the host
computer program. It could be applied easily in measurement coordinate systems that often need
to change.

3. Methods of Online Calibration System

3.1. Method of Coordinate Transformation

Suppose that S is a cubic point cloud in space. Point cloud M is the form of S located in the
coordinate system of the sensor OSXSYSZS. N is the form of S located in the robot base coordinate
system OrXrYrZr. M' represents the point cloud M transformed from the coordinate system of the
sensor OSXSYSZS to the robot base coordinate system OrXrYrZr with the transformation matrix TS

r.
The difference between N and M' is the transformation error caused by the transfer matrix TS

r. Then,
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the coincidence of the coordinate systems OSXSYSZS and OrXrYrZr can be expressed as the coincidence
of the two point clouds N and M'. For simplifying this mathematical model of the transformation
process, we establish several characteristic lines instead of each point cloud. As verified by experiment,
at least two characteristic lines are required to ensure the transformation accuracy.Sensors 2016, 16, 239 4 of 15 
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Figure 2. The schematic diagram of coordinate transformation method.

In Figure 2, two points A1 and A2 are chosen to be linked to the characteristic line A. Points B1

and B2 form characteristic line B. Similarly, in point cloud N, the corresponding points A1'and A2'
form line A', and points B1' and B2' form line B'. To achieve the coincidence of lines A and A', line A
must be rotated around an axis in space. The rotated axis is the vector C which is perpendicular to the
plane constructed by lines A and A'. As Figure 3 shows, the process of a vector rotating around an
arbitrary axis can be divided into a series of rotations around the axis X, Y, Z. The following are the
decomposition steps.
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Take the first coincidence of Lines A and A' as an example:

(a) Translate the rotation axis to the coordinate origin. The corresponding transformation matrix can
be calculated as:

Tpx1, y1, z1q “

»

—

—

—

–

1 0 0 ´a0

0 1 0 ´b0

0 0 1 ´c0

0 0 0 1

fi

ffi

ffi

ffi

fl

(1)

where, (a0, b0, c0) is the coordinates of the center point of line A.
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(b) Rotate the axis α1 degrees to Plane XOZ.

Rxpα1q “

»

—

—

—

–

1 0 0 0
0 cosα1 ´sinα1 0
0 sinα1 cosα1 0
0 0 0 1

fi

ffi

ffi

ffi

fl

(2)

α1 is the angle between the axis and plane XOZ. It can be obtained by cosα1 “
c1

b

b1
2
` c1

2
,

sinα1 “
b1

b

b1
2
` c1

2
, where, (a1, b1, c1) are the coordinates of vector C, as Figure 3b shows.

(c) Rotate the axis β1 degrees to coincide with Axis Z.

Ryp´β1q “

»

—

—

—

–

cosβ1 0 sinp´β1q 0
0 1 0 0

´sinp´β1q 0 cosβ1 0
0 0 0 1

fi

ffi

ffi

ffi

fl

(3)

where, β1 is the angle between the rotation axis and axis Z. It can be obtained by
$

’

’

’

’

’

&

’

’

’

’

’

%

cosp´β1q “ cosβ1 “

b

b1
2
` c1

2
b

a1
2 ` b1

2
` c1

2

sinp´β1q “ ´sinβ1 “ ´
a1

b

a1
2 ` b1

2
` c1

2

.

(d) Rotate the axis θ1 degrees around Axis Z, as shown in Figure 3d.

Rzpθ1q “

»

—

—

—

–

cosθ1 sinθ1 0 0
´sinθ1 cosθ1 0 0

0 0 1 0
0 0 0 1

fi

ffi

ffi

ffi

fl

(4)

where θ1 is the angle between lines A and A', which can be obtained by θ1 “ă
Ñ

A,
Ñ

A1 ą“

arccosp

Ñ

A ¨
Ñ

A1
ˇ

ˇ

ˇ

ˇ

Ñ

A
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ

A1
ˇ

ˇ

ˇ

ˇ

q.

(e) Rotate the axis by reversing the process of Step (c)

Rypβ1q “

»

—

—

—

–

cosβ1 0 ´sinβ1 0
0 1 0 0

sinβ1 0 cosβ1 0
0 0 0 1

fi

ffi

ffi

ffi

fl

(5)

where, β1 is as the same as in step (c).
(f) Rotate the axis by reversing the process of Step (b).

Rxp´α1q “

»

—

—

—

–

1 0 0 0
0 cosα1 sinα1 0
0 ´sinα1 cosα1 0
0 0 0 1

fi

ffi

ffi

ffi

fl

(6)

where, α1 is as the same as in step (b).
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(g) Rotate the axis by reversing the process of Step (a)

Tp´x1,´y1,´z1q “

»

—

—

—

–

1 0 0 a0

0 1 0 b0

0 0 1 c0

0 0 0 1

fi

ffi

ffi

ffi

fl

(7)

where, (a0, b0, c0) is as the same as in step (a).

Combining all of the previous steps, the final transformation matrix Trt1 of the first parallel (lines
A and A') is expressed as:

Trt1 “ Tp´x1,´y1,´z1q ¨ Rxp´α1q ¨ Rypβ1q ¨ Rzpθ1q ¨ Ryp´β1q ¨ Rxpα1q ¨ Tpx1, y1, z1q (8)

Through the rotation matrix Trt1 calculated by Equation (8), the points Pi(x, y, z) in point cloud M
can generate a new point cloud M1 by Equation (9).

P1i px, y, zq “ Trt ¨ Pi px, y, zq (9)

Then, the characteristic line A of the new point cloud M1 is parallel with the characteristic line A'
of point cloud N, as Figure 4a shows.
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Based on the new point cloud M1 and point cloud N, the rotation matrix Trt2, which make the Line
B of Point cloud M1 parallel with Line B' of Point cloud N, can be calculated through Equations (1)–(8):

Trt2 “ Tp´x2,´y2,´z2q ¨ Rxp´α2q ¨ Rypβ2q ¨ Rzpθ2q ¨ Ryp´β2q ¨ Rxpα2q ¨ Tpx2, y2, z2q (10)

Through the rotation matrix Trt2, the points Pi(x, y, z) in point cloud M1 can generate a new point
cloud M2 again by Equation (9). Then, the characteristic line B of the new point cloud M2 is parallel
with the characteristic line B' of point cloud N, as Figure 4b shows.

Since the point clouds are cubic, the characteristic lines are the diagonal lines. So, BKA, B'KA'.
Since, B//B'. Then, BKA', B'KA. Therefore, the parallel Line B and B' are perpendicular to Line A and
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A'. There is an angle θ between Line A of point cloud M2 and Line A' of point cloud N, so the Line
B of point cloud M2 is chosen as the rotation axis. The angle between Line A of point cloud M2 and
Line A' of point cloud N is chosen as the rotation angle. The point cloud M2 is rotated by the above
parameters. Then, the Line A of point cloud M2 and Line A' of point cloud N are parallel, like Line B
of point cloud M2 and Line B' of point cloud N. Similarly, the rotation matrix Trt3 can be calculated by
Equations (1)–(8):

Trt3 “ Tp´x3,´y3,´z3q ¨ Rxp´α3q ¨ Rypβ3q ¨ Rzpθ3q ¨ Ryp´β3q ¨ Rxpα3q ¨ Tpx3, y3, z3q (11)

The points Pi(x,y,z) in point cloud M2 can generate a new point cloud M3 by Equation (9), which
are parallel with the point cloud N, as Figure 4c shows. In order to make coincident the point cloud
M3 and point cloud N, the translation matrix Tr needs to be calculated by the two center points of Line
A and A'. The new point cloud M' can be generated after translated by Tr. Therefore, through a series
of simple rotations and translation, the two point clouds N and M' are coincident, as Figure 4d shows.
The final transformation matrix is shown as Equation (12). The result, as a necessary preparation step,
can then be used in robot calibration:

Trt “ Trt3 ¨ Trt2 ¨ Trt1 ` Tr (12)

3.2. Method of Robot Calibration

The actual kinematic parameters of the robot deviate from their nominal values, which is referred
to as kinematic errors [10]. The kinematic parameter calibration of a robot is an effective way to improve
the absolute position accuracy of the robot manipulator. A simple robot self-calibration method based
on the D-H model is described as follows. Reference [20] gives a more detailed description.

Assume that Bp “

»

—

—

—

–

r1p r2p r3p pxp

r4p r5p r6p pyp

r7p r8p r9p pzp

0 0 0 1

fi

ffi

ffi

ffi

fl

is the pose of a certain point in the coordinate system

of the photogrammetric system, where r1p „ r9 p are the attitude parameters and pxp „ pzp are the
position parameters. Through transformation from the coordinate system of the measurement sensor

OpXpYpZp to the robot base coordinate system OoXoYoZo, the point pose Bo “

»

—

—

—

–

r1o r2o r3o pxo

r4o r5o r6o pyo

r7o r8o r9o pzo

0 0 0 1

fi

ffi

ffi

ffi

fl

can be obtained by Equation (12):
Bo “ Trtˆ Bp (13)

where, Trt is the transformation matrix, which can be obtained by the method described in Section 3.1.
Given the six DOF robot in the lab, the transformation matrix from the robot tool coordinate

system to the robot base coordinate system is expressed as:

TN
0 “ T1

0 T2
1 L Tn

n´1 L TN
N´1 pN “ 6q (14)

In this system, the cooperation target of the measurement sensor, which is set up at the end axis
of the robot, should be considered as an additional axis, Axis 7. Then, the transformation matrix from
Axis 6 to Axis 7 is:

T7
6 “

»

—

—

—

–

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

fi

ffi

ffi

ffi

fl

(15)
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where tx, ty, tz are the translation vectors, which can be measured previously. Therefore, according to
the kinematic model of the robot, the typical coordinates of the robot manipulator in the robot base
coordinate system OOXOYOZO is expressed as:

Bo “

˜

7
ÿ

i“1

Ti
i´1

¸

¨ Bt (16)

where Bt is the point pose in the robot tool coordinate system, and Bo is the point pose from the robot
tool coordinate system to the robot base coordinate system.

In the robot calibration, the kinematic parameters are the most significant impact factors, which
usually means the link parameters of the robot. In the D-H model, the link parameters include the
length of the link a, the link angle α, the joint displacement d and the rotation angle of the joint θ. With
the disturbances of the four link parameters, the position error matrix for adjacent robot axes dTi

i´1
can be expressed as:

dTi
i´1 “

BTi
i´1
Bθi

∆θi `
BTi

i´1
Bαi

∆αi `
BTi

i´1
Bai

∆ai `
BTi

i´1
Bdi

∆di (17)

where ∆θi,∆αi,∆ai and ∆di are the small errors of link parameters. Suppose that Aqi “ pTi
i´1q

´1
¨
BTi

i´1
Bqi

,

where, q represents the link parameters (a, d, α, θ).
If every two adjacent axes are influenced by the link parameters, the transformation matrix from

the robot base coordinate system to the coordinate system of the robot manipulator can be expressed as:

TN
0 ` dTN

0 “

N
ź

i“1

´

Ti
i´1 ` dTi

i´1

¯

“

N
ź

i“1

´

Ti
i´1 ` Ti

i´1∆i

¯

pN “ 6q (18)

where, TN
0 is the typical transformation matrix from the robot base coordinate system to the coordinate

system of the robot manipulator and dTN
0 is the error matrix caused by the link parameters. Through

expanding dTN
0 and performing a large number of simplifications and combinations, Equation (18)

can be simplified as:

dTN
0 “ T1

0 Aθ1TN
1 ∆θ1 ` T1

0 Aα1TN
1 ∆α1 ` T1

0 Aa1TN
1 ∆a1 ` T1

0 Ad1TN
1 ∆d1

`T2
0 Aθ2TN

2 ∆θ2 ` T2
0 Aα2TN

2 ∆α2 ` T2
0 Aa2TN

2 ∆a2 ` T2
0 Ad2TN

2 ∆d2

`L` TN
0 AθN∆θN ` TN

0 AαN∆αN ` TN
0 AaN∆aN ` TN

0 AdN∆dN

(19)

Suppose that kiq “ Ti
0 AqiTN

1 , where, q represents the four link parameters. The position error of
the robot manipulator can be simplified as given in Equation (20):

∆p “ rdtxdtydtzs
T

“

»

—

–

kx
1θ kx

1α kx
1a kx

1d kx
2θ L kx

6θ kx
tx kx

ty kx
tz

ky
1θ ky

1α ky
1a ky

1d ky
2θ L ky

6θ ky
tx ky

ty ky
tz

kz
1θ kz

1α kz
1a kz

1d kz
2θ L kz

6θ kz
tx kz

ty kz
tz

fi

ffi

fl

¨

r∆θ1∆α1∆a1∆d1∆θ2 ¨ ¨ ¨∆d6∆tx∆ty∆tzs
T

“ Bi∆qi

(20)

where, ∆ p is the position error of the robot manipulator. dtx, dty, dtz are the Cartesian coordinate

components of the position error and Bi “

»

—

–

kx
1θ L kx

tz
M O M
kz

1θ L kz
tz

fi

ffi

fl

is the parameter matrix related to the
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typical position value of the robot manipulator. In this paper, because the DOF of the series robot
is 6, ∆qi “ r∆θ1 „ ∆tzs includes 24 kinematics parameters of the robot a1 „ a6, d1 „ d6, α1 „ α6,
θ1 „ θ6 and three translation error variables of T6

7. Therefore, there are 27 parameters of the robot
that need to be calibrated. In Equation (20), the left side of equation is the position error at each
point, as measured by the measurement sensor, and the right side is the kinematics errors that need
to be corrected. These errors can be revised by the least squares method in the generalized inverse
matrix sense.

4. Experiments and Analysis

Through the designed experiments, we show how to use the proposed coordinate transformation
method to achieve the coordinate transformation of the on-line robot calibration system. Using
verification experiments, we determine the result of the robot calibration using the proposed method.
For evaluating the performance of the proposed method, it is compared with four other common
methods of coordinate transformation under the same experimental conditions.

4.1. CoordinateTransformationin an On-line Robot Calibration System

The on-line robot calibration system we constructed includes an industrial robot, a photographic
system and a laser tracker as shown in Figure 4. The model of the robot in lab is the KR 5 arc from
KUKA Co. Ltd. (Augsburg, Germany), one of the world's top robotic companies. Its arm length is
1.4 m and the working envelope is 8.4 m3. For covering most of the robot working range, the close
range photogrammetric system in the lab, TENYOUN 3DMoCap-GC130 (Beijing, China), requires a
field of view of more than 1 mˆ 1 mˆ 1 m without any dead angle. To achieve the goal of on-line
measurement, a multi-camera system is needed. We used a multi-camera system symmetrically formed
by four CMOS cameras with fixed focal lengths of 6 mm. The laser tracker in the lab, FARO Xi from
FARO Co, Ltd. (Lake Mary, FL, USA) is a well-known high accuracy instrument whose absolute
distance measurement (ADM) is 10 µm ˘ 1.1 µm/mL. The laser beam can easily be lost in tracking
because of barriers or the acceleration of the target, which would cause minor errors. Therefore, we
combine the laser tracker with the photographic system to improve the measurement accuracy and
stability and thereby make full use of the advantages of the high accuracy of the laser tracker and the
free light-of-sight of the photographic system. After proper data fusion, the two types of data from
the photographic system and the laser tracker can be gathered together. The method of data fusion
and the verified experimental result are detailed in reference [21]. In the experiment, 80 points in the
public field of the robot and the photogrammetric system are picked to build a cube of 200 mm ˆ

200 mm ˆ 200 mm. The reason for building a cube is to facilitate the selection of characteristic lines
and the calculation of coincidence parameters. The two targets of the photogrammetric system and
laser tracker are installed together with the end axis of the robot by a multi-faced fixture. To obtain
accurate and stable data, the robot stops for 7 s at each location, and the sensors measure each point
20 times, providing an adequate measurement time for the photographic system and laser tracker.
The experimental parameters of the photogrammetric system are an exposure time of 15 us, a frequency
of 10 fps and a gain of 40, based on experience.

According to Equations (1)–(7) and the experimental data, we can obtain the parameters of
the transformation matrix shown in Table 1, where ai–θi. are the parameters for the coincidence of
characteristic lines in Equations (1)–(7).
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Table 1. Calculated Results of Coincidence Parameters (Units: mm, ˝).

Robot to Photogrammetric System Robot to Laser Tracker

a1 b1 c1 α1 β1 θ1 a1 b1 c1 α1 β1 θ1
´2588.9 81326 ´62472 127.53˝ 1.4461˝ 256.282˝ ´3.0135 11.132 ´5.8921 117.89˝ 13.456˝ 0.007˝

a2 b2 c2 α2 β2 θ2 a2 b2 c2 α2 β2 θ2
´30491 ´39586 1397.2 87.979˝ 37.588˝ 208.161˝ ´6.143 0.26899 ´5.9267 177.4˝ 45.997˝ 0.004˝

a3 b3 c3 α3 β3 θ3 a3 b3 c3 α3 β3 θ3
210.37 ´155.16 194.69 38.555˝ 40.198˝ 176.953˝ 200.03 159.99 ´200.07 141.35˝ 37.984˝ 0.005˝

According to Equations (8)–(10), the transformation matrices from the robot base coordinate
system to the coordinate system of the sensors are calculated as:

Trtrp “

»

–

0.99917951 0.03370790 ´0.02245170 1003.54380
0.03352107 ´0.99940061 ´0.00864662 167.88234

´0.02272970 0.00788692 ´0.99971054 984.54935
0 0 0 1

fi

fl Trtrl “

»

–

0.999178 0.033635 ´0.02262 ´832.501
0.033819 ´0.9994 0.007803 131.4773

´0.02235 ´0.00856 ´0.99971 1004.76
0 0 0 1

fi

fl

where, Trtrp is the transformation matrix from the robot base coordinate system to the coordinate
system of the photogrammetric system. Trtrl is the transformation matrix from the robot base
coordinate system tothe coordinate system of the laser tracker.

By means of the above transformation matrix, we can obtain the point cloud coordinates
transformed from the coordinate system of the robot to that of the sensors by Equation (12). Both
the origin coordinates before and after transformation as well as the transformation error are shown
in Table 2, where, Px,Py,Pz and Rx,Ry,Rz are three components of the original coordinates in two
different coordinate systems. Tx,Ty,Tz are the coordinates of points transformed from the robot base
coordinate system to the sensor coordinate system, and ∆x, ∆y, ∆ z are the three components of the
transformation error.

Table 2. Coordinates of Point clouds after Transformation (Units: mm).

Robot to Photogrammetric System Robot to Laser Tracker

Photogrammetric system Robot Laser tracker Robot

Px Py Pz Rx Ry Rz Lx Ly Lz Rx Ry Rz

42.728 138.567 109.566 895 30 875 1048.620 29.944 875.077 895 30 875
108.751 140.724 108.418 961 30 875 1114.679 29.985 874.995 961 30 875
175.846 143.007 107.153 1028 30 875 1181.646 29.955 874.989 1028 30 875
242.882 145.388 105.845 1095 30 875 1248.689 29.935 874.791 1095 30 875

76 points are ignored 76 points are ignored

Transformation result error Transformation result error

Tx Ty Tz ∆x ∆y ∆z Tx Ty Tz ∆x ∆y ∆z

42.975 138.590 109.751 ´0.247 ´0.023 ´0.185 1048.624 29.967 875.024 ´0.004 ´0.023 0.053
108.921 140.822 108.277 ´0.170 ´0.098 0.141 1114.625 29.956 875.012 0.054 0.029 ´0.017
175.866 143.088 106.780 ´0.020 ´0.081 0.373 1181.624 29.944 875.001 0.022 0.011 ´0.012
242.812 145.355 105.282 0.070 0.033 0.563 1248.624 29.932 874.890 0.065 0.003 ´0.099

76 points are ignored 76 points are ignored

It is can be calculated from Table 2 that the average values of the transformation error between
the coordinate systems of the robot and photogrammetric system are ∆ x = 0.106 mm, ∆y = ´0.062 mm
and ∆z = 0.013 mm. The average values of the transformation error between the coordinate systems of
the robot and laser tracker are ∆x = ´0.015 mm, ∆y = 0.041 mm and ∆z =0.023 mm. Figures 5 and 6
show that the transformation error of the photogrammetric system is approximately 10 times greater
than that of the laser tracker. As in the earlier presentation, the nominal measurement accuracy of the
photogrammetric system is 10´2 mm and that of the laser tracker is 10´3 mm. The results illustrate



Sensors 2016, 16, 239 11 of 16

that the transformation accuracy has the same order of magnitude as that of the measurement sensor.
This indicates that the transformation error is so small that it would not influence the accuracy of the
sensors. The transformation method can also make the error distribution of the low precision sensor
more uniform to improve the transformation accuracy and the accuracy of the robot calibration.
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4.2. Position Error of Robot after Coordinate Transformation and Calibration

Experiments are designed to calibrate the kinematic parameters of the robot. The measurement
system is shown in Figure 7. Sixty points in space are used for the calibration. After the coordinate
transformation, the position errors between the sensor and the robot manipulator are obtained.
A constraint method based on the minimum distance error is adopted to calibrate the robot kinematic
parameters [20,21]. Twenty seven kinematic parameters, including 24 link parameters and three
parameters of the fixture, are corrected. Then, 60 correct positions are calculated using the calibrated
robot kinematic parameters. To evaluate the performance of the proposed method, we use a
group of calibration results, which adopts a different coordinate transformation method and the
same robot calibration algorithm, as a comparison. The position errors of the robot after the
coordinate transformation and calibration are shown in Figure 8. δ1 is the position error after the
coordinate transformation with the other method [19], and δ2 is the position error after the coordinate
transformation with the proposed method (Characteristic Line method).
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In position measurement, the distance between two points is often used to evaluate the position
accuracy, which is called the root mean square (RMS) error expressed by:

RMSdi
“

b

pxi
1 ´ xiq

2
` pyi

1 ´ yiq
2
` pzi

1 ´ ziq
2 (21)

It can be indicated from Figure 5 that the average RMS using the other coordinate transformation
method is δ1 “ 0.436 mm. while the average RMS using the proposed method is δ2 “ 0.200 mm.
The position accuracy is improved by 45.8% using the Characteristic Line method.

To evaluate the accuracy distribution of the robot for different areas of the working range, a new
set of testing data are utilized in a demonstration experiment. The coordinates of the center of robot
calibration region O is (750, 0, 1000) in the robot base coordinate system. Taking O as the center of the
circle, 200 mm as the radius, in this region the positioning accuracy of the robot would be the highest.
To verify the distribution of the robot accuracy in the non-calibration regions, five positions O1 (1000,
150, 550), O2 (780, 710, 900), O3 (780, 870, 410), O4 (600, ´800, 860), O5 (940, ´960, 450) are chosen.
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Taking the five positions as the centers of the circle, 200 mm as the radius, in each region 60 points
are chosen to calibrate robot as same as the previous calibration experiment. The position errors in
different regions are shown in Table 3.

Table 3. The RMS of position error calibrated in the different regions.

Region O O1 O2 O3 O4 O5

Position error/mm 0.200 0.330 0.360 0.271 0.335 0.319

It is indicated from Table 3 that the average RMS of robot position error within the calibration
region is 0.200 mm. The position error outside the calibration region is about 0.323 mm. It is proved
that the calibration accuracy isn't consistent in the whole working range of robot. Therefore, this
calibration method is more applicable to a smaller working range of the robot.

4.3. Accuracy of Coordinate Transformation Method

To obtain the accuracy of the proposed coordinate transformation method, an experiment is
designed using the laser tracker. The laser tracker is placed at two different stations to measure five
common points. These common points should be collinear; otherwise, the Jacobi matrix will have
a rank defect of one and be singular. The choice of five points is for improving the transformation
accuracy. After the unification of the coordinate systems by the proposed method, the measurement
results of the laser tracker are compared. Then, the accuracy of the proposed transformation method
(Characteristic Line method) can be calculated, as Table 3 shows.

In addition, for evaluating the performance of the proposed method, we calculate the
transformation accuracy of four methods on the same points: the Three Point method, Rodrigo
Matrix method, Singular Value Decomposition method and Quaternion method. The measurement
data of five public points measured by the laser tracker from two different stations are substituted
into the four algorithms. Then, the rotation matrix R and translation matrix T can be calculated,
and the coordinate transformation matrix Trt are also obtained. According to Equation (22), the new
coordinates after transformation by the Trt can be generated as below:

¨

˚

˝

x1i
y1i
z1i

˛

‹

‚

s2

“ R

¨

˚

˝

xi
yi
zi

˛

‹

‚

s1

` T “

¨

˚

˝

r11 r12 r13

r21 r22 r23

r31 r32 r33

˛

‹

‚

¨

˚

˝
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yi
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˛

‹

‚
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`

¨

˚

˝

x0

y0

z0

˛

‹

‚

(22)

where (xi, yi, zi)s1 is the coordinate of the ith point measured by the laser tracker at Station 1.
(xi', yi', zi')s2 are the new coordinate at Station 2 generated by the coordinate transformation matrix Trt.
R is the rotation matrix, r11~r33 are the rotation parameters, T is the translation matrix, and (x0, y0, z0)
are the translation parameters.

Compared with the actual data measured by the laser tracker in Station 2, the error of the
coordinate transformation can be obtained. We also use the root mean square (RMS) of the
transformation error of the five public points to describe the transformation accuracy. The experimental
results are shown in Table 4 and Figure 9.
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Table 4. RMS of transformation error with the different algorithms.

Points
Station 1 Station 2

x/mm y/mm z/mm x/mm y/mm z/mm

1 3049.626 ´188.668 ´1403.555 1484.68 1639.268 ´1401.164
2 4247.93 991.939 ´1401.334 1050.101 3264.365 ´1396.089
3 1678.935 1946.842 ´1380.022 ´1049.19 1502.397 ´1379.453
4 3688.375 2777.637 ´1403.824 ´778.88 3659.965 ´1398.95
5 3802.578 1207.190 ´1397.241 642.931 2983.472 ´1392.788

Points
Three-Point Rodrigo Matrix SVD Quaternion Characteristic Line

RMS/mm RMS/mm RMS/mm RMS/mm RMS/mm

1 0.013 0.006 0.015 0.015 0.008
2 0.050 0.041 0.041 0.041 0.008
3 0.012 0.013 0.011 0.011 0.034
4 0.029 0.009 0.021 0.021 0.031
5 0.061 0.053 0.053 0.053 0.026

RMS 0.033 0.024 0.027 0.028 0.025
Execution time/s 0.021 0.203 0.031 0.023 0.029
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in the robot calibration, thereby improving the accuracy of the robot calibration. To evaluate its 
performance, the accuracy is compared with four common coordinate transformation methods. The 
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The following conclusions can be drawn by the comparison of the results with different algorithms.
The accuracy of the Three-Point method is the lowest and its solution depends on the choice of public
points. But its algorithm is simple and has the lowest time cost. The Rodrigo Matrix method has
the highest accuracy, but the computation of the matrix might be the most complex. It also takes a
long time for the calculation. The accuracies of the Singular Value Decomposition method and the
Quaternion method are relatively high. The calculation of matrix in the two algorithms are simple
and time saving. But they may not be able to work out the rotation matrix when the points are dense.
The Characteristic Line method has the same level of accuracy as the Singular Value Decomposition
method and the Quaternion method. Its algorithm are simple and stable, and its execution time is
short as well. In addition, as Figure 9 shows, it can suppress the large error terms of the other four
methods, and does not cumulate errors with the increase of the number of the common points like the
other four methods do.

5. Conclusions

This paper proposes a simple method of coordinate transformation in a multi-sensor combination
measurement system for use in the field of industrial robot calibration. It does not require a large
amount of computation or a large field of view and is not affected by the errors of the robot. It operates
fast, therefore, it can be integrated into the host computer program. It can be applied in cases where
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the coordinate systems change often. As verified by experiments, the accuracy of the transformation
method is 10´3 mm. It reduces the cumulative error of the coordinate transformation in the robot
calibration, thereby improving the accuracy of the robot calibration. To evaluate its performance, the
accuracy is compared with four common coordinate transformation methods. The experimental results
show that the proposed method has the same high accuracy as the Singular Value Decomposition
method and the Quaternion method. It can suppress large error terms and does not cumulate errors.
Therefore, this method has the advantages of being simple and fast and exhibiting high accuracy and
stability. It should have a wide range of application in the field of industrial combination measurement.
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