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Abstract: One of the main applications of mobile robots is the large-scale perception of the
outdoor environment. One of the main challenges of this application is fusing environmental data
obtained by multiple robots, especially heterogeneous robots. This paper proposes an enhanced
iterative closest point (ICP) method for the fast and accurate registration of 3D environmental
models. First, a hierarchical searching scheme is combined with the octree-based ICP algorithm.
Second, an early-warning mechanism is used to perceive the local minimum problem. Third, a heuristic
escape scheme based on sampled potential transformation vectors is used to avoid local minima and
achieve optimal registration. Experiments involving one unmanned aerial vehicle and one unmanned
surface vehicle were conducted to verify the proposed technique. The experimental results were
compared with those of normal ICP registration algorithms to demonstrate the superior performance
of the proposed method.

Keywords: 3D model registration; multiple heterogeneous mobile robots; enhanced ICP

1. Introduction

One of the main applications of mobile robots is large-scale perception of the outdoor environment.
Recently, many studies have focused on fusing environmental data from multiple robots, especially
heterogeneous robots such as unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs),
unmanned surface vehicles (USVs), and even remoted operated vehicles (ROVs) to achieve better
and complementary perception. However, the huge differences in experimental data obtained by
heterogeneous robots, such as in the view angles and resolution, make combining the data difficult,
especially with the demand for highly accurate perception.

The data fusion technique of 3D model registration (3D-MR) is extensively used in medical image
registration [1,2], simultaneous localization and mapping (SLAM) of mobile robots [3–5], remote
sensing and image processing [6], etc. Existing 3D-MR algorithms may be categorized into two classes:
Featured-Based and featureless. Feature-based 3D-MR predefines some offline descriptors, such as
Harris corners [7], Susan corners [8], and spin-images [9]. These descriptors are then used as features
to find correspondences between the two 3D point clouds that need to be fused. Of these descriptors,
the spin-image has been proven to be accurate and robust [10–12]. However, approaches that use
it suffer from a heavy computational burden [10]. Moreover, the performance of feature-based MR
depends on the accuracy of the preselected descriptors. This may limit its applicability to large-scale
outdoor environment registration, for which accurate descriptors may be impossible to obtain. In order
to reduce the feature dependency, Bao et al. [13] proposed using semantic prior information for
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dense object reconstruction. Ho and Gibbins used semantic features to align city-scale LiDAR point
clouds [14].

In contrast to feature-based MR, the featureless scheme can be used to model unstructured
environments where accurate features are difficult to predefine [14]. Iterative closest point (ICP) [15–17]
is one of the most commonly used featureless 3D-MR algorithms. With ICP, one point cloud (normally
called the reference or target) is fixed, while the other (called the source) is transformed to match the
reference. The algorithm iteratively revises the transformation to minimize the distance between the
two point clouds. Point-to-point ICP calculates the distance between two paired points and optimizes
the distance by gradient descent. Thus, its performance closely depends on a good initial estimate.
On the other hand, point-to-plane ICP takes advantage of the surface normal information to improve
the robustness to the initial estimate. Plane-to-plane ICP uses the surface structure to measure the
distance and has been proved to be more robust with respect to a large initial transformation error [18].

ICP algorithms have also been applied to take advantages of multi-resolution data. For example,
Jost et al. [19,20] used multi-resolution ICP (M-ICP) to accelerate the registration procedure by scattering
the point cloud at a lower resolution level. This scheme can also improve the robustness against the
initial estimation. However, when used for large-scale outdoor environment model registration,
most ICP algorithms may suffer from the local minimum problem. This is mainly due to the
gradient-descent-based optimization procedure, which cannot guarantee a global optimal resolution.
A normal approach to resolving the local minimum problem is deliberately selecting the initial
estimation so that the iterative calculation will completely avoid local minima. However, how to
guarantee that the initial value is sufficiently accurate is still an open problem, especially when the
data are from different view angles and have different resolutions. Most recently, Yang et al. [21]
proposed global optimal ICP (GO-ICP) to solve the local minimum problem. GO-ICP combines the
ICP framework with a branch-and-bound (BnB) scheme to try to search the space more efficiently and
thus guarantee global optimization. However, the high computational burden may be a problem when
GO-ICP is used for the model registration of a large-scale outdoor environment, where unstructured
datasets may involve large amounts of sensory data.

In this paper, we propose an enhanced ICP algorithm for the fusion of cloud points obtained by
heterogeneous robots. Three enhancements are presented: (1) a hierarchical searching scheme that
is combined with the octree-based 3D modeling technique to improve the robustness with respect to
the initial modeling error and realize coarse-to-fine registration of large-scale multi-resolution data;
(2) an early warning mechanism to perceive the local minimum problem; and (3) a heuristic escape
scheme based on sampling potential transformation vectors to avoid local minima. Experiments using
one UAV and one USV, both carrying cameras onboard, to measure a riverside environment were
conducted to verify the proposed technique. The contents of this paper are organized as follows: first, the
ICP algorithms are introduced in Section 2. Then, the proposed enhancement techniques are explained
in Section 3. In Section 4, the experimental setup is introduced, and an analysis of the results along with
a comparison with the results of normal ICP algorithms is presented for an evaluation of the performance
of the proposed method. Finally, the conclusions and future work are discussed in Section 5.

2. Preliminaries

Let P P {RN} and Q P {RM} represent the 3D datasets of the scan and global models, respectively,
where N and M are the point numbers inside P and Q, respectively. Without losing generality, if M > N,
the standard ICP is to find the sub-point sets {qi}N

i“1 in model Q that are most similar to the scan
model P, i.e., to solve the problem:

min
T
p

N
ř

i
||pTpi ´ qi||

2
q

T “

«

R t
0 1

ff

s.t. RT R “ I, detpRq “ 1

(1)
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where T P T4ˆ4 is the combination of the rotation matrix R and translation vector t. Thus, the
registration problem of two 3D models is converted into an optimization problem. However, the
standard ICP cannot guarantee an optimal match and may suffer from local minima when a bad initial
registration is used. Furthermore, the ICP itself cannot indicate whether or not it has been trapped into
a local minimum.

Generalized-ICP (G-ICP) [18] uses the plane-to-plane scheme to improve the robustness. In G-ICP,
all of the points in P and Q can be remodeled as a Gaussian distribution:

pi „ Nppm
i , CP

i q

qi „ Npqm
i , CQ

i q
(2)

where pm
i and qm

i are the measured points and {CP
i} and {CQ

i} are the covariance matrices associated
with the measured points. Usually, pi and qi are assumed to be independent of each other.

For the transformation T, a new transformation error for pi and qi can be defined as:

dpTqi “ qi ´ Tpi (3)

Thus, dpTqi is also a stochastic variant with the following Gaussian distribution:

dpT
˚q

i „ Npq̂i ´ T˚ p̂i, CQ
i ` T˚CP

i pT
˚q

T
q (4)

By using the maximum likelihood estimate, the ICP in Equation (1) can be transformed into
a probabilistic model:

T “ argmax
T

ś

i
ppdpTqi q

“ argmax
T

ř

i
logpppdpTqi qq

“ argmin
T

ř

i
pdpTqi q

T
pCQ

i ` TCP
i TTq

´1
dpTqi

(5)

If we set CQ
i = I and Cp

i = 0, the above equation can be converted to the original ICP form:

T “ argmin
T

ř

i
pdpTqi q

T
dpTqi

“ argmin
T

ř

i
||Tpi ´ qi||

2
(6)

G-ICP computes the covariance matrices along the direction normal to the local surface of each
point, and the searching regions are larger compared with that of the standard point-to-point ICP.
Thus, the possibility of G-ICP falling into a local minimum is reduced, and the robustness against
measurement noise is improved. However, G-ICP increases the computational burden because of the
stochastic calculations.

3. New Proposed Registration Algorithm

Figure 1 shows a flowchart of our new proposed algorithm. It includes the following four steps:

Step I. Point cloud standardization and extraction

Transform both the scan point cloud P (i.e., local 3D model with NP points) and model point
cloud Q (i.e., global 3D model with NQ points) to the same resolution level through the use of the
OctoMap [22] data structure. All different resolution level of a single point cloud can be generated
from the same OctoMap.
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Step II. Coarse to fine iteration 

(a) Align the scan point cloud P and model point cloud Q at the current resolution level. 
(b) Calculate the efficiency of the current ICP registration by using the registration index Ikcur 

and tendency index Trendkcur, where k represents the kth resolution level and cur represents 
the current ICP registration. 
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(a) Adjust the resolution level based on the value of Trendk
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bigger than zero, update the resolution to a higher level and then go to Step II. 

(c) If Ik
cur is bigger than the given threshold, the algorithm has found a global optimal result, 
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Figure 1. Pipe flow of the enhanced ICP: Coarse-to-Fine Iteration works as a Multi-Resolution ICP
registration step; Early Warning Mechanism is introduced to estimate the potential local optima;
Heuristic Escaping help the data point cloud escape from the current local optimal by estimating the
potential optimal transformation.

Step II. Coarse to fine iteration

(a) Align the scan point cloud P and model point cloud Q at the current resolution level.
(b) Calculate the efficiency of the current ICP registration by using the registration index

Ik
cur and tendency index Trendk

cur, where k represents the kth resolution level and cur
represents the current ICP registration.

Step III. Early warning mechanism

(a) Adjust the resolution level based on the value of Trendk
cur.

(b) If Trendk
cur is bigger than a given positive threshold, go directly to Step II. If Trendk

cur

is just bigger than zero, update the resolution to a higher level and then go to Step II.
(c) If Ik

cur is bigger than the given threshold, the algorithm has found a global optimal
result, and go to Step V. Otherwise, the early warning has been triggered, and go to
Step IV.

Step IV. Heuristic escape

(a) Cluster the current aligned scan point cloud P based on distances between each
point in P with its closest point in the model point cloud Q. Then, extract the biggest
clustered point cloud Pmerge with the distance below the given threshold Threscluster.
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(b) Estimate the normal vector and normal surface of the point cloud Pmerge and transform
the current scan point cloud into six temporary scan point clouds Ppnqtemp, where n is
from 1 to 6;

(c) Weight each transformation vectors according to the registration index at each
temporary scan point cloud Ppnqtemp and generate the transformation vector according
to the ICP registration.

(d) Estimate the potential translation Tescape based on the weighted translation vectors
and then transform the scan point cloud P according to the estimated translation
vector. Go to Step III.

3.1. Octree-Based 3D Map Extraction

3D point cloud models obtained by using distinct devices or different platforms usually differ
in scale, noise, and especially resolution. We used OctoMap to unify the point clouds with different
resolution levels and generate multi-resolution maps based on the hierarchical octree data structure.

According to Hornung et al. [22], the occupancy of each OctoMap lead node or the highest-resolution
map is updated according to the observations {s1:i} and the initial occupancy estimation:

L pn|s1:tq
0
“ L pn|s1:t´1q

0
` L pn|stq

0 (7)

where L(n|s1:t)0 represents the nth leaf node of OctoMap and L(n|st)0 is the log-odds measurement of
the nth leaf node based on current observations. The lower-resolution level node is generated directly
from a higher-resolution level node:

L pm|s1:tq
i`1

“

8
ÿ

j

L pnj
ˇ

ˇs1:tq
i (8)

where L(m|s1:t)I`1 refers to eight lower-resolution nodes L(m|s1:t)I`1 because of the 3D octree
structure [23]. Thus, multi-resolution maps can be generated from and saved in a single
OctoMap structure.

3.2. Early Warning Mechanism

Because traditional ICP methods cannot tell whether or not they have been trapped in a local
minimum, we introduced the early warning mechanism to perceive the local minimum situation.
We defined the registration index Ik

cur for the current resolution level k:

Ik
cur “ expp1{Dkq

Dk “ p
Np
ř

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
qk

i ´ Topt pk
i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
q

(9)

where Dk is the sum of the Euclidean distances between the scan point pk
i and its nearest model point

qk
i. Topt is the optimal transformation matrix based on the current alignment. Actually, the registration

index Ik
cur defines the registration error on the kth resolution level. If the registration index is beyond

the given error ThresI , the current registration has meet the error tolerating band.
However, a single registration index cannot be used to perceive the local minimum situation.

We defined the tendency index Trendk
cur to describe the tendency of the current kth resolution level’s

registration procedure:

Trendk
cur “

pIk
cur ´ Ik

preq

Tk
cur

(10)

where Ik
pre is the previous registration index on the kth resolution level and Ik

cur is the current
registration index on the kth resolution level. Tk

cur is the computation time of the current registration
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loop on the kth resolution level. The tendency index Trendk
cur measures the velocity of the current

registration procedure at the kth resolution. Usually, a higher velocity means an efficient local optimal,
while a lower or in some cases even negative velocity may mean the registration procedure has reached
a local minimum situation. The resolution level levelre is determined by the tendency index Trendk

cur:

levelre “

$

’

’

&

’

’

%

levelre, Trendk
cur ą Threstrend

levelre

2
, Threstend ě Trendk

cur ě δ ¨ Threstrend

levelre ¨ 2, Trendk
cur ă δ ¨ Threstrend

(11)

where δ is a constant parameter between 0 and 1. If the tendency index is beyond the given threshold
ThresTrend, the registration may achieve more accurate results based on the current resolution level.
Then, the coarse-to-fine registration scheme can continue. However, if this index is only bigger than δ

times ThresTend, the registration process may not have been able to achieve efficient improvement at the
current resolution level. Then, both point clouds are transformed into a higher resolution level through
the use of OctoMap, and the registration process continues. Otherwise, the registration process has
hit a local optimum. Then the optimum is determined to be a local minimum or global optimum
according to the registration index Ik

cur. If the registration index is beyond ThresI , the registration
process ends, and the aligned point clouds are output. Otherwise, the current registration may be
a local minimum. The early warning is triggered, and the algorithm enters the heuristic escape scheme.

3.3. Heuristic Escape

The heuristic escape scheme helps the scan point cloud exit the local minimum by estimating the
proper rotation angle Rescape and translation Tescape based on sampled potential rotation angles and
transformation vectors. Both rotation angles and translation vectors are relayed to the merged scan
and model point clouds.

To extract the merged point cloud, the distance between each point in the scan point cloud P and
the closest point in the model point cloud Q is evaluated, and the scan points with a distance greater
than the constant threshold Threscluster are filtered out. The remaining points in the scan point cloud
are clustered by the k-means method, and the biggest clustered point cloud Pmerge is extracted as the
merged point cloud. According to Rusu et al. [24], the normal vector of Pmerge can be estimated from
the eigenvalue of the covariance matrix of the point cloud:

Cov “
1
N

N
ř

i“1
ppi ´ pq ¨ ppi ´ pqT

Cov ¨ vj “ λj ¨ vj, j P t1, 2, 3u

p “
1
N

N
ř

i“1
pi

(12)

where N is the number of points in the point cloud, λj is the jth eigenvalue of the matrix Cov, vt is its
corresponding eigenvector, and j is from 1 to 3. We assumed the eigenvalue is ordered by λ1 ě λ2 ě

λ3, so v3 can be taken as the normal vector of the point cloud Pmerge. Then, the normal surface of Pmerge

can also be determined by v3.
Based on the current position, we can measure the registration index for six equally divided

rotation angles on the normal surface. The escape rotation Rescape is the rotation matrix Rj of the
relative angle j with the highest registration index:

Rescape “ tRj|j “ max
i“0,60,120...300

Iiu (13)

where Ii is the registration index of the corresponding rotation angle i in degree.
To estimate the escape translation, the scan point cloud is transformed to temporary scan point

clouds Ppnqtemp along the six transformation matrices Tpotential
n. Two matrixes are along the normal
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vector (i.e., blue axis), and the other four are from the normal surface Pmerge (i.e., red and green axes),
where n is from 1 to 6. Then, each temporary scan point cloud is aligned to the model point cloud by
the standard ICP method. The corresponding potential transformation vector tn is generated by

tn “
”

03ˆ3 13ˆ1

ı

T ICP
n ¨ Tpotential

n

«

13ˆ1

0

ff

(14)

where TICP
n is the relative ICP registration matrix. Figure 2 shows the six potential transformation

vectors as the green lines. Then, tn is weighted to the registration index of Ppnqtemp.
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Figure 2. Escape direction estimation: v3 is the normal vector of the point cloud Pmerge, the
potential initial transformations are allow the 3 axis of x, y and v3. Dotted green lines are the
transformations estimated by ICP registration and the thick green lines tn are the combination of
initial transformation and ICP estimation. Thick yellow line represent of the combination of tn, and red
ball is desired registration.

Finally, the proper escape translation Tescape can be estimated based on the six weighted potential
transformation vectors:

Tescape “
1
6

6
ř

n“1
θntn

θn “
In

6
ř

n“1
In

, n “ 1, 2, 3...6 (15)

where θn is the normalized weight of the kth potential transformation. The escape translation is
shown as the yellow line in Figure 2. Then, the scan point cloud is transformed according to the
escape translation. Simultaneously, the resolution level of the point clouds is transformed to a higher
resolution level, and the coarse-to-fine iteration scheme is continued.

4. Experiments and Results

4.1. Experiment Setup

To verify the performance improvement of the proposed algorithm, experiments were conducted
on the cooperation of multiple heterogeneous UAV and USV at a river bank. Both robots were equipped
with a navigation system for pose measurement and LiDAR for environment perception, as shown
in Figure 3. The pose of each platform was estimated with the inertial measurement unit (IMU) and
differential Global Positioning System (GPS) at an output frequency of 100 Hz.
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Figure 3. Experiment Vehicles: (a) a UAV is equipped with a Velodyne VLP-16 LiDAR to generate the
Model point cloud, where the resolution level is 1 m; (b) a USV is equipped with a Velodyne 32e Lidar,
which could generate the local Scan point cloud at the resolution level at 0.2 m.

As shown in Figure 3a,b, the model was extracted from a bay. The points were collected by
a Velodyne VLP-16 LiDAR mounted on the UAV that generated 300,000 points per second. The model
point cloud was generated through an offline SLAM method. The scan point cloud was collected
by a Velodyne 32e LiDAR mounted on USV that generated about 700,000 points per second. In our
experiments, all of the environmental data were gathered online on an embedded board, and the
registration algorithm ran offline on a laptop (Think-pad x220: Intel i5-2410 m 4 core @ 2.30 GHz
CPU and 8 GB RAM) from Lenovo. The software was programmed in C++ with the Robot Operating
System (ROS) [25] framework and Point Cloud Library (PCL) [26].

The small initial translation error was [10 m, 15 m, 10 m] on the roll, pitch, and yaw axes, and
the large initial translation error was about 20 m. The small initial rotation error was about [5.7˝, 5.7˝,
15.6˝], and the large initial rotational error was about 30˝.

We tested the registration methods in two different registration experiments: A slender bank with
complex terrain, which is circled in yellow in Figure 4b; and a triangular area with diverse elevations,
which is circled in blue in the same figure. Table 1 gives the details of each experiment. To verify the
robustness against different resolution levels, the model point clouds were kept at the same resolution
level in both experiments, but the resolution level of the scan point clouds was set to 0.5 m for the
slender bank and 0.2 m for the triangular area.

Table 1. Experimental conditions.

No. Datasets Number of Points Resolution

Slender bank

ExI
Model 212,912 1 m
Scan 40,300 0.5 m

Triangular area

ExII
Model 212,912 1 m
Scan 125,493 0.2 m

To quantitatively evaluate the registration accuracy, the following registration error index ∆T
was defined:

∆T “

«

∆R ∆t
0 1

ff

“ Tr ˆ Te (16)

where Tr is the corresponding transformation obtained through using different registration algorithms
and Te is the initial transformation error.
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Similarly, the translation error et and rotation error er can be defined based on the Euclidean norm
of the translation vector and geodesic distance as follows:

et “||∆t||

er “ arccosp
tracep∆Rq ´ 1

2
q

(17)

The followed subsections present detailed analysis of the experiment results to demonstrate the
improvement in performance.

4.2. Multi-Resolution Map Generation

Figure 5 shows both scan and model point clouds at resolution levels of 0.5, 2, and 10 m. With the
hierarchical property of the OctoMap structure [22], all different resolution-level maps of the same
point cloud could be generated from a single OctoMap data structure. The lower-resolution level map
could be directly generated from a higher-resolution level map, as shown in Equation (8).
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model maps, and the red ones are the local scan maps, three different resolution levels (0.5 m, 2 m and
10 m) are listed in this figure.

At the 10-m resolution level, the maps were not sensitive to noise and outliers. Everything was
transformed into a simple data structure. This property improved the robustness against the initial
registration error.

4.3. Warning and Escape

We then verified the robustness of our proposed heuristic escape scheme against the local
minimum problem. Figure 6a–e lists five local minimum registrations without our heuristic escape,
Figure 6f presents one global optimal registration with our escape scheme. Figure 7 gives a detailed



Sensors 2016, 16, 228 10 of 15

registration process for the ExII triangular area case with an initial translation error of [10 m, 30 m,
10 m] and rotation error of [´10˝, 10˝, 55˝]. Figure 7a shows the initial point clouds of both scan
(colored in black) and model (colored in red). Figure 7b,c shows the coarse-to-fine registration scheme.
At the resolution level of 5 m, as shown by the blue circle of Figure 7c, the tendency index Trendk

cur

according to Equation (10) was below the expected δ times ThresTend. The registration index Ik
cur

evaluated by Equation (9) was also lower than ThresI . Thus, the early warning was triggered, and the
registration process entered the heuristic escape step. The resolution level was lowered to 10 m, as
shown in Figure 7d, and a new transformation was generated by the heuristic escape estimation based
on Equations (9)–(11). Finally, the registration result reached a global optimum, as shown in Figure 7f.

Different initial transformation errors led to variations in the escape times. Figure 8 shows the
relation between the root mean square (RMS) of the initial transformation error and the escape times.
As the RMS error increased, the escape time grew with a ladder pattern.
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Figure 8. Escape times vs. RMS error.

4.4. Convergence

Besides our proposed enhanced ICP, we also evaluated three other ICP-based methods for
comparison: Standard-ICP, M-ICP, and G-ICP. Figures 9 and 10 show the results for the slender
bank and triangular area experiments. The red point cloud represents the model point cloud Q.
The green, yellow, purple, and pink point clouds represent the registration results of the enhanced
ICP, standard-ICP, M-ICP, and G-ICP, respectively. Each method was tested for both the normal initial
transformation error and abrupt turn case in the experiment.

For the normal initial transformation error case, the initial translation error was randomly sampled
within [˘10, ˘10, ˘10], and the rotation error was sampled within [˘20˝, ˘20˝, ˘40˝]. Although
all methods obtained acceptable results for the triangular area test, as shown in Figure 9b, the other
methods failed to match the model point cloud for the slender bank test owing to the complexity of
the terrain as shown in Figure 9a. In contrast, our proposed enhanced ICP method guaranteed correct
results with a final RMS error of 1.1 m and rotation error of 1.5˝. Table 2 summarizes the registration
results of 40 normal initial transformation error tests on the slender bank and triangular area in Detail 2.
On average, our proposed method could achieve an accurate match even with a rough initial error.

To verify the abrupt turn problem with the different ICP-based methods, we set the initial rotation
error on the z-axis around 160˝–220˝, as shown in Figure 10. The Standard ICP, M-ICP, and G-ICP
became trapped in a local minimum in both the slender bank and triangular area test. Our proposed
enhanced ICP could efficiently estimate the local minimum problem by using the early warning
mechanism and eventually escape with a proper transformation by using our heuristic escape scheme.
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Figure 9. Registration results for the normal initial error test. In the slender bank test, the translation
error was [5, 4, 4], and the rotation error was [17.1˝, 20˝, 34.2˝], our proposed method make the
registration with the RMS error at 1.1 m and rotation error at 1.5˝. In the triangular area test, the
translation error was [4, 3, 10], and the rotation error was [10˝, 20˝, 34.2˝], our proposed method
guarantee the registration result with the RMS error at 0.4 m and rotation error at 1.1˝.
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Table 2. Registration results with a normal initial error.

Method
Translation Error et Rotation Error er

min µt σt min µr σr

Slender Bank Experiment

ICP 1.45 m 8.34 m 6.32 m 3.4˝ 24.1˝ 10.2˝

M-ICP 1.55 m 6.57 m 4.31 m 1.6˝ 15.8˝ 5.9˝

G-ICP 0.45 m 5.11 m 2.31 m 0.2˝ 12.09˝ 3.8˝

OUR 0.23 m 1.78 m 1.98 m 0.4˝ 1.7˝ 1.2˝

Triangular area Experiment

ICP 1.24 m 8.23 m 9.21 m 2.3˝ 19.4˝ 12.2˝

M-ICP 1.77 m 5.34 m 6.53 m 2.1˝ 15.4˝ 8.6˝

G-ICP 0.30 m 4.23 m 3.34 m 0.5˝ 12.7˝ 6.1˝

OUR 0.10 m 1.32 m 1.42 m 1.1˝ 2.8˝ 1.8˝

µt is the average translation error; σt is the variance of the translation error; µr is the average rotation error; and
σt is the variance of the rotation error. The translation errors were within [˘10, ˘10, ˘10], and the rotation
errors were within [˘20˝, ˘20˝, ˘40˝].
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Figure 10. Registration results of the abrupt turn test. In the slender bank test, the translation error was
[15, 14, 20], and the rotation error was [17˝, 20˝, 190˝], our proposed method make the registration with
the RMS error at 1.5 m and rotation error at 2.3˝. In the triangular area test, the translation error was
[14, 15, 20], and the rotation error was [10˝, 20˝, 171˝], our proposed method guarantee the registration
result with the RMS error at 2.3 m and rotation error at 1.7˝.

Table 3 summarizes the results of 40 abrupt turn tests in detail. Even with a tough abrupt turn,
our proposed enhanced ICP method was able to guarantee matching accuracy, while the other method
all became trapped in a local minimum.

Table 3. Registration results with an abrupt turn.

Method
Translation Error et Rotation Error er

min µt σt min µr σr

Slender bank experiment

ICP 17.21 m 24.23 m 16.32 m 154.4˝ 176.1˝ 21.2˝

M-ICP 13.23 m 21.23 m 18.31 m 156.6˝ 182.8˝ 33.9˝

G-ICP 10.32 m 15.21 m 12.11 m 126.4˝ 192.09˝ 45.8˝

OUR 0.31 m 4.55 m 3.98 m 0.1˝ 15.7˝ 8.2˝

Triangular area experiment

ICP 7.32 m 23.34 m 16.21 m 126.4˝ 189.1˝ 28.2˝

M-ICP 16.42 m 26.57 m 15.31 m 145.6˝ 176.8˝ 35.9˝

G-ICP 9.89 m 28.11 m 13.23 m 170.2˝ 181.9˝ 49.8˝

OUR 0.21 m 6.78 m 4.98 m 0.4˝ 14.7˝ 7.4˝

The rotation error along the z-axis was around 160˝–220˝.
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4.5. Running Time

Figure 11a presents the average registration times of the methods in both experiments with
normal initial transformation errors. The proposed method was not as fast as the single standard ICP
or M-ICP method. This is because of the heuristic escape scheme, which combines potential direction
estimation and G-ICP to escape from the local minimum. On average, our proposed method reduced
the registration time by 30% compared to G-ICP while guaranteeing registration accuracy at the same
time. For the abrupt turn case, we only evaluated the relation between the RMS error and registration
time of our proposed method. As shown in Figure 11b, the registration time for the abrupt case was
closely related to the heuristic escape time, as given in Figure 8. A larger initial transformation error
increased the heuristic escape time, which also increased the computation time.
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Figure 11. Time cost analysis: (a) in both Slender Bank test and Triangle Area test, our method could
make the alignment around 2 s, faster than the generalized ICP, but slower than the standard-ICP
method and multi-resolution ICP method because of the heuristic escape scheme; (b) the registration
time is highly related to RMS error.

5. Conclusions

This paper presents the fast and accurate registration of a large-scale 3D environmental model
for application to heterogeneous mobile robot cooperation with a rough initial transformation error.
A hierarchical searching scheme is combined with the octree-based ICP algorithm. A novel early
warning mechanism is proposed to perceive the local minimum problem, and a heuristic escape
scheme is used to avoid local minima and achieve optimal registration. Experiments involving one
UAV and one USV were conducted to verify the proposed technique, and the experimental results were
compared with those of normal ICP registration algorithms. The results showed that the proposed
algorithm is insensitive to the initial transformation error and can make effective heuristic escape
decisions to resolve the local minimum problem.
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