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Abstract: A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is
proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed
filter, the input signal vector consists of the output of a tapped delay line. GPOs with various
thresholds are used to construct a nonlinear network and connected with the input signals. The
output signal of the filter is composed of a linear combination of signals from the output of
GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear
filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive
filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological
operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is
compared to the proposed adaptive filter. The various rate-dependent modeling methods are
applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is
shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent
hysteresis nonlinear of the GMA more accurately and effectively.
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1. Introduction

Smart actuators, such as piezoelectric actuators (PEAs), giant magnetostrictive actuators (GMAs)
and shape memory alloys (SMAs), have great potential in micro-positioning and micro-vibration
control [1,2]. Owing to some of the magneto-electro-thermo-elastic coupling effects in smart
materials, smart actuators exhibit dynamic hysteresis nonlinearity, making their effective use
quite challenging.

Hysteresis modeling methods can be roughly divided into physical-based models, such as
the Jiles-Atherton model for ferromagnetic materials [3], the free energy model for ferroelectric
materials [4], the domain wall model for piezoelectric materials [5] and phenomenological models,
including the Preisach model [6], the Krasnoselskii-Pokrovskii (KP) model [7], the Prandtl-Ishlinskii
(PI) model [8,9] and the generalized Prandtl-Ishlinskii (GPI) model [10]. It should be mentioned
that the classical phenomenological operator-based models describe only rate-independent hysteresis
behavior. Some works have focused on rate-dependent hysteresis modeling of smart actuators.
A basic idea in rate-dependent hysteresis modeling is to extend the static parameters in models to
rate-dependent ones, accounting for the dependence of the weighting function on the input signal
rate [11,12] or on the input signal frequency [13,14] in the Preisach model, a rate-dependent weighting
function in the modified Prandtl-Ishlinskii (MPI) model [15] and rate-dependent thresholds in the GPI
model [16], for example. Another idea in rate-dependent modeling is to couple the static hysteresis
model to equations describing the origins of the rate-dependent behaviors. Tan presented a dynamic
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hysteresis model for magnetostrictive actuators by coupling a Preisach operator to an ordinary
differential equation [17]. Based on equivalent energy dissipation, a rate-dependent hysteresis model
for GMA was proposed by combining the MPI model with a second-order ordinary differential
equation in a cascaded structure [18]. Some intelligent computation methods have been used to
model rate-dependent hysteresis behavior, including neural networks [19,20], fuzzy tree [21] and
support vector machine [22].

In practical engineering, a nonlinear plant to be controlled may be unknown and possibly
time-variable. Adaptive modeling uses adaptive filters to model a nonlinear plant. A delayed
adaptive filter, shown in Figure 1, has been widely used for its simple structure and ease of
implementation [23,24]. However, many experimental results show that the linear delay adaptive
filter does not fit hysteresis characteristics well [25]. Using Volterra series filters as nonlinear filters is
another possible choice [26]. A Volterra functional approach was presented to characterize nonlinear
dynamical hysteresis based on an extension that overcame the single-valued limitation of the Volterra
expansion [27]. A backlash-operator-based adaptive filter was proposed for piezoelectric actuators by
replacing the delay operators in the delayed adaptive transversal filter with backlash operators [25].
This adaptive filter constitutes a Prandtl-Ishlinskii model with a substantial adaptive weight vector.
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Figure 1. The delayed adaptive transversal filter.

The motivation for this study is to use a nonlinear adaptive filtering structure combined
with hysteresis elements to better model rate-dependent hysteretic nonlinear phenomena in smart
structures. A novel nonlinear adaptive filter using the general nonlinear filter structure, depicted
in Figure 2, is presented for modeling rate-dependent hysteresis. The input signal vector consists
of the output of a tapped-delay line with a single input signal, and generalized play operators
(GPOs) with various thresholds are used to construct a single-layer nonlinear network. The output
signal is composed of a linear combination of signals from the output of the GPOs. Because of
the hysteresis characteristics of GPOs, a GPO-based adaptive filter can describe the rate-dependent
hysteresis nonlinearity with asymmetric and saturation properties. The identification method for the
parameters in the GPOs is given based on the analysis of the nonlinear filter system. In order to
show the validity of the proposed adaptive nonlinear filter, four adaptive filter modeling methods
are compared: GPO-based filter, backlash filter [25], second-order series Volterra filter and a linear
adaptive filter. Learning algorithms are key in the performances of an adaptive filter. The LMS
algorithm is widely used as a weight vector learning algorithm owing to its computational simplicity.
Some variable step-size LMS algorithms have been proposed to enhance the performance of adaptive
filters [28,29]. Some novel LMS algorithms were also proposed to improve the convergence and
modeling errors of the Volterra filter [30,31]. In this study, the standard LMS algorithm is used
in modeling experiments because the purpose of the experiments is to show the validation of the
proposed modeling method by comparison of various adaptive filter modeling methods. A GMA
system with strong rate-dependent hysteresis effects is used as the model plant, and various kinds
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of speed input signals are employed to actuate the GMA system in order to test the rate-dependent
modeling capability of the proposed method.
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Figure 2. The structure of the general nonlinear filter.

This paper is organized as follows: In Section 2, the basic theory for GPO and GPI is given.
In Section 3, the nonlinear adaptive filter is proposed for rate-dependent hysteresis modeling, and
the LMS-based algorithm for weight vector adaptive learning and identification of GPO parameters
in the GPOs is given. In Section 4, the proposed GPO-based adaptive filter is used to model the
GMA system, and comparisons of four adaptive filter modeling methods are given. Section 5
provides conclusions.

2. GPO and GPI Model

2.1. Play Operator

The play operator, shown in Figure 3, is the elementary hysteretic kernel in the PI hysteresis
model and is a rate-independent and continuous hysteresis operator. Analytically, let Cm[0, tE]

represent the space of piecewise monotone continuous functions. For any input v(t) ∈ Cm[0, tE],
let 0 = t0 < t1 < t2 < · · · < tN = tE be a partition of [0, tE], such that the function v is monotone on
each of the sub-intervals [ti, ti+1]. Then, the output of the play operator is defined by:

Fr[v](0) = fr(v(0), 0) = w(0) (1)

Fr[v](t) = fr(v(t), Fr[v](ti)) (2)

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1, where fr(v, w) = max(v− r, min(v + r, w)).

r

v

w

Figure 3. Characteristics of the play operator.
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2.2. Generalized Play Operator

The classic Prandtl-Ishlinskii model is limited to symmetric hysteresis loops owing to the
symmetric nature of the play operator, which is the main drawback of the PI model, because it is
too restrictive for real complex hysteretic nonlinearities. Therefore, a generalized play operator is
given as in Figure 4 to overcome this restriction, where an increase in input v causes the output w to
increase along the curve γr or a decrease in input v causes the output w to decrease along the curve
γl , with continuous non-decreasing functions γl > γr named envelop functions. Analytically, for any
input v(t) ∈ Cm[0, tE], the output of the generalized play operator is defined by:

Fγ
lr [v](0) = f γ

lr(v(0), 0) = w(0) (3)

Fγ
lr [v](t) = f γ

lr(v(t), Fγ
lr [v](ti)) (4)

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1, where f γ
lr(v, w) = max(γr(v)− r, min(γl + r, w)).

Figure 4. Input-output relationship for a generalized play operator.

The envelop functions γl and γr can be chosen as follows:

γl = a0 tanh(a1v + a2) + a3 (5)

γr = a4 tanh(a5v + a6) + a7 (6)

where aj, j = 0, · · · , 7 can be identified from experimental data. For a given input v(t) ∈ C[0, T],
w ∈ R and w(0) = Fγ

lr(v(0), 0), the maximum and minimum values of the generalized play operator
are determined by the envelope functions γr and γl as follows:

max
t∈[0,T]

Fγ
lr [v](t) = f γ

lr( max
t∈[0,T]

γr(v(t)), w(0)) (7)

min
t∈[0,T]

Fγ
lr [v](t) = f γ

lr( min
t∈[0,T]

γl(v(t)), w(0)) (8)

2.3. GPI Model

The threshold-discrete GPI model is formulated through using GPO as:

y(t) =
N

∑
i=0

wri F
γ
ri [v](t) (9)

where thresholds ri can be chosen to be equal intervals:

ri =
i

N + 1
max{γr(‖v‖∞), γl(‖v‖∞)}, f or i = 0, 1, · · · , N (10)
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The weights wri , i = 0, 1, · · · , N and parameters aj, j = 0, 1, 2, · · · , 7 of the envelop functions
can be identified through minimization of the error sum-squared function:

J =
n

∑
l=0

(yγ(l)− ym(l))2 (11)

where yγ(l) is the model response and ym(l) is the measured experimental data; the index
l(l = 0, . . . , n) refers to the number of the data points considered to compute the error function.
It should be noted that the identification process is iterative, as the envelop functions are initially
unknown. The detailed parameter identification method can be found in [10].

3. GPO-Based Adaptive Filter for Rate-Dependent Hysteresis Modeling

In this section, we describe the modeling method for the rate-dependent hysteretic system using
the GPO-based nonlinear adaptive filter. The structure of the GPO-based nonlinear filter is first
proposed, and the parameter-identification method for the GPOs is given. Then, the LMS-based
learning algorithm for the proposed nonlinear adaptive filter is presented. Finally, the rate-dependent
hysteresis modeling process is described completely.

3.1. GPOs-Based Adaptive Filter

The structure of an N-th-order GPO-based nonlinear filter is shown in Figure 5.
x(k) = [x(k) x(k − 1) . . . x(k − N)]T is the input vector representing a tapped-delay line. GPOs
with different thresholds are used to construct a single-layer nonlinear network in the filter.
H[x(k)] = [H0[x(k)] H1[x(k − 1)] . . . HN [x(k − N)]]T is the output vector of the GPOs. Based
on Equations (3) and (4), the GPOs can be rewritten as:

Hi[x(k− i)] =


γr(x(k− i))− ri; x(k− i) > x(k− i− 1) and γr(x(k− i))− ri > Hi[x(k− i− 1)]

γl(x(k− i)) + ri; x(k− i) < x(k− i− 1) and γl(x(k− i)) + ri < Hi[x(k− i− 1)]

Hi[x(k− i− 1)]; otherwise

(12)

The output of the filter can be given as:

y(k) =
N

∑
i=0

wi(k− i)Hi[x(k− i)] = wT(k)H[x(k)] (13)

where w(k) = [w0(k) w1(k− 1) . . . wN(k− N)]T is the weight vector.
The envelop functions γr and γl in the GPOs depend on the hysteresis characterization of the

plant and should be determined based on prior knowledge of the hysteresis modeling plant. In this
paper, a systematic identification method for envelop functions used in the filter is presented. Under a
quasi-static input signal, which actuates the plant ‘infinitely slowly’, the output of the GPO-based
nonlinear filter can be approximated as:

y(k) =
N

∑
i=0

wi Hi[x(k− i)] ≈
N

∑
i=0

wi Hi[x(k)] (14)

It can be seen from Equation (14) that under quasi-static input, the GPO-based nonlinear filter
can be approximated as a GPI model. Hence, the parameters in the GPOs can be obtained by the GPI
model parameter-identification method mentioned in Section 2 using a sufficiently slow actuation
signal. An algorithm for the identification of the GPOs in the filter is given as the following:

Algorithm 1. GPOs algorithm.

• Step 1. A sufficiently slow input signal v(l), l = 0, . . . , n is generated and applied to the unknown
model plant; the output ym(l), l = 0, . . . , n is measured.
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• Step 2. The number of the GPOs in the GPI model is set to the same as the order of the filter N.
• Step 3. Initialize the parameters aj, j = 0, . . . , 7 of the envelop function and the weights wri ,

i = 0, . . . , N.
• Step 4. Calculate the thresholds ri using Equation (10).
• Step 5. Calculate the output of the GPI model yr(k) using Equation (9).
• Step 6. Determine the parameters aj, j = 0, . . . , 7 and wri , i = 0, . . . , N by minimization of

sum-squared-error J described by Equation (11).
• Step 7. Calculate the sum-squared-error J; if J is less than tolerable error ε, then end the

algorithm; else return to Step 4.
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Figure 5. The structure of a generalized play operator (GPO)-based adaptive filter.

3.2. GPO LMS Algorithm

In this section, an LMS-based algorithm is presented for the proposed GPO-based nonlinear
filter. This choice can reduce computational complexity, which is attractive for online implementation.

From Equation (13), it is observed that the output of the filter is composed of a linear combination
of GPO output signals. It has the same form as the classical linear adaptive filter, except for the form
of the input vector. Hence, the LMS algorithm could be used to learn the coefficients in the filter.
Most of the analyses and algorithms presented for linear LMS apply equally to the GPO-based filter.

The standard approach for deriving the LMS algorithm is to use an estimate of the
mean-square-error (MSE), defined as:

E[e2(k)] = E[d2(k)− 2d(k)y(k) + y2(k)] (15)

where x(k), y(k) and d(k) are the input signal, the output signal and the reference signal, respectively,
and e(k) is the error signal. The instantaneous square error is given by:

e2(k) = d2(k)− 2d(k)y(k) + y2(k) (16)

Substituting Equation (13) into Equation (16), the estimate of the MSE objective function can be
rewritten as:

e2(k) = d2(k)− 2d(k)wT(k)H(k) + wT(k)H(k)HT(k)w(k) (17)
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An LMS-based algorithm can be used to minimize the objective function as follows:

w(k + 1) = w(k)− µ∇̂w(k)

= w(k)− 2µe(k)
∂e(k)
∂w(k)

= w(k) + 2µe(k)H(k)

(18)

for k = 0, 1, 2, . . ., where ∇̂w(k) represents an estimate of the gradient vector of the objective function
with respect to the filter coefficients, and µ is the convergence factor, which controls stability and the
convergence speed.

In order to guarantee convergence of the coefficients in the mean, the convergence factor of the
GPO-based LMS algorithm must be chosen in the range:

0 < µ <
1

tr[R]
<

1
λmax

(19)

where λmax is the largest eigenvalue of the input signal vector auto-correlation matrix
R = E[H(k)HT(k)]. The convergence speed of the GPO-based LMS is dependent on the eigenvalue
spread of the auto-correlation matrix R.

3.3. The Process of Modeling

The modeling steps using the GPO-based adaptive filter for the rate-dependent hysteretic system
are given as follows:

(1) Determine the order of the filter N. For the unknown model plant, Algorithm 1 is used to identify
the envelop function and the threshold values of the GPOs in the filters.

(2) Initialize the weight vector w(0). Determine the convergence factor µ based on the
auto-correlation matrix R.

(3) Construct the adaptive filter model system. Connect input signal x(k) with the input port of the
model plant and the GPO-based adaptive filter. Then, connect the output signal d(k) of the model
plant with the output y(k) of the GPO-based adaptive filter using a sum to calculate the error.

(4) Calculate the error signal e(k) = d(k)− y(k). Update the weight vector of the GPO-based adaptive
filter through Equation (18).

(5) Provide the next input signal and return to Step 3. Repeat the process until all input signals have
been given.

4. Model Validation and Experimental Results

The experimental device was constructed to identify the rate-dependent hysteresis of a GMA
system, as shown in Figure 6. The GMA, with a stroke of ±30 µm, was manufactured by Beihang
University. The D/A converter transformed the control signal and sent it from the computer to the
GMA by means of a current mode power amplifier (GF-20). The displacement was measured by
an eddy current sensor with a 8 mV/µm resolution and was transformed via the A/D converter,
provided to a dSPACE controller board (DS1103) and recorded by a computer. The sampling
frequency was set to 10 kHz.

A low-frequency (1 Hz) sinusoidal input signal was employed to actuate the GMA, and the
envelop functions in the filter were identified as follows:

γl = 1.2878 tanh(0.36u(t) + 0.6025)− 0.6671

γr = 0.3223 tanh(1.2233u(t) + 0.1104)− 0.0248
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Figure 6. Experimental equipment.

We made a comparison of four adaptive filter modeling methods to demonstrate the validation
of the proposed modeling method: a GPO-based adaptive filter, a backlash adaptive filter, a
second-order series Volterra adaptive filter and a linear adaptive filter. In order to compare the
modeling accuracy of the filters, the four adaptive filters should have the same filter order of N,
and the same algorithms should be used to adjust the coefficient vectors in the various filters.

Figure 7 illustrates the relationships between MSEs and the order of the filters. The GMA system
was actuated by a sinusoidal signal at a frequency of 50 Hz. From Figure 7, it is clear that, for the
four adaptive filters, the MSEs decrease sharply when the order of the filters is below 10. When the
order of the filters continues to increase, the rate of change of the modeling error is very slow. The
length of the coefficient vector of the Volterra filter of the second-order series and of the N-th-order
was N + 1 + (N + 1)2, while those of the other filters of the N-th-order were N + 1. Considering the
accuracy and hardware implementation, the order of the filters was set at 30.
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Figure 7. Relationship between MSE and the order of the filters.

LMS-based algorithms were used as learning algorithms for the four adaptive filters.
The convergence factor µ governs the convergence speed and the stability of the filter. Many
experiments have been done to choose an appropriate µ for each filter, in order to achieve optimal
modeling performance of the filters. It should be noted that there are different convergence factors
for the first-order and second-order terms of the LMS Volterra filters.

Three kinds of speed input signals, including discrete frequency sinusoid signals, chirp signals
and sums of sinusoid signals, were used as speed inputs to determine whether the modeling
methods can capture the rate-dependent hysteresis characterizations. In order to compare modeling
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performances, mean square errors (MSEs) and relative errors (REs) of all four adaptive filters under
the various excitation signals are shown in Tables 1–3.

Table 1. Modeling errors for filters under discrete frequency sinusoid signals.

Input GPOs-Based Backlash Volterra Delayed
Signal Filter Filter Filter Filter

10 Hz sine wave MSE (µm2) 0.0094 0.4248 1.1847 0.2880
RE 0.0106 0.0711 0.1187 0.0585

20 Hz sine wave MSE (µm2) 0.0095 0.3533 0.5211 0.2882
RE 0.0108 0.0658 0.0800 0.0594

40 Hz sine wave MSE (µm2) 0.0098 0.3226 0.2256 0.3560
RE 0.0114 0.0655 0.0548 0.0688

60 Hz sine wave MSE (µm2) 0.0103 0.1811 0.1310 0.2450
RE 0.0131 0.0549 0.0466 0.0638

80 Hz sine wave MSE (µm2) 0.0122 0.1857 0.1192 0.3258
RE 0.0134 0.0523 0.0417 0.0690

100 Hz sine wave MSE (µm2) 0.0119 0.1621 0.0858 0.3168
RE 0.0141 0.0520 0.0378 0.0726

120 Hz sine wave MSE (µm2) 0.0123 0.1355 0.0476 0.2828
RE 0.0151 0.0500 0.0296 0.0723

150 Hz sine wave MSE (µm2) 0.0157 0.1163 0.0224 0.2514
RE 0.0183 0.0498 0.0218 0.0732

200 Hz sine wave MSE (µm2) 0.0221 0.0896 0.0172 0.2071
RE 0.0246 0.0495 0.0217 0.0736

First, some discrete frequency sinusoidal signals with amplitudes of 0.632 A were used as inputs
(1 Hz, 20 Hz, 40 Hz, 60 Hz, 80 Hz, 100 Hz, 120 Hz, 150 Hz and 200 Hz). Figure 8 gives the
modeling results for the GPO-based adaptive filter method. It can be seen from Figure 8 that only
major loops of the GMA are actuated by the discrete frequency sinusoidal signals, and the peak-peak
displacements change with increasing frequency, owing to the rate-dependent effects of the GMA.
From Table 1, it is clear that, under the discrete frequency sinusoidal input signals, the proposed
GPO-based adaptive filter has better modeling performance than the other adaptive filters. Especially
in the low-frequency range, the modeling errors of the GPO-based adaptive filter are significantly
smaller than those of the others. This is mainly because GPOs are used in the proposed adaptive
filter, and their parameters are identified through using low-frequency data. The modeling errors of
the GPO-based filter increase with increasing frequency. It should be noted that, when the frequency
is below 20 Hz, the second-order Volterra adaptive filter gives the worst approximation, and the
modeling errors of it sharply decrease with increasing frequency.

A chirp signal with an amplitude 0.632 A, in which the frequency increased linearly with time
from 1 Hz to 100 Hz as shown in Figure 9a, was then used to actuate the GMA system. The
modeling result of the GPO-based adaptive filter is shown in Figure 9b. From Figure 9, it is clear
that, when the time is less than 1.28 s (a frequency of about 63.4 Hz), the peak-peak displacement of
the GMA decreased with increasing frequency. A remarkable increase of the peak-peak displacement
is observed near 1.41 s (a frequency of about 69.7 Hz) from Figure 9, which was due to the first-order
resonance frequency of 69.7 Hz of the GMA system and which causes oscillation of the displacement
when the frequency continues to increase. The coupling of the hysteresis effects and resonance
behavior of the GMA make the rate-dependent hysteresis modeling more difficult. From Table 2, it
is clear that, under the chirp signal, the modeling errors of the GPO-based adaptive filter are smaller
than those of the other adaptive filters.
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Figure 8. Model validation for single frequency input signals.
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Figure 9. (a) A chirp signal in which the frequency increases linearly with time from 1 Hz to 100 Hz;
(b) model output displacement of the GPO-based adaptive filter and error.
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Table 2. Modeling errors under a chirp signal.

Input GPO-Based Backlash Volterra Delayed
Signal Filter Filter B Filter

Chirp signal MSE (µm2) 0.0646 0.4356 0.4882 0.6300
Figure 9a RE 0.0296 0.0769 0.0814 0.0924

Finally, the proposed modeling method was validated by using the sums of the sinusoidal signals
to actuate the GMA system. Two signals were generated as:

u = 0.1 sin(2π10t) + 0.2 sin(2π30t) + 0.3 sin(2π50t)

u = 0.12 sin(2π5t) + 0.12 sin(2π25t) + 0.12 sin(2π50t) + 0.12 sin(2π75t) + 0.12 sin(2π100t)

Figures 10 and 11 show the two input signals and modeling results of the GPO-based
adaptive filter, respectively. Furthermore, a more complicated signal containing 0–100 Hz frequency
information characteristics was generated using the idinput command in MATLAB and was applied
as speed input in which the frequency band expressed in fractions of the Nyquist frequency was set
as [0.0 0.02], and the level was set at 0.5. Figure 12 shows the modeling result of the GPO-based
filter under this signal. By using the sums of the sinusoidal signals as inputs, the complicated
hysteresis characteristics of nonlocal memory effects were revealed, as shown in Figures 10–12.
From Table 3, it can be seen that the proposed GPO-based adaptive filter has a remarkable ability
to model complicated rate-dependent hysteresis nonlinearity compared to the other adaptive filters.
The backlash filter also shows better modeling performance than the second-order Volterra adaptive
filter and linear delay adaptive filter, owing to their use of backlash operators.
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Figure 10. Modeling: output of the model and actuator (sum of sinusoids at 10, 30 and 50 Hz).
(a) Outputs of the model and actuator; (b) hysteresis curves of the model and actuator.
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Figure 11. Modeling: output of the model and actuator (sum of sinusoids at 5, 25, 50, 75 and 100 Hz).
(a) Outputs of the model and actuator; (b) hysteresis curves of the model and actuator.
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Figure 12. Modeling results under a sum of sinusoids containing 0–100 Hz frequency
information characteristics.
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Table 3. Modeling results under the sums of sinusoidal signals.

Input GPOs-Based Backlash Volterra Delayed
Signal Filter Filter Filter Filter

Sum of sinusoid signal MSE (µm2) 0.0186 0.0430 1.6099 1.6897
(10, 30, 50 Hz), Figure 10 RE 0.0205 0.0312 0.1910 0.1954

Sum of sinusoid signal MSE (µm2) 0.0351 0.0882 1.8882 2.2469
(5, 25, 50, 75, 100 Hz), Figure 11 RE 0.0370 0.0608 0.2907 0.3069

Sum of sinusoid signal MSE (µm2) 0.0425 0.0939 1.6865 1.4340
Figure 12 RE 0.0470 0.0699 0.2964 0.2733

Moreover, we compare the proposed rate-dependent adaptive filter modeling method
with a phenomenological operator-based model, for example the rate-dependent generalized
Prandtl-Ishlinskii (RDGPI) model [16,32]. The RDGPI model describes the rate-dependent
hysteresis behaviors by extending the rate-independent threshold vector and weight vector to
the rate-dependent ones. The inversion of the RDGPI can be formulated analytically, which is
attractive for the inverse compensation design. A discrete RDGPI model [32] is used to model the
rate-dependent hysteresis nonlinearities of the GMA system. The parameters of the RDGPI model
are obtained by minimization of the error function over 10–100 Hz range of input frequencies. The
detailed identification method can be found in [32], which results in α1 = 8.3721, α2 = 0.0785,
β1 = 1.002, β2 = 1.2443, λ1 = 0.2494 × 10−5, λ2 = 0.94 × 10−2, c = 1.1867, ρ = 3.3478, ξ = 7.0270,
τ = 0.1910 and µ = −0.1284. Table 4 gives the modeling performances of the RDGPI under the
different excitation inputs. It can be seen from Table 4 that the proposed GPO-based adaptive filter
has a remarkable superiority in modeling the complicated dynamic response of the smart structure
owing to its adaptive filter structure.

Table 4. Modeling results of RDGPI under different excitation signals.

Input Signal RDGPI Model GPO-Based Filter

10 Hz sine wave MSE(µm2) 1.2298 0.0094
RE 0.1172 0.0106

20 Hz sine wave MSE(µm2) 0.8262 0.0095
RE 0.0974 0.0108

40 Hz sine wave MSE(µm2) 0.7155 0.0098
RE 0.0945 0.0114

60 Hz sine wave MSE(µm2) 0.5148 0.0103
RE 0.0835 0.0131

80 Hz sine wave MSE(µm2) 0.9183 0.0122
RE 0.1084 0.0134

100 Hz sine wave MSE(µm2) 0.6111 0.0119
RE 0.1 0.0141

Chirp signal MSE(µm2) 2.6650 0.0646
RE 0.2225 0.0296

Sum of sinusoid signal MSE(µm2) 2.7005 0.0186
(10, 30, 50 Hz) RE 0.2474 0.0205

Sum of sinusoid signal MSE(µm2) 3.3587 0.0351
(5, 25, 50, 75, 100 Hz) RE 0.3850 0.0370

Sum of sinusoid signal MSE(µm2) 3.7751 0.0425
Figure 9a RE 0.3446 0.0470
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5. Conclusions

A novel nonlinear adaptive filter was proposed for rate-dependent hysteresis modeling, where
the tapped-delay line was used as the input signal vector and was mapped into another signal vector
through a single-layer network containing GPOs with various thresholds. An LMS-based algorithm
was used to adjust the coefficient vector in the adaptive filter. A GMA system was used as a model
plant, and three kinds of speed signals were used to actuate the strongly rate-dependent hysteresis
characteristics of the GMA. A comparison of various modeling methods was made to demonstrate
the validation of the proposed adaptive filter. Experimental results showed the effectiveness of the
proposed rate-dependent hysteresis modeling method.
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