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Abstract: This study combines signal de-noising, feature extraction, two pairwise-coupled relevance
vector machines (PCRVMs) and particle swarm optimization (PSO) for parameter optimization to
form an intelligent diagnostic framework for gearbox fault detection. Firstly, the noises of sensor
signals are de-noised by using the wavelet threshold method to lower the noise level. Then, the
Hilbert-Huang transform (HHT) and energy pattern calculation are applied to extract the fault
features from de-noised signals. After that, an eleven-dimension vector, which consists of the
energies of nine intrinsic mode functions (IMFs), maximum value of HHT marginal spectrum and
its corresponding frequency component, is obtained to represent the features of each gearbox fault.
The two PCRVMs serve as two different fault detection committee members, and they are trained by
using vibration and sound signals, respectively. The individual diagnostic result from each committee
member is then combined by applying a new probabilistic ensemble method, which can improve the
overall diagnostic accuracy and increase the number of detectable faults as compared to individual
classifiers acting alone. The effectiveness of the proposed framework is experimentally verified by
using test cases. The experimental results show the proposed framework is superior to existing single
classifiers in terms of diagnostic accuracies for both single- and simultaneous-faults in the gearbox.

Keywords: simultaneous-fault diagnosis; Hilbert-Huang transform; pairwise-coupling probabilistic
committee machine

1. Introduction

In the rotating machinery, gearboxes are widely used to transmit power from the prime mover
to the load. If any failure occurs in the gearbox, it may interrupt normal machine operation and
endanger users. Consequently, it is of great significance to develop a reliable and accurate intelligent
system to diagnose the main components of the gearbox, such as gears and bearings. There are two
main challenges in gearbox diagnosis. One is the existence of simultaneous faults, that is, multiple
single faults that appear concurrently. The other is that no unique sensor can detect all the machine
faults. To accurately detect more faults, many kinds of sensors and signals may be involved at the
same time. However, it is difficult to analyze different kinds of signals simultaneously and make
a decision. In the [1–7], various gearbox diagnostic systems have been proposed. In these systems,
the fault diagnosis procedures are mainly divided into two stages: (1) signal processing and (2) fault
identification/classification.

The existing problems in signal processing of these systems are that the signals usually contain
high-dimensional data and suffer from background noise interference, which degenerates the accuracy
and fault identification time. Besides, the gearbox usually has many rotating components working
together, such as bearings, gears and spindles, so the diagnosis of the gearbox is a simultaneous fault
problem. In traditional gearbox fault diagnostic methods, simultaneous faults are usually considered
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as an independent label for the classifier, which will result in a high cost in acquiring exponentially
increased simultaneous fault signals. For example, with d single-faults (labels) and one normal
condition, there are 2d ´ (d + 1) artificial simultaneous fault labels [8–10]. To solve this problem, an
effective signal de-noising method and a proper feature extraction technique which can find the single
fault pattern features in simultaneous fault patterns are studied together.

Currently, some methods, including spectral subtraction, least squares, and wavelet threshold
methods, are widely used for signal de-nosing [11,12]. In order to effectively de-noise the
non-stationary signals of a gearbox, a soft threshold method based on the discrete wavelet transform
(DWT) is adopted in this study due to its popularity.

References [8–10] reported that a simultaneous fault symptom can be identified by analyzing the
single fault patterns only if the classifier is trained by using a proper feature extraction technique, so
that it can save a lot of resources to collect a large combination of simultaneous fault training data.
Existing techniques to select a proper feature extraction technique are reviewed here. At present, there
exist many methods to extract features from fault signals, such as Fourier transform, short time Fourier
transform, and wavelet transform. The Fourier transform is only suitable for analyzing stationary
signals. However, the signals of rotating gears and bearings are non-stationary, which makes the
Fourier transform unsuitable for this application. The time-frequency analysis methods, such as short
time Fourier transform (STFT) and wavelet transform, can process non-stationary signals, but they
all have limitations. STFT has a limitation in non-stationary signal processing because of its use of a
fixed time window which makes it impossible to achieve good resolution in the time and frequency
domains at the same time. The drawback of the wavelet transform is that it suffers from the effect of
the energy leakage because any signal which does not well correlate with the shape of wavelet basis
function will be masked or completely ignored. In contrast to STFT and the wavelet transform, the
Hilbert-Huang transform (H-HT) is the latest time-frequency signal processing technique to analyze
nonlinear and non-stationary signals. The first step of a typical H-HT process is to employ the empirical
mode decomposition (EMD) algorithm to decompose a complicated signal into a series of intrinsic
mode functions (IMFs), which contains the local characteristics of the original signal at different time
scales, and then a Hilbert transform is applied to each intrinsic mode function (IMF) for Hilbert
spectrum analysis. The high time-frequency resolution of the H-HT method can effectively describe
the rules of the changing frequency compositions with time, which is a good approach for analyzing
non-stationary signals. Even though H-HT has been applied to many applications, particularly in fault
detection and diagnosis [13,14], it has some disadvantages: (1) the issue of mode mixing; and (2) the
redundant intrinsic mode functions easily appear at low frequency, which can cause the distortion
of the processed result [15]. To overcome these disadvantages, this study applies ensemble empirical
mode decomposition (EEMD), an improved EMD method, to deal with the mode mixing problem, and
uses the correlation coefficient method to eliminate the redundant IMFs. The EEMD-based H-HT is
hereafter refered to as HHT. It is well-known that different fault conditions show different amplitude-
and phase-frequency characteristics in the frequency domain. In other words, fault signal energies in
some frequency bands may be enhanced, while the others are restrained. It is reasonable to assume
that there are certain corresponding relationships between the signal energy changes in the frequency
bands and the fault phenomena. Therefore, on the basis of HHT, energy patterns of the selected
intrinsic mode function components are considered in this study to further extract representative fault
features from the gearbox vibration and sound signals.

In [1,3,5], most of the existing fault classification systems for the rotating machinery are
constructed by a single classifier which is trained based on one type of signal. However, a single
classifier-based fault diagnostic system may not give reliable fault diagnostic results due to the fact that
a universal classifier is difficult to develop, especially when the data available for training the classifier
are not abundant. Furthermore, a single classifier can only be trained by one type of signal. Obviously,
only one type of signal may not be able to cover all the faults. To let a fault classification system generate
more reliable diagnostic result and diagnose more faults, this paper proposes a new probabilistic
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committee machine (PCM) to combine the diagnostic results from vibration and sound signals. From
the gearbox point of view, vibration and sound signals are usually used to identify the faults because
those signals are easily acquired and highly related to the conditions of the gearbox [16–21]. The
committee machine concept involves combining results acquired by individual classifiers so as to
obtain a group decision that is superior to any individual classifier acting alone [22–24], because a
group decision is usually better than a single person’s decision.

Moreover, a proper classifier must be able to offer the probabilities of all possible faults so that the
user can at least trace the other possible faults according to the rank of their probabilities when the
fault(s) predicted by the classifier are incorrect. Therefore, it is logical to employ a probabilistic classifier
for each member in the committee machine for simultaneous-fault diagnosis of the gearbox. Currently,
there are two common probabilistic classifiers, the probabilistic neural network (PNN) [25,26] and
relevance vector machine (RVM) [27,28] available in the relevant literature. The main drawback of
PNN lies in the limited number of inputs because the complexity of the network and the training time
are heavily related to the number of inputs. Hence, RVM is selected as a probabilistic classifier to
build each committee member in this study. Generally, the aforementioned probabilistic classifiers
are suitable to solve the binary classification. Nevertheless, most of the practical applications are
multi-class classification problems. One-versus-all strategy is usually employed to fix the multi-class
classification problem. However, this strategy does not consider the correlation between every pair of
faults or labels, which was verified to produce a large region of indecision [29]. To solve the multi-class
classification problem effectively and generate a probability, a suitable pairwise coupling strategy
is adopted for the above probabilistic classifiers to generate a pairwise-coupled probabilistic neural
network (PCPNN) and pairwise-coupled relevance vector machine (PCRVM).

After determining the methods of signal de-noising, feature extraction and committee members,
there are still two major factors, the decision threshold ε and member weight w, affecting the
system accuracy in the proposed framework. The probabilistic committee machine only produces
the probability of occurrence of each fault. To determine the occurrence of the faults, a decision
threshold must be applied to those probabilities (e.g., output probabilistic vector P = [0.35, 0.58, 0.48,
0.83], if ε = 0.5, fault labels (2, 4) are considered as faults). Besides, different committee members
usually have various reliabilities, so a fair committee machine should assign different weights to
their committee members. Hence, an efficient searching algorithm, particle swarm optimization
(PSO) [30,31], to determine optimal member weights and decision threshold is considered in the
proposed framework. Finally, a fair measure, F-measure, is employed to evaluate the performance of
the proposed diagnostic framework.

In a nutshell, this paper proposes a new framework which can diagnose simultaneous faults in
the gearbox while the framework is trained using only single-fault patterns. Besides, the proposed
framework can provide probabilities of all possible faults to users to trace the other possible faults
according to the rank of probabilities when the diagnostic result is incorrect. Furthermore, the proposed
framework can generate a more reliable diagnostic result and diagnose more faults by simultaneously
analyzing vibration and sound signals. Even though the authors also proposed a similar framework
for simultaneous-fault diagnosis of automotive engines in [21], the proposed framework is targeted at
the gearbox system. Moreover, the signal patterns used in this application are totally different from
the ones in [21]. The proposed framework is designed based on vibration and sound signals rather
than air ratio, ignition and acoustic signals in the previous framework. Besides, the engine signals
acquired in [21] do not consider the issue of background noise which can degenerate the accuracy
of the diagnostic system. Furthermore, the feature extraction and selection methods rely on EMD +
domain knowledge and sample entropy, which are old, time-consuming, out of support from reference
materials, and have a risk of mode-mixing. Finally, the objective function in [21] is not well-defined that
cannot achieve good diagnostic accuracy. Therefore, the framework in [21] cannot be directly applied
and is modified significantly to suit for the gearbox, particularly in the phases of data processing and
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feature selection. Table 1 summarizes the differences between the diagnostic framework in [21] and
this study.

Table 1. Differences of diagnostic framework between reference [21] and this study.

Differences Reference [21] Present Study

Application Automotive engine Gearbox

Signal patterns Air ratio, ignition and acoustic signals Vibration and sound signals

Signal de-noising None Wavelet threshold

Feature extraction EMD and domain knowledge EEMD-based Hilbert-Huang transform
and energy pattern

Feature selection (IMF selection) Value of sample entropy Correlation coefficient

Objective function Fme P 0.925 ˘ 0.025 Fme ě 0.9

This paper is organized as follows: Section 2 presents the proposed framework and related
techniques. The experimental setup and data per-processing are discussed in Section 3. Section 4
discusses the experimental results and a comparison with other approaches. Finally, conclusions are
given in Section 5.

2. Proposed Framework

The proposed PCM framework for the gearbox simultaneous-fault diagnosis, evaluation
approach and its construction method are illustrated in Figure 1. The framework consists of four
sub-modules: (1) data processing; (2) probabilistic committee machine; (3) parameter optimization;
and (4) performance evaluation. The details of the four sub-modules in the framework are discussed
in the following sub-sections.

Figure 1. Proposed framework of gearbox simultaneous-fault diagnosis using probabilistic
committee machine.

In this case study, signal features are extracted from two kinds of signals xk (k = 1, 2), including
the vibration and sound signals, which are denoted as x1 and x2, respectively. Taking the vibration
signal as an example, the signal x1, including both single-fault patterns (S) and simultaneous-fault
patterns (SM), goes through de-noising and feature extraction. After the data processing, the processed
dataset is divided into three independent groups, including validation dataset, training dataset,
and test dataset which are named as x1-PTra, x1-PVal, and x1-PTes, respectively. The x1-PVal and x1-PTes
involve the combination of both single-fault patterns and simultaneous-fault patterns, while x1-PTra
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contains the single-fault patterns only. The divided datasets are used to train, validate, and test the
proposed framework.

2.1. Data Processing

2.1.1. Signal De-Noising

The acquired signals are display interference from the background noise. To decrease the
interference, the acquired signals have to be de-noised. A discrete wavelet transform (DWT) technique,
which is an effective de-noising technique for non-stationary signals [11,13], is selected in this paper.
The DWT can be defined as:

DWTps, Rq “
1
?

2s

ż 8

´8

xptqψ˚p
t´ 2sR

2s qdt (1)

where s and R are integers, 2s and 2sR represent the scale and translation parameters respectively,
Ψ represents the mother wavelet and Ψ˚ is the complex conjugate of Ψ. The original signal in
time-domain xk = x(t) goes through a set of low pass and high pass filters emerging as low frequency
(approximations, a˚) and high frequency (details, d˚i ) signals. Therefore, the original signal x(t) can be
written as:

xptq “ a˚n `
n
ÿ

i“1

d˚i (2)

The DWT-based de-noising technique is performed in three steps: (1) signal decomposition;
(2) determination of the threshold and nonlinear shrinking coefficients; and (3) signal reconstruction.
In the family of mother wavelets, the Daubechies wavelet (Db) is the most popular one and hence it
is employed in this study. Moreover, the soft threshold signal is defined as signpxptqqp|xptq ´ T|q, if
|xptq| ą T, and otherwise is 0, where T denotes a universal threshold that equals to

a

2logplength xptqq.
The detail of the de-noising is described in Section 3.2.

2.1.2. Feature Extraction Based on Hilbert-Huang Transform

The Hilbert-Huang transform (HHT) mentioned in this paper combines EEMD and the Hilbert
transform. EEMD defines the true IMFs as the ensemble mean of trails, which consist of the
decomposition of the signal plus a white noise of finite amplitude. In most cases, the range of
the standard deviation is from 0.1 to 0.4 [32]. The EEMD algorithm [33] is given as follows:

(1) Initialize the number of ensemble J, the amplitude of the added white noise, and set j = 1.
(2) Perform the jth trial on the white noise-added signal. A white noise series with the given

amplitude is added to the investigated signal:

x
1

j “ x ptq
1

` nj (3)

where nj represents the jth added white noise series, x(t)’ is the de-noised signal and x’j denotes
the noise-added signal of the jth trial.

(3) With the EMD method, the noise-added signal xj is decomposed into I IMFs as ci,j(t), for i = 1, 2,
. . . , I, where ci,j represents the ith IMF of the jth trial, and I is the number of IMFs.

(4) If j < J then let j = j + 1. Repeat Steps 2 and 3 again and again, but with different white noise series
each time until j = J.

(5) Calculate the ensemble mean ci of J trials for each IMF:

ci “
1
J

J
ÿ

j“1

ci,j, i “ 1, 2, ..., I, j “ 1, 2, ..., J (4)
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(6) Report the mean ci of the I IMFs as the final IMFs.

Applying the Hilbert transform to each IMF, and calculating the instantaneous frequency ωj(t)
and amplitude Aj(t), the Hilbert spectrum of x(t)’, H pω, tq, is then calculated by the following equation:

Hpω, tq “ Re
I
ÿ

j“1

Ajptqexppi
ż

ωjptqdtq (5)

Accordingly, the marginal spectrum of Hilbert-Huang transform, h(ω), can be defined by an
integrated spectrum with respect to time, t, i.e.:

hpωq “
ż l

0
Hpω, tqdt (6)

where h(ω) reflects the amplitude changing with frequency in the entire frequency range, and l is the
length of the signal x(t)’. The instantaneous frequency of IMF, which is obtained from the Hilbert
transform, is well-localized in the time-frequency domain and reveals important characteristics of
the signal.

2.2. Probabilistic Committee Machine

PCM is a group decision method which combines the results from the individual classifier
and generates superior performance to any of the individual classifier acting alone. As mentioned
previously, RVM is selected for constructing the probabilistic fault classifier. To solve the multi-label
classification problem effectively, RVM adopts a pairwise coupling strategy which is named PCRVM.
Moreover, a new ensemble method is proposed to combine the output of each committee member. In
the proposed ensemble method, the committee members should be assigned suitable weights since
every member/classifier in the group usually has its own strength. The details of PCRVM algorithm
and ensemble method are described in the following sections.

2.2.1. Relevance Vector Machine

RVM is a statistical learning method utilizing Bayesian learning framework and popular kernels.
In this research, predicting the posterior probability of each fault tn for unseen symptoms f is conducted
by RVM based on experimental data. Given a set of training data (f, t) = {fn,tn}, n = 1 to N, tn P {0, 1},
and N is the number of training data. It follows the statistical convention and generalizes the linear
model by applying the logistic sigmoid function σpypfqq “ 1{p1` expp´ypfqqq to the predicted decision
y(f) and adopting the Bernoulli distribution for P pt|Fq, the likelihood of the data is written as:

Ppt
ˇ

ˇ

ˇ
F,θq “

śN
n“1σ typfn ;θqtn

)

r1´ σ typfn;θqus1´tn

where ypf;θq “
N
ř

i“1
θiKpf, fiq ` θ0

(7)

where θ “ pθ0, θ1, ..., θNq
T is a weight vector and K is a kernel function. In the open literatures, three

kinds of kernel functions, radial basis function (RBF), polynomial, and Gaussian kernels, are available.
Among these kernel functions, Gaussian kernel is the most popular kernel function in RVM to deal
with the issue of classification for industrial applications [34].

The optimal weight vector θ˚ for the given dataset needs to be computed so as to maximize the
probability P(θ|t, F, α)9 P(t|F, θ)P(θ˚|α), with α = [α0, α1, . . . , αN] a vector of N + 1 hyperparameters.
However, the weights cannot be determined analytically. Thus, the following approximation procedure
is chosen, which is based on Laplace’s method:
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(1) For the current fixed values of α, the most probable weights θMP are found. Since P(θ|t, F, α) 9
P(t|F, θ)P(θ|α), this step is equivalent to the following maximization.

θMP “ arg max
θ

logtP pt|F,θq Ppθ|αqu

“ arg max
θ
t

N
ř

n“1
rtnlogdn ` p1´ tnqp1´ logdnqs ´

1
2
θTAθu

(8)

where dn “ σ typfn;θqu , A “ diagpα0, α1, ..., αNq.
(2) Laplace’s method is simply a Gaussian approximation to the log-posterior around the mode of

the weights θMP. Equation (8) is differentiated twice to give:

∇θ∇θlogPpθ
ˇ

ˇ

ˇ
t, F,αq

ˇ

ˇ

ˇθMP “ ´pΦ
TBΦ`Aq (9)

where B “ diagpβ1, β2, ..., βNq is a diagonal matrix with βn “ σ typfn;θqu r1´ σ typfn;θqus and
Φ is a N ˆ (N + 1) design matrix with Φnm “ Kpfn, fm´1q and Φn0 “ 1, n = 1 to N, and m = 1 to
N + 1. By inverting Equation (9), the covariance matrix

ř

“pΦTBΦ`Aq´1 can be obtained.
(3) The hyperparameter vector α is updated using an iterative re-estimation equation. Firstly, αi is

randomly guessed, then γi “ 1´ ai
ř

ii is calculated, where
ř

ii is the ith diagonal element of the
covariance matrix

ř

¨ Then, αi is re-estimated as follows:

αnew “
γi

u2
i

(10)

where u “ θMP “
ř

ΦTBt. The first step is to set αi Ð αnew
i and then γi and αnew

i are re-estimated
again until convergence. Finally, θ “ θMP is set, so that the classification model ypf;θq “
N
ř

i“1
θiKpf, fiq ` θ0 is obtained.

2.2.2. Pairwise-Coupled Relevance Vector Machine as Committee Member

The traditional machine learning methods are designed only for the issue of binary classification,
in which the output is either positive (+1) or negative (´1). However, most practical problems are
multi-classification as well as probabilistic output. Usually, one-versus-all is employed to deal with
multi-classification problems. The one-versus-all strategy constructs a group of classifiers lclass = [C1, C2,
. . . , Cd] in a d-label classification problem. The one-versus-all strategy is simple and easy to implement,
however, it generally gives a poor result [29,35] since one-versus-all does not consider the pairwise
correlations which causes a much larger indecisive region than the pairwise coupling strategy (using
one-versus-one) as showed in Figure 2. The pairwise coupling strategy also constructs a group of
classifiers lclass = [C1, C2, . . . , Cd] in a d-label classification problem. However, each Ci = [Ci1, Ci2,
. . . , Cid] is composed of a set of d ´ 1 different pairwise classifiers Cij, i ‰ j. Since Cij and Cji are
complementary, there are totally d(d ´ 1)/2 classifiers in lclass as shown in Figure 3. To solve the
multi-classification and probabilistic output problems, a pairwise coupling strategy is adopted for the
RVM and PNN classifiers. The strategy combines all the outputs of every pair of classes to re-estimate
the overall probability for a new instance.
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Figure 2. Indecisive regions (shaded regions) using one-vs-all (left) and pairwise coupling (right).

Figure 3. Pairwise coupling strategy of probabilistic classification.

There are several available methods for pairwise coupling strategy [29], which are, however
unsuitable for simultaneous-fault diagnosis because of the constraint

ř

ρi “ 1. Where ρi is
the probability of the ith label. Note that the nature of simultaneous-fault diagnosis is that
ř

ρi is unnecessarily equal to 1. Therefore, the following simple pairwise coupling strategy for
simultaneous-fault diagnosis is proposed. Every ρi is calculated as:

ρi “ Cipxq “

d
ř

i“1:i‰j
nijCijpxq

d
ř

j“1:i‰j
nij

“

d
ř

j“1:i‰j
nijρij

d
ř

j“1:i‰j
nij

(11)

where nij is the number of training feature vectors with either the ith or jth label. Hence, the probability
can be accurately estimated from ρij “ Cij pxq because the pairwise correlation between the labels is
taken into account. With the above pairwise coupling strategy, the proposed probabilistic committee
member, PCRVM, could estimate the probability vector ρ in a high level of accuracy.

After designing the pairwise coupling strategy for each probabilistic classifier, a new ensemble
method is proposed to combine the result from each committee member with optimal weight.

2.2.3. Ensemble Method

One of the most frequently used ensemble methods is weighted averaging. In this method, every
committee member has an appropriate weight related to its ability. However, the weighted averaging
method cannot give a fair result when it deals with the issue of unbalanced committee member
sensitivities to faults. For example, when the committee member 1 is not trained by a dataset with the
fault d5, the fault d5 usually cannot be predicted by the committee member 1, which is demonstrated
in Table 2. However, the weight averaging method still uses the unpredictable output to calculate the
overall average, resulting in an unfair or unpredictable result.
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To overcome the above problem, a novel ensemble method with optimal weights and predefined
null outputs is proposed which is given by Equation (12). In Equation (12), ρj-i is set to be zero when
the jth classifier cannot make a diagnosis for the ith fault label (i.e., the jth classifier is not trained by
the ith single-fault). In this way, the proposed method can overcome the problem of the traditional
weighted averaging method, which is one of main contributions of this research. The probability of
the ith fault is expressed as:

Pi “

k
ř

j“1
wj-optρj-i

k
ř

j“1
f pwj-optq

, i “ 1, 2, ..., d & j “ 1, 2, ..., k

subject to f pwj-optq “

#

wj-opt
0 : i f ρj-i “ 0

(12)

where wj-opt is the optimal weight for the jth committee member, wj-opt P r0, 1s, j = 1 to k, where k is
the number of committee members, and the sum of wj-opt is not equal to 1. ρj-i P r0, 1s is probability
estimated from the jth classifier for the ith single-fault, i = 1 to d where d is the total number of
detectable single-faults. Finally, the probabilistic outputs of classifiers are combined with optimal
weights to generate the probability vector P = [P1, P2, ..., Pd].

Table 2. Issue of weighted averaging method for balanced and unbalanced committee member
sensitivities to gearbox faults.

Balanced Member
Sensitivities to
Gearbox Faults

Committee Member 1 Committee Member 2 Average Output
Probability (P3) for d3

Fault d3 trained trained P3 “
w1ρ1´2 `w2ρ2´2

w1 `w2
P

r0 1s
P3 is a reasonable result

Output probability for d3 for
an unseen case ρ1´3 P r0 1s ρ2´3 P r0 1s

Unbalanced Member
Sensitivities to
Gearbox Faults

Committee Member 1 Committee Member 2 Average Output
Probability (P5) for d5

Fault d5 Unable to train trained P5 “
w1ρ1´5 `w2ρ2´5

w1 `w2
P5 is an

unfair/unpredictable result
Output probability for d5 for

an unseen case ρ1´5 is unpredictable ρ2´5 P r0 1s

Remark: w1 and w2 are weights for Committee members 1 and 2 respectively; P3 and P5 are average output
probabilities for d3 and d5 respectively.

In this application, the processed training datasets xk´PTra, are employed to train probabilistic
classifiers (PCRVM) respectively. The workflow of the PCM is shown in Figure 4.

Figure 4. Procedure for training probabilistic committee machine.
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2.3. Parameter Optimization

The probability vector P = [P1, P2, . . . , Pd] can be provided to the user as a quantitative measure
for reference and further processing. However, human experts generally cannot identify the number
of simultaneous-faults directly based on the output probability of each fault. Therefore, a decision
threshold (DT) ε is introduced to identify the simultaneous-faults from P such that:

yi “

#

0

1 if Pi ě ε
(13)

where ε P r0 1s and 1 denotes that the corresponding fault occurs. For example, given an unseen input
x, if P = [0.72, 0.42, 0.51, 0.81, 0.39] and ε = 0.5, then y = DT(P) = [1, 0, 1, 1, 0]. Therefore, the unseen x is
diagnosed as a simultaneous-fault for the labels (1, 3, 4).

Obviously, the weight and the decision threshold are the major factors affecting the classification
accuracy. By reviewing the literature [30,31], it is seen that PSO has the same effectiveness as a typical
optimization method, genetic algorithms, in finding the global optimal solution, but with better
computational efficiency. Hence, PSO is adopted to determine the best weights wopt and decision
threshold εopt in this study.

Particle Swarm Optimization

PSO is a population-based optimizer. The population is regarded as a swarm and the individuals
are considered as particles. For an z-dimensional search space and a swarm consisting of H particles,
the ith particle can be represented by an z-dimensional vector ui = (ui1, ui2, . . . , uiz), the velocity of
this particle can be an z-dimensional vector vi = (vi1, vi2, . . . , viz), and the best previous position
encountered by this particle can be described as pi = (pi1, pi2, . . . , piz). Let g represent the index of the
particle that attains the best previous position among all the particles in the swarm. Then, the swarm
is manipulated in accordance with the following equations:

vipj` 1q “ W f vipjq ` q1r1rpipjq ´ uipjqs ` q2r2rpgpjq ´ uipjqs (14)

uipj` 1q “ uipjq ` vipj` 1q (15)

where i is the particle index i = [1, 2, . . . , H], W f is the weight factor, q1 and q2 are positive constants,
r1 and r2 are the random numbers selected between [0, 1]. The selection of the above parameters was
presented in [36]. With reference to the literature, Table 3 shows the PSO parameters selected for this
case study.

Table 3. PSO parameters.

Number of generations 1000

Population size 50

W f 0.9

q1 2

q2 2

To evaluate the fitness of each iteration, a common evaluation method called F-measure [37] and
an objective function described in Section 2.4 are employed. The procedure of the proposed PSO
approach is illustrated in Figure 5, which is performed in three steps:

(1) Initializing the parameters of PSO: The candidate weight (w1, w2) and decision threshold are
randomly selected from interval [0, 1].
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(2) Calculating the output of F-measure: Following the procedure in Figure 5, the candidate weight
and decision threshold are entered into the PCM model and Equation (13), respectively.

(3) Comparing the output of F-measure with the objective function: If the F-measure satisfies
the objective function, the corresponding weights and decision threshold are taken as optimal
parameters, otherwise PSO updates the weights and decision threshold based on Equations (14)
and (15), and then repeats Steps 2 and 3. When it reaches the present number of generation or
satisfies the objective function, the corresponding weights and decision threshold of the highest
output of F-measure are taken as optimal parameters.

Figure 5. Procedure for optimization of committee member weights and decision threshold.

2.4. Performance Evaluation

The traditional performance evaluation of classifiers only considers exact matching of the decision
vector y against the true vector t. This evaluation is however unsuitable for simultaneous-fault
diagnosis where partial matching is preferred. F-measure is mostly used as a performance evaluation
for information retrieval systems where a document may belong to a single or multiple tags
simultaneously, which is very similar to the current study. By using F-measure, the evaluation of both
single-fault and simultaneous-fault test cases can be fairly examined. The definition of F-measure is
given in Equation (16). The larger the F-measure value, the higher the diagnostic accuracy is:

Fme “

2
d
ř

j“1

Nt
ř

i“1
yijtij

d
ř

j“1

Nt
ř

i“1
yij `

d
ř

j“1

Nt
ř

i“1
tij

P r0, 1s (16)

where yi = [yi1, yi2, . . . , yid] and ti = [ti1, ti2, . . . , tid] are the predicted decision vector and the true
decision vector respectively, for j = 1 to d and i = 1 to Nt and @yij, tij P [0, 1]. Nt is the number
of single-fault and simultaneous-fault test patterns. For optimization of the weights and decision
threshold, Fme also serves as an important parameter in an objective function. In order to avoid
over-fitting to the validation dataset and achieve high diagnostic accuracy, the objective function is
specifically defined as:

Fme ě B (17)

where B is the preset optimal accuracy of F-measure and B lies between 0 and 1. In this study, B is set
to be 0.9 as a trial. Figure 6 summarizes the evaluation process for the proposed diagnostic framework.

Figure 6. Evaluation of proposed framework.
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3. Experimental Setup and Data Preprocessing

To verify the effectiveness of the proposed framework, experiments were carried out. The detail
of the experimental set up is presented in the following subsections. All the proposed methods were
implemented by using MatLab R2008a and executed on a computer with a Core 2 Duo E6750 @ 2.13
GHz with 4 GB RAM.

3.1. Test Rig and Sample Data Acquisition

The experiments were performed on a test rig as shown in Figure 7, which can simulate most
of the faults in a gearbox. In this study, some common gearbox faults, including gear faults, bearing
faults, and structural faults, are introduced. In the experiments, the gear faults include a broken tooth
with whole tooth damage, a chipped tooth with 1/4 tooth damage, and a gear crack with a 5 mm crack
on the tooth face, whereas the bearing faults include medium wear on the rolling elements and outer
races. The structural faults contain unbalance, looseness, and misalignment, which are simulated by
respectively adding one eccentric mass on the output shaft, unfastening some screws of the gearbox,
and adjusting one height of the gearbox with shims. In the test rig, the signal acquisition module
(NI 9234) with accelerometers and a microphone acquires the vibration and sound signals, respectively.
The accelerometer is used to record the vibration signals along the vertical direction. In this study,
a total of 12 cases, including eight single-faults and four simultaneous faults which are described in
Table 4, are simulated in the test rig in order to generate sample training and test datasets. According
to practical experience, a machine cannot be operated if there are too many faults at the same time.
Therefore, the type of simultaneous faults is an experimental selection in this case study. Besides, the
relationship between simulated faults and signal types is presented in Table 5, which explains that
one kind of signal can only detect a limited number of faults. For example, previous experiments
have found that the vertical vibration signal cannot be used to detect d4 and d5 because the loading
on the tapered roller bearing along the vertical direction is insignificant. Moreover, the sound signal
is relatively unaffected by structural resonance [38], so the structural failures (d1, d2 and d3) cannot
be easily detected using the sound signal. To extend the number of detectable faults and enhance the
reliability of the fault diagnostic system, the vibration and sound signals are therefore simultaneously
employed to diagnose the simultaneous-faults in the gearbox.

Figure 7. Collection of fault patterns from a rotating machinery.
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Table 4. Description of single-faults and simultaneous-faults.

Case No. Single-Faults Case No. Simultaneous-Faults

d1 Unbalance si9 Broken gear tooth & Chipped tooth
d2 Looseness

d3 Mechanical misalignment si10
Chipped tooth & Bearing with

worn outer raced4 Bearing with worn rolling elements

d5 Bearing with worn outer race si11
Broken gear tooth & Bearing with

worn rolling elementsd6 Broken gear tooth

d7 Gear crack si12
Bearing with worn rolling elements

& Bearing with worn outer raced8 Chipped tooth

Table 5. Relationship of single-faults and signal types.

d1 d2 d3 d4 d5 d6 d7 d8

Vertical
vibration

‘ ‘ ‘ ‘ ‘ ‘

Sound
‘ ‘ ‘ ‘ ‘

To construct and test the proposed diagnostic framework, the samples for each single fault and
simultaneous fault were repeated 200 times under two testing conditions (800 rpm and 1500 rpm).
Each time, 1 s of raw signal, including the vibration and sound signals,wa simultaneously recorded
with a sampling rate of 25.6 kHz. In other words, one case of each type of signal has 25,600 sampling
data points. For each type of signal xk (k = 1, 2), there are 1600 single-fault sample data (i.e., eight kinds
of single faults ˆ 200 samples) and 800 simultaneous fault sample data (i.e., four kinds of simultaneous
faults ˆ 200 samples). In order to evaluate the diagnostic performance for both single faults and
simultaneous faults, each sample data is divided into different subsets as shown in Table 6.

Table 6. Division of sample dataset into different subsets.

Type of Dataset Single-Faults (1600) Simultaneous-Faults (800)

Raw sample data (xk)
Validation dataset Dk´Val (800) Dk´Val (600)
Training dataset Dk´Tra (600)

Test dataset Dk´Tes (200) Dk´Tes (200)

After feature extraction
Validation dataset Dk´PVal (800) Dk´PVal (600)
Training dataset Dk´PTra (600)

Test dataset Dk´PTes (200) Dk´PTes (200)

3.2. Data Processing and Signal De-Noising in Case Study

In order to obtain the feature vector, the IMF energy pattern based on HHT is calculated
with the following steps: (1) signal de-noising; (2) IMF component selection; and (3) IMF energy
pattern calculation.

(1) Signal de-noising. In the signal de-noising phase, the mother wavelet and the level of
decomposition L are selected according to a trial-and-error method. In this case study, four Daubechies
wavelets (Db3, Db4, Db5, and Db6) are tried and the range of L is set from 3 to 5. Moreover, the soft
threshold T is equal to 4.476 according to the equation T “

a

2 log plength x ptqq. The effectiveness of
de-noising using Db wavelets is verified by using signal to noise ratio (SNR) which is given as follows:

SNR “ 10ˆ log10p
Sσ

Nσ
q (18)

where Sσ and Nσ are the standard deviation of de-noised signal and noise signal respectively. A large
value of SNR means more noise is eliminated. Considering the sound signal of d6 as an example, the
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de-noised result is shown in Table 7. It demonstrates that the SNR of Db5 with Level 3 is the highest,
so it is suitable to de-noise the signal.

Table 7. Signal to noise ratio under different combinations of Db wavelets.

SNR Level 3 Level 4 Level 5

Db3 12.689 db 11.041 db 10.191 db
Db4 12.690 db 11.090 db 10.207 db
Db5 12.847 db 11.126 db 10.271 db
Db6 12.720 db 11.118 db 10.272 db

(2) IMF component selection. After de-noising the signals, the IMFs of all de-noised signals are
calculated by using EEMD in which the ensemble number and white noise amplitude of EEMD are set
as 100 and 0.3 time of the standard deviation of the investigated signal respectively [33]. In this case
study, EEMD decomposes the de-noised sound signal into ten IMFs and a residual signal. To select
the proper number of IMFs, the correlation coefficient method [13] is used. The correlation coefficient
between an IMF component Ii(t) and its de-noised signal x(t)’ can be defined as:

Coexptq1 ,Iiptq
“

M
ř

i“1
pxptq

1
´ xqpIiptq ´ Iiq

d

M
ř

i“1
pxptq1 ´ xq2

d

M
ř

i“1
pIiptq ´ Iiq

2
(19)

where x and Ii is the mean values of the x(t)’ and Ii(t) respectively and M is the number of IMFs. A large
Coexptq,Iiptq value means a high correlation between Ii(t) and x(t)’, and also implies that Ii(t) contains
more fault information. A signal of correlation coefficients of de-noised sound signal of d6 is presented
in Table 8 as a demonstration in which the correlation coefficient of IMF I10 is obviously smaller than
the others. Thus, only the IMFs from levels 1–9 are considered to extract the energy pattern in this
case study.

Table 8. Correlation coefficients of each IMF component for an example of de-noised signal of d6.

De-noised
sound
of d6

IMF Component

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Correlation
coefficient 0.2054 0.2089 0.2132 0.2375 0.2489 0.3475 0.3134 0.2876 0.2273 0.0274

(3) IMF energy pattern calculation. In this case study, the energy patterns of selected IMFs are
considered to extract the fault features. The energy of the ith IMF, Ei, can be calculated by using the
following equation:

Ei “

n
ÿ

j“1

rpj ¨ ∆tq ¨ |Iipj ¨ ∆tq|2s (20)

where ∆t is the time interval, n and j are the total number and index of data points respectively,
and Ii pj ¨ ∆tq denotes the decomposition coefficient of the ith IMF at the moment of j ¨ ∆t. A
nine-dimensional energy feature vector is extracted as E = [E1, E2, . . . , E9]. Furthermore, under
different fault conditions, the HHT marginal spectra show various maximum values and corresponding
frequencies in the patterns. To enrich the fault information, the maximum amplitude of a marginal
spectrum of HHT, Am, and its corresponding frequency, fm, are added to the feature vector E. Therefore,
the extracted feature vector is extended to an eleven-dimensional vector, which can be rewritten as
E = [E1, E2, . . . , E9, Am, fm]. The procedure of data processing is illustrated in Figure 8.
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Figure 8. Flowchart of proposed feature extraction approach.

4. Experimental Results and Discussion

4.1. Performance of Various Combinations of Feature Extraction Techniques

In the experiments, two typical feature extraction methods, fast Fourier transform (FFT) and
wavelet package transform with principal component analysis (WPT + PCA) are compared with HHT.
For those feature extraction methods, some settings are necessary. For the wavelet package transform
(WPT), the Daubechies wavelet is the most popular one, so it is employed. In this case study, Db4 with
level 4 decomposition is employed after carrying out many trials. Besides, two classification techniques
are used to compare with the proposed PCM framework, including PCPNN and PCRVM. There are
two hyper-parameters, spread S˚ and width W* in the kernel function, which are necessary to be
defined in PCPNN and PCRVM respectively. Meanwhile, PCRVM is employed as a committee member
of PCM, so PCM and PCRVM share the same hyper-parameter width W*. By using a trial-and-error
method, S˚ and W* are set to be 0.3 and 0.64 respectively.

After determining the configurations of the feature extraction and classification techniques, the
reasonable combinations of feature extraction techniques are tested as shown in Figure 9, in which the
weight of each committee member and decision threshold are predefined as 1 (i.e., w1 = w2 = 1) and 0.5
respectively. Note that PCPNN and PCRVM determine their F-measures by combining all the features
extracted from vibration and sound signals as their input vectors, whereas PCM employs two PCRVM
committee members to analyze the respective extracted features.

Figure 9 illustrates that the feature extraction techniques are effective. Taking the proposed PCM
framework as an example, the feature extraction techniques, FFT, WPT + PCA, and Hilbert-Huang
transform + energy pattern (HHT + E) give 14.12%, 18.18%, and 21.48% improvement respectively
as compared with the method without any feature extraction. By using PCPNN and PCRVM as
classifiers, the feature extraction methods also improve the diagnostic accuracy from 16.06% to 21.16%
as compared with the method without feature extraction. Note that the classifiers only employ a
training set of single-fault patterns to construct the classifiers while the performance is evaluated using
simultaneous-fault test patterns. Figure 9 also indicates that no matter which classification technique
is, HHT + E gives the best performance. The reason is that extracting the energy from HHT can
reflect not only the energy amount of each IMF, but also the energy distribution of each IMF changing
with time, which can provide more faulted component information. This result also verifies that the
proposed feature extraction technique (HHT + E) is effective to extract the features of single-faults
from simultaneous-fault patterns of the gearbox.
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Figure 9. Diagnostic accuracies of different combinations of feature extraction techniques.

4.2. Result and Discussion of Optimization Approach

After selecting HHT + E as feature extraction technique, the extracted features are employed to
construct and train the committee machine. Then, PSO and Equations (16) and (17) are employed
to determine the best wopt for each committee member and decision threshold εopt. The optimized
weights and threshold as well as their corresponding Fme are shown in Table 9 in which the optimal
weight for the first committee member w1 (0.7752) is higher than that of w2. In other words, the
committee member trained by vertical vibration signal shows a great impact on the simultaneous-fault
diagnosis. The main reason is that the sound signal is easily interfered by background noise. It implies
that the first committee member is assigned with greater weight by PSO in order to make the output
satisfying the objective function. Table 9 also illustrates that the proposed optimization framework can
improve the diagnostic accuracy by 3.82% as compared with the empirical decision threshold of 0.5
and identical weights (w1 = w2 = 1) under the same feature extraction technique and simultaneous-fault
test dataset. It means that the proposed optimization framework is effective.

Table 9. Selection of optimal weights and decision threshold using PSO.

Classifier No. of
Features

Optimization
Method

Decision
Threshold Weights

Fme Based on
Simultaneous-Fault

Test Dataset

PCM Vibration = 11
Sound = 11 - 0.5 w1 = 1

w2 = 1 0.7890

PCM Vibration = 11
Sound = 11 PSO 0.7583 w1 = 0.7752

w2 = 0.6991 0.8272

Remark: Feature extraction method is based HHT + E.

4.3. Overall Evaluation of Proposed Framework

To verify the effectiveness of the proposed PCM diagnostic framework, the aforesaid two single
probabilistic classifiers are compared with the proposed framework based on the optimal weights
and decision threshold obtained by PSO. The experimental result of F-measure is shown in Table 10.
Compared with PCPNN and PCRVM, the training time and average fault detection time of PCM are
the longest, 36.189 s and 17.8574 s, respectively, while the result shows the diagnostic accuracy of
PCM outperforms PCPNN and PCRVM by 5.24% and 4.18% respectively under the same test dataset
of simultaneous-faults. Note that the training time of PCM is only based on the training dataset
of single fault patterns; the average fault detection time of PCM relies on calculating the average
time of test datasets of single, simultaneous and overall faults. Table 10 also reveals the proposed
framework achieves the best accuracy for single faults (94.60%) and overall faults (89.24%) which
include both single and simultaneous fault patterns. The main reason is that the committee members
in the proposed framework are trained with different types of signals. In this way, each committee
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member becomes different from each other, which can improve the classification accuracy of the
ensemble. For example, considering an ensemble of k trained classifiers [C1, C2, ..., Ck], if the classifiers
are trained using different subsets and their errors are uncorrelated, then even when Ci is wrong, most
of the other classifiers Cj (where i ‰ j) may still be correct.

In a nutshell, the proposed framework is an effective approach to detect the simultaneous-faults
without costly simultaneous-fault training patterns. Moreover, the proposed method employs vibration
and sound signals to train the diverse committee members, which can ensure the diagnostic result
to be more reliable and accurate. Therefore, it can be concluded that the proposed framework is an
effective technique to overcome both challenges in fault diagnosis of the gearbox.

Table 10. Evaluation result of PCM, PCPNN and PCRVM.

Classifier Feature
Number

Decision
Threshold

Optimal
Weight

Accuracies for Test Cases (Fme)

Single-
Faults

Simultaneo-
Us-Faults

Overall-
Faults

Average
Fault

Detection
Time (s)

PCPNN 11 + 11 = 22 0.6830 - 0.9163 0.7717 0.8563 8.8014

PCRVM 11 + 11 = 22 0.6754 - 0.9141 0.7823 0.8642 9.7685

PCM Vibration = 11
Sound = 11 0.7583 w1 = 0.7752

w2 = 0.6991 0.9460 0.8241 0.8924 17.8574

Remark: Feature extraction method is based on HHT + E.

5. Conclusions

In this paper, a new framework, which combines signal de-noising, feature extraction, probabilistic
committee machine, parameter optimization and F-measure, has successfully been developed to
overcome the challenges of simultaneous fault diagnosis and multiple signal analysis in a gearbox. In
consideration of the features of vibration and sound signals in this application, DWT and HHT + E
are used for signal de-noising and feature extraction, respectively, so that the diagnostic system can
effectively capture the single fault components from the noise-polluted simultaneous fault patterns. It
implies that the acquisition of large amount of simultaneous fault signals can be avoided. Moreover,
PSO is effective for optimizing the weight of each committee member and decision threshold in the
PCM framework. To verify the effectiveness of the proposed probabilistic committee machine and
make a comparison, the single probabilistic classifiers, PCPNN and PCRVM, are also employed to
diagnose the simultaneous faults. Although the results show that those machine learning methods
can diagnose the simultaneous faults in the gearbox, it is found that the proposed PCM framework
is superior to the single classifiers. Therefore, the proposed PCM framework is suitable to detect the
simultaneous faults in the gearbox.

In practice, most mechanical faults can be diagnosed by analyzing vibrations, sounds, currents,
oil debris and temperature signals. As the number and type of committee members in the proposed
framework can be adjusted by the user, the proposed framework can be applied to other similar
diagnostic applications.
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Philadelphia, PA, USA, 2007; Volume 24, pp. 1253–1258.

11. Wang, Y.S.; Lee, C.M.; Kim, D.G.; Xu, Y. Sound-quality prediction for nonstationary vehicle interior noise
based on wavelet pre-processing neural network model. J. Sound Vib. 2007, 299, 933–947. [CrossRef]

12. Ahn, J.H.; Kwak, D.H.; Koh, B.H. Fault detection of a roller-bearing system through the emd of a wavelet
denoised signal. Sensors 2014, 14, 15022–15038. [CrossRef] [PubMed]

13. Wang, Y.; Ma, Q.; Zhu, Q.; Liu, X.; Zhao, L. An intelligent approach for engine fault diagnosis based on
hilbert–huang transform and support vector machine. Appl. Acoust. 2014, 75, 1–9. [CrossRef]

14. Soualhi, A.; Medjaher, K.; Zerhouni, N. Bearing health monitoring based on hilbert–huang transform,
support vector machine, and regression. IEEE Trans. Instrum. Meas. 2015, 64, 52–62. [CrossRef]

15. Jiang, L.L.; Li, B.B.; Li, X.J. An Improved hht Method and Its Application in Fault Diagnosis of Roller Bearing.
Appl. Mech. Mater. 2013, 273, 264–268. [CrossRef]

16. Wu, J.D.; Liu, C.H. Investigation of engine fault diagnosis using discrete wavelet transform and neural
network. Expert Syst. Appl. 2008, 35, 1200–1213. [CrossRef]

17. Wu, J.D.; Chan, J.J. Faulted gear identification of a rotating machinery based on wavelet transform and
artificial neural network. Expert Syst. Appl. 2009, 36, 8862–8875. [CrossRef]

18. Loutas, T.H.; Sotiriades, G.; Kalaitzoglou, I.; Kostopoulos, V. Condition monitoring of a single-stage
gearbox with artificially induced gear cracks utilizing on-line vibration and acoustic emission measurements.
Appl. Acoust. 2009, 70, 1148–1159. [CrossRef]

19. Yang, Y.; Yu, D.; Cheng, J. A fault diagnosis approach for roller bearing based on imf envelope spectrum and
svm. Measurement 2007, 40, 943–950. [CrossRef]

20. Cerrada, M.; Sánchez, R.V.; Cabrera, D.; Zurita, G.; Li, C. Multi-stage feature selection by using genetic
algorithms for fault diagnosis in gearboxes based on vibration signal. Sensors 2015, 15, 23903–23926.
[CrossRef] [PubMed]

21. Wong, P.K.; Zhong, J.; Yang, Z.; Vong, C.M. Sparse bayesian extreme learning committee machine for engine
simultaneous fault diagnosis. Neurocomputing 2016, 174, 331–343. [CrossRef]

22. Tresp, V. A bayesian committee machine. Neural Comput. 2000, 12, 2719–2741. [CrossRef] [PubMed]
23. Chen, S.; Wang, W.; van Zuylen, H. Construct support vector machine ensemble to detect traffic incident.

Expert Syst. Appl. 2009, 36, 10976–10986. [CrossRef]
24. Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12,

993–1001. [CrossRef]

http://dx.doi.org/10.1016/j.ymssp.2006.01.007
http://dx.doi.org/10.1016/j.ymssp.2006.11.003
http://dx.doi.org/10.1016/j.jsv.2007.01.006
http://dx.doi.org/10.1016/j.eswa.2006.04.020
http://dx.doi.org/10.1016/j.ymssp.2006.12.007
http://dx.doi.org/10.1016/j.neucom.2013.03.059
http://dx.doi.org/10.3390/s150305627
http://www.ncbi.nlm.nih.gov/pubmed/25760051
http://dx.doi.org/10.1109/TIE.2012.2202358
http://dx.doi.org/10.1155/2013/827128
http://dx.doi.org/10.1016/j.jsv.2006.07.034
http://dx.doi.org/10.3390/s140815022
http://www.ncbi.nlm.nih.gov/pubmed/25196008
http://dx.doi.org/10.1016/j.apacoust.2013.07.001
http://dx.doi.org/10.1109/TIM.2014.2330494
http://dx.doi.org/10.4028/www.scientific.net/AMM.273.264
http://dx.doi.org/10.1016/j.eswa.2007.08.021
http://dx.doi.org/10.1016/j.eswa.2008.11.020
http://dx.doi.org/10.1016/j.apacoust.2009.04.007
http://dx.doi.org/10.1016/j.measurement.2006.10.010
http://dx.doi.org/10.3390/s150923903
http://www.ncbi.nlm.nih.gov/pubmed/26393603
http://dx.doi.org/10.1016/j.neucom.2015.02.097
http://dx.doi.org/10.1162/089976600300014908
http://www.ncbi.nlm.nih.gov/pubmed/11110133
http://dx.doi.org/10.1016/j.eswa.2009.02.039
http://dx.doi.org/10.1109/34.58871


Sensors 2016, 16, 185 19 of 19

25. Wu, J.D.; Chiang, P.H.; Chang, Y.W.; Shiao, Y.J. An expert system for fault diagnosis in internal combustion
engines using probability neural network. Expert Syst. Appl. 2008, 34, 2704–2713. [CrossRef]

26. Wang, C.; Zhou, J.; Qin, H.; Li, C.; Zhang, Y. Fault diagnosis based on pulse coupled neural network and
probability neural network. Expert Syst. Appl. 2011, 38, 14307–14313. [CrossRef]

27. Wang, G.; Yang, Y.; Xie, Q.; Zhang, Y. Force based tool wear monitoring system for milling process based on
relevance vector machine. Adv. Eng. Softw. 2014, 71, 46–51. [CrossRef]

28. Zio, E.; Di Maio, F. Fatigue crack growth estimation by relevance vector machine. Expert Syst. Appl. 2012, 39,
10681–10692. [CrossRef]

29. Wu, T.F.; Lin, C.J.; Weng, R.C. Probability estimates for multi-class classification by pairwise coupling.
J. Mach. Learn. Res. 2004, 5, 975–1005.

30. Robinson, J.; Rahmat-Samii, Y. Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag.
2004, 52, 397–407. [CrossRef]

31. Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection.
Inf. Process. Lett. 2003, 85, 317–325. [CrossRef]

32. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method.
Adv. Adapt. Data Anal. 2009, 1, 1–41. [CrossRef]

33. Lei, Y.; He, Z.; Zi, Y. Application of the eemd method to rotor fault diagnosis of rotating machinery.
Mech. Syst. Signal Process. 2009, 23, 1327–1338. [CrossRef]

34. Widodo, A.; Yang, B.-S. Application of relevance vector machine and survival probability to machine
degradation assessment. Expert Syst. Appl. 2011, 38, 2592–2599. [CrossRef]

35. Hastie, T.; Tibshirani, R. Classification by pairwise coupling. Ann. Stat. 1998, 26, 451–471. [CrossRef]
36. Wong, P.K.; Tam, L.M.; Li, K.; Vong, C.M. Engine idle-speed system modelling and control optimization

using artificial intelligence. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2010, 224, 55–72. [CrossRef]
37. Hripcsak, G.; Rothschild, A.S. Agreement, the f-measure, and reliability in information retrieval. J. Am. Med.

Inform. Assoc. 2005, 12, 296–298. [CrossRef] [PubMed]
38. Qu, Y.; He, D.; Yoon, J.; van Hecke, B.; Bechhoefer, E.; Zhu, J. Gearbox tooth cut fault diagnostics using

acoustic emission and vibration sensors—A comparative study. Sensors 2014, 14, 1372–1393. [CrossRef]
[PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2007.05.010
http://dx.doi.org/10.1016/j.eswa.2011.05.095
http://dx.doi.org/10.1016/j.advengsoft.2014.02.002
http://dx.doi.org/10.1016/j.eswa.2012.02.199
http://dx.doi.org/10.1109/TAP.2004.823969
http://dx.doi.org/10.1016/S0020-0190(02)00447-7
http://dx.doi.org/10.1142/S1793536909000047
http://dx.doi.org/10.1016/j.ymssp.2008.11.005
http://dx.doi.org/10.1016/j.eswa.2010.08.049
http://dx.doi.org/10.1214/aos/1028144844
http://dx.doi.org/10.1243/09544070JAUTO1196
http://dx.doi.org/10.1197/jamia.M1733
http://www.ncbi.nlm.nih.gov/pubmed/15684123
http://dx.doi.org/10.3390/s140101372
http://www.ncbi.nlm.nih.gov/pubmed/24424467
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Proposed Framework 
	Data Processing 
	Signal De-Noising 
	Feature Extraction Based on Hilbert-Huang Transform 

	Probabilistic Committee Machine 
	Relevance Vector Machine 
	Pairwise-Coupled Relevance Vector Machine as Committee Member 
	Ensemble Method 

	Parameter Optimization 
	Performance Evaluation 

	Experimental Setup and Data Preprocessing 
	Test Rig and Sample Data Acquisition 
	Data Processing and Signal De-Noising in Case Study 

	Experimental Results and Discussion 
	Performance of Various Combinations of Feature Extraction Techniques 
	Result and Discussion of Optimization Approach 
	Overall Evaluation of Proposed Framework 

	Conclusions 

