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Abstract: With the development of body sensor networks and the pervasiveness of smart phones,
different types of personal data can be collected in real time by body sensors, and the potential value
of massive personal data has attracted considerable interest recently. However, the privacy issues of
sensitive personal data are still challenging today. Aiming at these challenges, in this paper, we focus
on the threats from telemetry interface and present a secure and privacy-preserving body sensor
data collection and query scheme, named SPCQ, for outsourced computing. In the proposed SPCQ
scheme, users’ personal information is collected by body sensors in different types and converted
into multi-dimension data, and each dimension is converted into the form of a number and uploaded
to the cloud server, which provides a secure, efficient and accurate data query service, while the
privacy of sensitive personal information and users’ query data is guaranteed. Specifically, based
on an improved homomorphic encryption technology over composite order group, we propose a
special weighted Euclidean distance contrast algorithm (WEDC) for multi-dimension vectors over
encrypted data. With the SPCQ scheme, the confidentiality of sensitive personal data, the privacy of
data users’ queries and accurate query service can be achieved in the cloud server. Detailed analysis
shows that SPCQ can resist various security threats from telemetry interface. In addition, we also
implement SPCQ on an embedded device, smart phone and laptop with a real medical database, and
extensive simulation results demonstrate that our proposed SPCQ scheme is highly efficient in terms
of computation and communication costs.
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1. Introduction

In recent years, with the popularization of wearable sensors and telemedicine, body sensor
networks (BSN), which comprise multiple sensor nodes and a coordinator worn on a human body,
can collect the personal information of the human body (such as heart rate, blood glucose and
electrocardiogram) by sensor nodes [1–6]. The collected information first is delivered to the coordinator,
then is forwarded to a remote server through a network interface for further processing [7,8]. As shown
in Figure 1, vast quantities of the sensor users’ personal data are collected by body sensors and recorded
by a data center per second. Since large-scale aggregate analysis of personal data can yield valuable
results and insights, which can address public health challenges and provide new avenues for scientific
discovery [9], data center trends toward providing on-demand data query service for users. However,
this requires huge storage space and enormous computing resources, which are tremendous burdens
on data centers. As the survey [10] shows that roughly 55 percent of respondents plan to use cloud
services for analysis queries, cloud computing is a promising way to integrate personal data resources
and to provide a uniform query service to researchers [11–15]. Since personal data are regarded as
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sensitive and private assets of sensor users, how to provide accurate data query services without
revealing confidential personal data has attracted considerable interest recently.
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Figure 1. Body sensor data collection and query service scenario.

To address these security and privacy issues, differential privacy [16], homomorphic
encryption [17] and searchable encryption [18] are widely used. However, differential privacy
cannot provide accurate query results for users; traditional homomorphic encryption schemes are
time consuming and resource consuming; searchable encryption cannot provide query services over
encryption data. Therefore, the above methods are not suitable for multi-dimension personal data
query services.

Different from the methods discussed above, in this paper, we focus on the threats from telemetry
interface [19,20] and propose a new secure and privacy-preserving body sensor data collection and
query scheme, called SPCQ, for outsourced computing. In the proposed scheme, users’ personal
information is collected by body sensors of different types and converted into multi-dimension data,
and each dimension is converted into the form of a number and uploaded to the cloud server in
ciphertext. After that, the cloud server provides query services to data users by the privacy-preserving
weighted Euclidean distance contrast (WEDC) algorithm for multi-dimension vectors. Meanwhile,
SPCQ can protect the confidentiality of sensor users’ personal data and the privacy of data users’ query,
with low overheads in computation and communication.

The remainder of this paper is organized as follows. In Section 2, we review the related work.
In Section 3, we define the system model and security model and identify our design goal. Additionally,
in Section 4, we recall the bilinear pairing of the composite order, Euclidean distance and the 2DNF
cryptosystem as the preliminaries. Then, we present our SPCQ scheme in Section 5, followed by the
security analysis and performance evaluation in Sections 6 and 7, respectively. Finally, we draw our
conclusions in Section 8.

2. Related Work

In recent years, how to achieve operations over encrypted data has attracted considerable interest,
and most of the proposed schemes are based on differential privacy, homomorphic encryption and
searchable encryption.

The differential privacy notion was first formulated by Dwork [16], which can provide information
about the database while simultaneously ensuring very high levels of privacy. Barthe et al. [21]
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presented CertiPriv, a machine-checked framework for reasoning about differential privacy built on
top of the Coq proof assistant. The scheme provided a framework for fine-grained reasoning about an
expressive class of confidentiality policies. Additionally, Tschantz et al. [22] presented the first results
towards automated verification of source code for differentially-private interactive systems, which
developed a formal probabilistic automaton model of differential privacy for systems by adapting
prior work on differential privacy for functions. To achieve automated verification of distributed
differential privacy, Eigner et al. [23] presented the framework by comprising a symbolic definition
of differential privacy for distributed databases that takes into account Dolev–Yao intruders, and the
scheme can overhear, intercept and synthesize the cryptographic messages exchanged on the network.
However, the above differential privacy scheme cannot provide accurate query services because of
added randomized noise.

Homomorphic encryption is a usual method to achieve data operations over encrypted data
without decrypting it. Rivest et al. [17] first introduced homomorphism and presented four solutions to
achieve homomorphic encryption. Then, Goldwasser et al. [24] proposed the first semantically-secure
homomorphic encryption scheme, and many other additively homomorphic encryption schemes with
proofs of semantic security [25–27] were presented. To achieve both additive and multiplicative
homomorphisms, Gentry [28] designed a full homomorphic encryption scheme based on the
mathematical object ideal lattices and uses the bootstrapping technique. It is semantically secure, and
the security of the scheme is based on the split-key distinguishing problem. Then, other different
full homomorphic encryption schemes were based on the elementary theory of algebraic number
fields [29] and non-circuit [30]. However, most of these existing homomorphic encryption schemes
have high time complexities, which is not suitable for practical use.

Keyword searchable encryption schemes usually build an encrypted searchable index, such that its
content is hidden from the server unless it is given appropriate trapdoors generated via secret keys [31].
Song et al. [18] firstly studied searchable encryption in the symmetric key setting, and Boneh et al. [32]
presented the first searchable encryption construction, where anyone with a public key can write
to the data stored on the server, but only authorized users with a private key can search. However,
public key solutions are usually very computationally expensive, and the keyword privacy could
not be protected in the public key setting. To solve the multi-keyword ranked search over encrypted
data problem, Cao et al. [33] proposed a basic idea of MRSE using secure inner product computation,
and two improved MRSE schemes were given to achieve various stringent privacy requirements in
two different threat models. However, searchable encryption can only provide keyword query rather
than accurate computation query, which is not suitable for multi-dimension personal data.

Different from the above works, our proposed SPCQ scheme aims at the efficiency, accurate and
privacy issues, and based on an improved homomorphic encryption technology over composite order
group, we develop an efficient and privacy-preserving body sensor data collection and query scheme
for outsourced computing. In particular, the proposed SPCQ can be easily implemented on different
terminals, and the processing of the query is just needed in the cloud server. The computational costs
in both the terminal and cloud server are acceptable.

3. Models and Design Goals

In this section, we define the system model, security requirements and identify our design goal.

3.1. System Model

In our system model, we mainly focus on how to offer secure personal data collection and efficient
query service over confidential personal data in the outsourced cloud server. Specifically, the system
consists of four parts: register center (RC), sensor user (SU), data user (DU) and cloud server(CS), as shown
in Figure 2.
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Figure 2. System model under consideration.

• RC is a trusted third party, which bootstraps the system initialization by generating system
parameters and providing a registration system for SU, DU and CS.

• SU collects real-time personal data by body sensors, and all SUs’ personal data will be uploaded
to CS. To guarantee the data confidentiality, SU will perform some encryption operations before
uploading data to CS.

• DU (e.g., the researcher), who is registered in RC, can send query request to CS for analysis of the
accurate personal data items stored in it. To guarantee the privacy of DU’s query information,
DU will perform some encryption operations during the process of the query. Meanwhile, SUs’
personal data should be kept secret from unauthorized users.

• CS is composed of many data storage nodes and computing nodes, stores more than a billion
encrypted personal data items from SUs and provides accurate query services to DUs over
encrypted personal data. CS mainly performs two functions: authentication and computing over
encrypted data. The authentication component is used to check the identity of SUs and DUs,
while the computing in encryption component is used to search and compute encrypted data
items with DUs’ encrypted query request.

3.2. Security Requirements

The confidentiality of personal data from SUs and the privacy of DU’s query information are
crucial for the success of a secure and privacy-preserving body sensor data collection and query
scheme. In our security model, we consider CS is honest-but-curious. Specifically, CS faithfully executes
the operations to search DUs’ demanded information over the encrypted personal data from SUs, but
it also tries to analyze the query information and encrypted data to obtain users’ sensitive information.
Therefore, in this paper, we focus on the threats from telemetry interface, and the following security
requirements should be satisfied in a secure and privacy-preserving body sensor data collection and
query scheme. Note that, in our current model, we do not consider that any two parties collude to
disclose the third party’s privacy, i.e., the collusion attack on privacy is beyond the scope of this work
and will be discussed in future research.
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• Confidentiality. SUs’ sensitive personal data should be kept secret from CS, i.e., even if CS stores all
personal data from SUs, it cannot identify any data item. In this circumstance, the confidentiality
of the personal data can be guaranteed.

• Privacy. DU’s query information should be secrete from CS, i.e., even if CS obtains all DUs’
queries and corresponding responses, it cannot identify DUs’ query information accurately.
Additionally, other users (e.g., SUs and other DUs) cannot get any information of DU. In this
circumstance, the privacy-preserving requirements of DU’s query information can be guaranteed.
In addition, the privacy requirement also includes CS’s responses, i.e., only legal DU can decrypt
the corresponding response.

• Authentication. Authenticating an encrypted query that is really sent by a legal DU and has not
been altered during the transmission, i.e., if an illegal DU forges a query, this malicious operation
should be detected, and only correct queries can be received by CS. The responses from CS should
also be authenticated so that DUs can receive authentic and reliable query results. Moreover, the
encrypted personal data from SUs can be authenticated by CS.

3.3. Design Goals

Under the aforementioned system model and security requirements, our design goal is
to develop a secure and privacy-preserving body sensor data collection and query scheme for
outsourced computing, which will provide secure personal data collection and storage for SUs and
privacy-preserving accurate Euclidean distance query service for DUs. Specifically, the following three
objects should be achieved.

• The Security Requirements Should be Guaranteed. If the personal data collection and query scheme
does not consider the security, SUs’ data assets and DU’s actual query information could be
disclosed. Then, the data collection and query service cannot jump in popularity. Therefore, the
proposed scheme should achieve the confidentiality, privacy and authentication simultaneously.

• A Personal Data query Service with High Accuracy Should be Guaranteed. The user experience is one of
the most critical aspects of data query service, and it is important that the precision of Euclidean
distance query service cannot be lowered when protecting DU’s privacy. Therefore, the proposed
scheme should also provide highly precise and reliable query service.

• The Effectiveness in Computation and Communication Should be Achieved for Various Terminal Devices.
The personal data may be collected by different terminal devices, such as smart phone, embedded
device, etc. Although the performance of terminal devices is continuously improved today, the
battery is still limited. The proposed scheme should also consider the effectiveness in terms
of computation and communication to reduce the power consumption of different terminals.
Moreover, data users can access the data query service by mobile terminals, in order to lower the
energy cost, the efficiency of the query service is very important. Furthermore, although CS is
featured with high performance in storage and computation, since thousands of DUs will query
the data at the same time, the efficiencies of computation and communication are still challenging.

4. Preliminaries

In this section, we recall the bilinear pairing technique, Euclidean distance and 2DNF
cryptosystem, which serve as the basis of our proposed SPCQ scheme.

4.1. Bilinear Pairing of Composite Order

Let G and Gt be two multiplicative cyclic groups of the same composite order N = p1 · p2 (where
p1 and p2 are big primes), and g is a generator of G. We suppose e : G×G→ Gt denotes the bilinear
map (also referred to as a paring), which has the following properties.

(1) Bilinearity. e(ua, vb) = e(u, v)ab holds for all u, v ∈ G and a, b ∈ ZN ;
(2) Non-degeneracy. e(g, g) 6= 1Gt ;
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(3) Computability. For all u, v ∈ G, e(u, v) can be computed efficiently.

4.2. Euclidean Distance

Euclidean distance is a common definition of distance, it corresponds to the true distance of two
points in n-dimensional space. The Euclidean distance between two points P and Q is the length of the
line segment connecting them in Euclidean space. In Cartesian coordinates, if P = (p1, p2, ..., pn) and
Q = (q1, q2, ..., qn) are two different n-dimensional vectors, then the Euclidean distance from P to Q or
from Q to P is given by the Pythagorean formula:

d(P, Q) =

√
(q1 − p1)

2 + (q2 − p2)
2 + · · ·+ (qn − pn)

2

To satisfy the practical circumstance and provide DUs with an accurate query service, we set
different weight numbers (w1, w2, ..., wn) for each dimension to form a weighted Euclidean distance:

d(P, Q) =

√
w1(q1 − p1)

2 + w2(q2 − p2)
2 + · · ·+ wn(qn − pn)

2

4.3. 2DNF Cryptosystem

The 2DNF [34] cryptosystem is a public-key system that can achieve the homomorphic properties,
which resembles the Paillier [27] and Okamoto-Uchiyama [26] encryption schemes. Specially, the
2DNF cryptosystem consists of three sections: key generation, encryption and decryption.

• Key generation Gen(µ). Given a security parameter µ ∈ Z+, two µ−bit prime numbers p1 and
p2 are first chosen, and N = p1 · p2 is computed. Two groups of the same order N are generated,
g and u are two generators of G. Then, h = up2 is computed as a random generator of G’s
subgroup with order p1. Finally, the public key PK = (n, G, Gt, e, g, h) and private key SK = p1

are generated.
• Encryption. We assume the message space consists of integers in the set {0, 1, · · ·, T} with

T < p2. Then, to encrypt a message m with public key PK, a random number r is selected from
{0, 1, · · ·, N − 1}, and the ciphertext C = gmhr ∈ G is computed.

• Decryption. To decrypt ciphertext C with private key SK = p1, notice that
Cp1 = (gmhr)p1 = (gp1)m; let ĝ = gp1 . To recover the corresponding message m, we need to
compute the discrete log of Cp1 = ĝm, where ĝ = gp1 . Since 0 ≤ m ≤ T, it only takes expected
time Ô(

√
T) using Pollard’s lambda method [35] to get the message m.

Note that the decryption time in the system would be the polynomial time in the size of the
message space Ts. Hence, it is obvious that the cryptosystem is efficiently suitable for short messages.

5. Proposed SPCQ

In this section, we present a secure and privacy-preserving body sensor data collection and query
scheme for outsourced computing, which mainly consists of three phases: system initialization, secure
data collection and privacy-preserving query service. For an easier expression, the definition of notations
to be used in the proposed SPCQ scheme are shown in Table 1.
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Table 1. Definition of notations in the proposed secure and privacy-preserving body sensor data
collection and query (SPCQ) scheme.

Notation Definition

µ the system security parameter
p1, p2 two big prime numbers
N = p1 · p2 the product of p1 and p2
G, Gt the bilinear groups with order N
e, g ,h the parameters of bilinear groups
B1 B1 = gp1

B2 B2 = e(g, g)p1

E() the asymmetric encryption algorithm, i.e., ECC
H() the secure cryptographic hash function
HPS the evaluation dataset
(xi1, xi2, ..., xin) the feature parameters of a data item
W = (w1, w2, ..., wn) the weighted number of different dimensions
d the weighted Euclidean search range of DU’s query
Fi = ( fi1, f ′i1, fi2, f ′i2, ..., fin, f ′in) the encrypted search index of a data item〈
q1, q′1, ..., qn, q′n

〉
DU’s encrypted query parameters

5.1. System Initialization

We consider RC as the trusted third party, which bootstraps the system. In the system
initialization phase, RC first selects a security parameter µ, generates system parameters
(G, Gt, p1, p2, e, g, h, N = p1 · p2) by executing Gen(µ) and calculates two secret bases B1 = gp1 and
B2 = e(g, g)p1 . Next, RC decides a multi-dimension weight vector W = (w1, w2, ..., wn) that each
number denotes the weight value of the corresponding dimension. Then, RC picks a random number
rRC ∈ Z∗N as its private key SKRC and computes the corresponding public key PKRC = gSKRC .
In addition, RC determines an asymmetric cryptographic algorithm E(), i.e., ECC, and a secure
cryptographic hash function H(), where H : {0, 1}∗ → Z∗N and Z∗N is a nonzero group of integer
modulo N. Finally, RC publishes the system parameters as 〈N, G, GT , e, g, h, PKRC, E(), H()〉 and keeps
〈p1, SKRC〉 secretly.

When an SU or DU registers itself to RC, it picks a random number r ∈ Z∗N as the private
key SK and computes and submits the corresponding public key PK = gSK to RC for the signature.
Then, RC sends 〈B1, B2, W〉 to the registered SU and DU through a secure channel. Similarly, when
CS registers itself, it generates the private and public key pair as SKCS ∈ Z∗N , PKCS = gSKCS , and
submits PKCS to RC for the signature. After that, RC calculates HPj = H(B2

j2), where 0 ≤ j ≤ η

and η is a big integer whose length is much less than 256 bits, and structures the set of data values
HPS =

{
HP0, HP1, ..., HPη

}
. Then, RC ranks the dataset from the smallest to the largest and sends

the ordered dataset HPS to CS. It is noteworthy that 〈B1, B2〉 is not given to CS. After providing the
registration function for SU, DU and CS, RC goes offline or suffers slowdowns against the single point
of attack, since it has many secret parameters.

5.2. Secure Data Collection

SUs collect their real-time personal data through body sensors, and the data can be described
by n-dimensional vectors (xi1, xi2, ..., xin). Before uploading to CS, each data item in SU should be
processed as follows.

• SU computes x′i1 = xi1 + H(B1), x′i2 = xi2 + H(B1),..., x′in = xin + H(B1), where B1 is only known
by registered SUs and DUs; this operation can resist the exhaustive attack.

• SU chooses n random numbers r1, r2, ..., rn ∈ Z∗N and computes the encrypted search index
Fi = ( fi1, f ′i1, fi2, f ′i2, ..., fin, f ′in), which can be implicitly formed as follows.



Sensors 2016, 16, 179 8 of 16



fi1 = Bw1·x′i1
2

2 f ′i1 = gx′i1 · hr1

fi2 = Bw2·x′i2
2

2 f ′i2 = gx′i2 · hr2

...
...

fin = Bwn ·x′in
2

2 f ′in = gx′in · hrn

• SU makes a signature Sig = H(Fi ‖ID ‖TS1 )
SK using the private key SK, where TS1 is the current

timestamp to resist potential replay attack, and ID is the identify number of SU. Then, SU sends
the signed data item 〈Fi ‖ID ‖TS1 ‖Sig 〉 to CS.

• After receiving the signed data item from SU, CS first checks the timestamp TS1 and verifies
the signature Sig by computing whether e(g, Sig) = e(PK, H(Fi ‖ID ‖TS1 )). If it does hold, the
signature is accepted, since e(g, Sig) = e(g, H(Fi ‖ID ‖TS1 ))

SK=e(PK, H(Fi ‖ID ‖TS1 )). Then,
CS stores the data item Fi.

5.3. Privacy-Preserving Query Service

5.3.1. User Query Generation

Registered DU Uj is able to send a query request to CS without revealing his or her query
information by the following steps.

• Uj first decides a data item with n feature parameters {y1, y2, ..., yn} that he or she is willing
to query and computes y′1 = y1 + H(B1), y′2 = y2 + H(B1),..., y′n = yn + H(B1) to increase the
sample space.

• Uj determines the weighted Euclidean distance search range d from the data item that he or she
wants to query and computes encrypted query (q1, q′1, q2, q′2, ..., qn, q′n) as follows.

q1 = Bw1·y′
2
1−d2

2 q′1 = B2w1·y′1
1

q2 = Bw2·y′22
2 q′2 = B2w2·y′2

1

...
...

qn = Bwn ·y′2n
2 q′n = B2wn ·y′n

1

• Uj uses the public key of CS PKCS to compute Q = EPKCS(q1||q′1||q2||q′2||...||qn||q′n).

• Uj makes a signature Sigj = (H(Q
∥∥Uj ‖TS2 ))

SKUj using his or her private key SKUj , where TS2

is the current timestamp to resist potential replay attack. Then, Uj sends the encrypted data query
request

〈
Q
∥∥Uj ‖TS2

∥∥Sigj
〉

to CS.

5.3.2. Search and Response

After receiving encrypted data query request
〈

Q
∥∥Uj ‖TS2

∥∥Sigj
〉

from Uj, CS executes the
following procedures to provide personal data query service.

• CS first checks the timestamp TS2 and verifies the signature Sigj by computing whether
e(g, Sigj) = e(PKDUj , H(Q

∥∥Uj ‖TS2 )). If it does hold, the signature is accepted, since

e(g, Sigj) = e(g, H(Q
∥∥Uj ‖TS2 ))

SKUj = e(PKUj , H(Q
∥∥Uj ‖TS2 )).

• CS uses its secret key SKCS to decrypt Q and obtain
〈
q1, q′1, q2, q′2, ..., qn, q′n

〉
. Then, CS executes the

proposed WEDC algorithm as follows.
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– For each data item Fi stored in it, CS computes the search criteria Di as follows.

Di =
e( f ′i1, q′1) · e( f ′i2, q′2) ·...· e( f ′in, q′n)

fi1 · fi2 · ... · fin · q1 · q2 · ... · qn

=
e(gx′ i1 hr1 , B2w1·y′1

1 ) ·...· e(gx′ in hrn , B2wn ·y′n
1 )

Bw1x′ i1
2

2 ·...· Bwnx′ in
2

2 · Bw1y′21−d2

2 ·...· Bwny′2n
2

=
e(gx′ i1 hr1 , gp1·2w1·y′1) ·...· e(gx′ in hrn , gp1·2wn ·y′n)

Bw1x′ i1
2

2 · ... · Bwnx′ in
2

2 · Bw1y′21−d2

2 · ... · Bwny′2n
2

=
e(g, g)p12w1·x′ i1y′1 · ... · e(g, g)p1·2wn ·x′ iny′n

Bw1x′ i1
2

2 · ... · Bwnx′ in
2

2 · Bw1y′21−d2

2 · ... · Bwny′2n
2

= Bd2−(w1(x′ i1−y′1)
2+...+wn(x′ in−y′n)

2)
2

= Bd2−(w1(xi1−y1)
2+...+wn(xin−yn)

2)
2

– CS computes HDi = H(Di) and searches HDi within the evaluation dataset HPS by binary
search algorithm to confirm whether HDi belongs to it. If HDi belongs to HPS, it means
that data item Fi satisfies DU’s query condition; add one to Mnum, where Mnum denotes the
number of data items that meets the query condition; otherwise, data item Fi does not meet
DU’s query condition.

– After traversing through all data items, CS gets the number of data items that satisfy DU’s
query condition Mnum and the number of all data items Nnum, which can help DU to achieve
the statistical query of the personal data. Then, CS encrypts Nnum and Mnum with the
asymmetric encryption algorithm E() and the public key of Uj PKUj and uses its private key
to make a signature SigCS = H(EPKUj

(Nnum ‖Mnum ) ‖TS3 )
SKCS .

– Finally, CS sends
〈

EPKUj
(Nnum ‖Mnum ) ‖TS3 ‖SigCS

〉
to Uj.

Correctness of WEDC Algorithm. Here, we prove that CS can provide the correct statistical
query service for DUs by executing the WEDC algorithm. Specifically, taking a look at the

exponential of search criteria Di = B2
d2−(w1(xi1−y1)

2+...+wn(xin−yn)
2), we know B2 is the generator

of a cyclic group with order p2, which is selected larger than 512 bits, and w1(xi1 − y1)
2 + ... +

wn(xin − yn)2 is the square of the weighted Euclidean distance between DU’s query data and data
item Fi. In addition, since search range d is usually less than 10,000, we can define η= 10, 000
and η2= 100, 000, 000. Therefore, if Fi meets DU’s query condition, i.e., 0 ≤ d2 − (w1(xi1 − y1)

2 +

... + wn(xin − yn)2) ≤ d2 ≤ 100, 000, 000, the corresponding H(Di) must be in HPS, and Fi will
be counted as eligible data item; otherwise, d2 − (w1(xi1 − y1)

2 + ... + wn(xin − yn)2) ≤ 0, and

Di = B2
d2−(w1(xi1−y1)

2+...+wn(xin−yn)
2)=B2

p2+d2−(w1(xi1−y1)
2+...+wn(xin−yn)

2); then the corresponding
H(Di) will not be in HPS since p2 + d2 − (w1(xi1 − y1)

2 + ... + wn(xin − yn)2) � 100, 000, 000;
meanwhile, Fi will not be counted as an eligible data item. Through the method we have stated,
CS can correctly judge whether Fi satisfies DUs’ query condition by utilizing WEDC algorithm.

5.3.3. Query Result Reading

After receiving
〈

EPKUj
(Nnum ‖Mnum ) ‖TS3 ‖SigCS

〉
from CS, Uj checks TS3 and the signature

SigCS by verifying whether e(g, SigCS) = e(PKCS, H(EPKUj
(Nnum ‖Mnum ) ‖TS3 )

SKCS) holds. Then, Uj

decrypts EPKUj
(Nnum ‖Mnum ) with SKUj to obtain the query result.
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6. Security Analysis

In this section, we analyze the security properties of the proposed SPCQ scheme. Specifically,
following the security requirements discussed earlier, our analysis will focus on how the proposed
SPCQ scheme can achieve personal data confidentiality, DU’s query information privacy and source
authentication of the personal data, query request and response.

• The Proposed SPCQ Can Achieve Confidential Personal Data. In our proposed SPCQ, personal
data are secret from CS and DUs, although CS stores all encrypted data items and receives
all query requests. First, since feature parameters (xi1, xi2, ..., xin) collected by body sensors
usually cover a smaller scope, to avoid the exhaustive attack against (xi1, xi2, ..., xin) by
Pollard’s lambda method, feature parameters are disturbed by calculating x′i1 = xi1 + H(B1),
x′i2 = xi2 + H(B1), ..., x′in = xin + H(B1). In this way, the sample space is increased to more
than 512 bits, which can prevent exhaustive attack efficiently. Before uploading to CS, feature
parameters are encrypted to corresponding search index ( fi1, f ′i1, fi2, f ′i2, ..., fin, f ′in) by computing

fi1 = Bw1·x′
2
i1

2 , f ′i1 = gx′ i1 · hr1 , etc., where r1 is a random number to guarantee that for the same
feature parameter, different SUs can obtain different search indexes. The above operations can
achieve data perturbation and substitution and prevent CS from directly accessing SUs’ personal
data. Moreover, to avoid the guessing attacks for B2 in the evaluation dataset HPS, the relationship

between B2 and HPj is hidden by a secure hash function H(), where HPj = H(Bj2
2 ). Therefore,

from the above three aspects, CS cannot obtain the feature parameters of personal data according
to uploaded data items. In addition, since DUs only can get the query statistic result from CS, SUs’
personal data are secret from DUs.

• DU’s Query Information is Privacy-Preserving in the Proposed SPCQ. In our proposed SPCQ,
similarly, DU’s query condition is encrypted before being sent to CS. Specifically, DU’s query
information y1, y2, ..., yn is disturbed by calculating y′1 = y1 + H(B1), y′2 = y2 + H(B1), ...,
y′n = yn + H(B1), which can resist the exhaustive attack by Pollard’s lambda method. Then,

the query condition is encrypted by calculating q1 = Bw1·y′
2
1−d2

2 , q′1 = B1
2w1·y′1 , q2 = Bw2·y′22

2 ,

q′2 = B1
2w2·y′2 , ..., qn = Bwn ·y′2n

2 , q′n = B1
2wn ·y′n , which can prevent CS from directly accessing the

query data item and search range d. Since B1 and B2 are only known by SUs and DUs, and
the collusion attack is not considered in the current security model, CS cannot obtain query
information from the query request during the query process. Specifically, encrypted request and
encrypted data are computed in CS to obtain the result, which will be sent back to DU, and CS
also cannot obtain any useful information of DUs’ queries, even in the continuous search queries
environment. Meanwhile, CS still can provide accurate query service to DUs by the proposed
WEDC algorithm. Concretely, CS traverses all stored data items to compute the search criteria
Di and find out all data items that satisfy the query condition, then it achieves the query statistic
result and sends it to DU. It is notable that the result does not have particular meaning without any
other useful information of DUs’ queries. Moreover, SUs are not involved in the query process,
and DU’s query request is encrypted by CS’s public key PKCS before being sent to CS, so SUs
cannot get DU’s query information even if they steal the request by eavesdropping. In addition,
the response is encrypted by DU’s public key before being sent by CS, and thus, SUs and other
registered DUs cannot decrypt the response. Therefore, from the above four aspects, DU’s query
information is privacy-preserving in the proposed SPCQ.

• The Authentication of the Personal Data, Query Request and Response are Achieved in the Proposed
SPCQ. In the proposed SPCQ, personal data from SUs, registered DU’s query request
and the response of CS are signed by the BLS [36] short signature. Since the BLS short
signature is provably secure under the CDH problem in the random oracle model, the source
authentication can be guaranteed. Specifically, personal data from SU is signed by computing
Sig = H(Fi‖ID ‖TS1)

SK, where TS1 is the current timestamp to resist potential replay attack and
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SK is SU’s private key to make sure only itself can make the signature. After receiving the signed
data item, CS computes whether e(g, Sig) = e(PK, H(Fi ‖ID ‖TS1)) to verify the source of the
signature. Similarly, the registered DU’s query request and the response of CS are signed by the
above operations. Moreover, since the unregistered user (such as SU and DU) does not have secret
keys B1 and B2, he or she cannot upload personal data item or submit valid query request to CS.
Therefore, personal data and the query request from the unregistered user and the response from
the mendacious CS can be detected in the proposed SPCQ.

From the above analyses, we can conclude that SPCQ is secure and privacy-preserving and can
achieve our security design goal.

7. Performance Evaluation

In this section, we evaluate the performance of our proposed SPCQ scheme in terms of the
computation complexity of SU, DU and CS. In order to measure the integrated performance of SPCQ
in a real environment, we also implement SPCQ on an embedded device, smart phone and laptop with
a real medical database in a wireless network, by using a custom simulator built in JAVA. Specifically,
an embedded device with a 650-MHz dual-core processor, a smart phone with a 1.4-GHz quad-core
processor, 2 GB RAM, Android 4.0, and a laptop with a 2.0-GHz 4-core processor, 8 GB RAM, are
chosen to simulate SU, DU and CS. Based on our proposed SPCQ scheme, a personal data gathering
application is installed on the embedded device to simulate SU; a personal data query application built
by JAVA, named SPCQ.apk, is installed on the smart phone to simulate DU; and simulators of CS are
deployed in a laptop. In order to evaluate SPCQ in a real environment, a diabetes database [37], which
has 100,000 items with 55 attributes, is selected as the data source, and the corresponding storage
space is 692.37 MB. Meanwhile, an evaluation dataset HPS with 10,000 preprocessed SHA-256 values
is constructed, which just needs a 312.5-KB storage space. In addition, we define p1 and p2 as 512-bit
prime numbers, and η2 as 100,000,000.

7.1. Computation and Communication Costs

The proposed SPCQ scheme can achieve effective personal data query service for CS and DUs.
Specifically, we assume the dimension of each personal data item is n, and SU needs n multiplication
operations and 3n exponentiation operations for each personal data item. When a DU Uj generates
an encrypted query (q1, q′1, q2, q′2, ..., qn, q′n), it requires 2n exponentiation operations in Zp2 . After
receiving the query from Uj, CS firstly computes the search criteria Di for each data item Fi stored
in it, which takes n ∗ N pairing operations and 2n ∗ N multiplication operations for checking N
resource items. After receiving the response from CS, Uj decrypts the query statistic result with
asymmetrical encryption algorithm, which is considered negligible compared to exponentiation and
pairing operations. Denote the computational costs of an exponentiation operation in Zp2/ZN2 , a
multiplication operation in G/Gt/ZN2 and a pairing operation by Ce, Cm and Cp, respectively. Then,
for SU, DU and CS, the computational costs are 3n ∗ Ce + n ∗ Cm, 2n ∗ Ce and nN ∗ Cp + 2nN ∗ Cm in
the proposed SPCQ.

Different from other time-consuming encryption techniques, the proposed SPCQ uses improved
homomorphic encryption technology over a composite order group, which can provide accurate
personal data query service and largely reduce the encryption time for the smart phone. In the
following, for the comparison with SPCQ, we selected a privacy-preserving range query scheme
(PPRQ) [38], which can only provide a one-dimensional range query service to DUs. Let m be the bit
length of the attribute values, and the computational costs of SU, DU and CS are 2n ∗ Ce + n ∗ Cm,
4m ∗ Ce + 2m ∗ Cm and 23mnN ∗ Ce + 23mnN ∗ Cm, respectively.

Due to the factor of our proposed SPCQ, we take an n-dimension query into consideration. Then,
we present the computation complexity comparison of the proposed SPCQ and PPRQ in Table 2, and
it is obvious that our proposed SPCQ can achieve a privacy-preserving personal data query service
with low computation complexity in DU and CS.
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Table 2. Comparison of computation complexity.

Phase of Scheme SPCQ PPRQ

SU 3n ∗ Ce + n∗Cm 2n ∗ Ce + n ∗ Cm
DU 2n ∗ Ce 4m ∗ Ce + 2m ∗ Cm
CS nN ∗ Cp+2nN ∗ Cm 23mnN ∗ Ce+23mnN ∗ Cm

For better comparison, we have implemented SPCQ and PPRQ in JAVA. In Figure 3a,b, we have
plotted the computational overheads of SPCQ and PPRQ varying with different search ranges in DU
and CS. From the two figures, we can see that in both DU and CS, the computational overheads of
SPCQ and PPRQ vary slightly by increasing the search range, while the overheads of PPRQ are much
higher than those of our proposed SPCQ scheme. It can be obviously shown that the SPCQ scheme
largely reduces the computational complexity in DU and CS.
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Figure 3. Computational overheads of SPCQ and PPRQ. (a) Average running time in DU with different
search ranges; (b) average running time in CS with different search ranges.

In addition, we have made the comparison of communication costs between SPCQ and PPRQ,
as shown in Table 3. In SPCQ, the communication length in DU is 164 ∗ n bytes, which is much less
than that of PPRQ, whose communication length in DU is 512 ∗ n bytes; the communication length in
CS is 256 bytes, while that of PPRQ in CS is 1024 ∗N bytes; in addition, two times of communications
between DU and CS are needed in both SPCQ and PPRQ. As we mentioned above, SPCQ is more
efficient than PPRQ in terms of communication costs.

Table 3. Comparison of communication costs.

Phase of Scheme SPCQ PPRQ

Communication length in DU 164 ∗ n bytes 512 ∗ n bytes
Communication length in CS 256 bytes 1024 ∗N bytes
Communication times 2 2

7.2. Simulation and Evaluation

To have a better evaluation of our proposed SPCQ, we analyze the factors that affect the
computational costs of SU, DU and CS in detail. In addition, we evaluate the integrated performance
of SPCQ.

7.2.1. SU

In our proposed SPCQ scheme, SUs collect their real-time personal data from body sensors and
upload these data to CS per certain period. Before being sent to CS, the gathered personal data should
be operated to obtain ( fi1, f ′i1, fi2, f ′i2, ..., fin, f ′in). Therefore, we have chosen different dimensions
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of personal data to illustrate the SU’s computational cost on the embedded device. As shown in
Figure 4a, the dimensions of collected personal data are chosen from 5 to 40, and the average
computational cost increases linearly with the increase of the dimension. Meanwhile, the computation
on the embedded device is less than 150 milliseconds, which is acceptable for SU.
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Figure 4. Computational cost of SPCQ. (a) Computational cost of SU in data collection;
(b) computational cost of DU in query generation; (c) computational cost of CS with different search
ranges and dimensions; (d) query response time in a real environment.

7.2.2. DU

The query response time of DU (i.e., smart phone) is an important aspect for our proposed SPCQ
scheme, and the computational operations in the smart phone are query generation and result reading.
Since the result reading only requires DU to decrypt the query result, which is negligible, therefore we
have chosen different dimensions of the query request and different search ranges to illustrate DU’s
computational cost. To observe the computational cost of the smart phone, the dimensions of each
query are chosen from 5 to 40, and the search ranges are chosen from 100 to 800. Each condition is
executed 100 times, and we have calculated the average time for different dimensions of the query
request and search range. As shown in Figure 4b, the average computational cost increases linearly
with the increase of the dimension, and it is nearly the same with different search ranges. The reason
is that, when the smart phone generates a query request, it computes encrypted query parameters
with the query condition. For the query condition with a high dimension, it takes more time to get the
request, while different search ranges do not affect the computational cost.

7.2.3. CS

In our proposed SPCQ scheme, after receiving a query request from DU, CS will compute the
search criteria Di for each data item it stored, by using bilinear pairing over the composite order group,
which is the main computation overhead of CS, i.e., the efficiency of CS is impacted by the number of
encrypted data resources, the dimension of each data item and the search range d. It is obvious that
the computational cost in CS is increased with the number of encrypted data resources. Therefore,
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we have chosen different dimensions of data resources and different search ranges to illustrate the
computational cost. As shown in Figure 4c, the dimensions of data resources are selected from 5 to 40,
and eight search ranges of DU’s requests are selected from 100 to 800. We can learn from the figure
that the computational cost of CS is nearly the same with different search ranges; meanwhile, the
computational cost increases linearly with the increase of the data resource’s dimension.

7.2.4. Integrated Performance in a Real Environment

In order to evaluate the integrated performance of our proposed scheme, SPCQ is deployed in
a real environment with the real medical database mentioned above. Specifically, we have chosen
1000 items from the diabetes database, and the information of resources and corresponding encryption
information is stored in CS, respectively. In addition, the smart phone and CS are connected through
an 802.11g WLAN, and when DUs input the query data item and search range by SPCQ.apk, the smart
phone will send a query request to CS and get the response through WLAN. We have run 100 times to
evaluate the performance of SPCQ with eight search ranges (from 100 to 800), as shown in Figure 4d,
the runtime is about five seconds, which is acceptable in a real environment.

8. Conclusions

In this paper, we have proposed a secure and privacy-preserving body sensor data collection
and query scheme, called SPCQ, for outsourced computing. Based on an improved homomorphic
encryption technology over composite order group, the proposed SPCQ scheme can achieve the
confidentiality of SUs’ personal data and privacy-preserving of DU’s query information. Specifically,
SUs’ personal data are collected in the form of multi-dimension vectors and uploaded to CS in
ciphertext, and the data query request from the registered DU can be directly performed over ciphertext
in CS, then the query result only can be decrypted by the registered DU. Therefore, DU can get an
accurate query result without divulging his or her query information. Detailed security analysis
shows its security strength and privacy-preserving ability, and extensive experiments are conducted to
demonstrate its efficiency.
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