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Abstract: The error bound is a typical measure of the limiting performance of all filters for the given
sensor measurement setting. This is of practical importance in guiding the design and management
of sensors to improve target tracking performance. Within the random finite set (RFS) framework, an
error bound for joint detection and estimation (JDE) of multiple targets using a single sensor with
clutter and missed detection is developed by using multi-Bernoulli or Poisson approximation to
multi-target Bayes recursion. Here, JDE refers to jointly estimating the number and states of targets
from a sequence of sensor measurements. In order to obtain the results of this paper, all detectors
and estimators are restricted to maximum a posteriori (MAP) detectors and unbiased estimators,
and the second-order optimal sub-pattern assignment (OSPA) distance is used to measure the error
metric between the true and estimated state sets. The simulation results show that clutter density
and detection probability have significant impact on the error bound, and the effectiveness of the
proposed bound is verified by indicating the performance limitations of the single-sensor probability
hypothesis density (PHD) and cardinalized PHD (CPHD) filters for various clutter densities and
detection probabilities.

Keywords: performance evaluation; error bound; multi-target tracking; joint detection and
estimation; random finite set

1. Introduction

The problem of joint detection and estimation (JDE) of multiple targets arises from many
applications in surveillance and defense [1], where the number of targets is unknown and the sensor
may receive measurements generated randomly from either targets or clutters. There is no information
about which are the measurements of interest or which are the clutters. The aim of multi-target JDE is
to determine the number of targets and to estimate their states if exist using prior information, as well
as a sequence of the sensor measurements. In recent years, multi-target JDE has attracted extensive
attention, and many approaches for it have been proposed [2–10].

Obviously, it is very necessary to find an error (lower) bound to assess the achievable performance
of the multi-target JDE algorithms for the given sensor measurements. It is well known that
Tichavsky et al. [11] proposed a recursive posterior Cramér-Rao lower bound (CRLB) for evaluating
the performance of nonlinear filters when a target was asserted and observed by a sensor. Then, the
CRLB was extended to the cases in which clutter or missed detection was present in the sensor [12–15].
Nevertheless, these CRLBs [12–15] could barely be applied to such a JDE problem, since CRLB only
considers the estimation error of a target state, but not the detection error of the target number (or
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existence/non-existence of a target). Within random finite set (RFS) [2,4] framework, Rezaeian and
Vo [16] derived the static error bounds for JDE of a single target observed by a single sensor with clutter
and missed detection. Tong et al. presented a recursive form of a single-sensor single-target error bound
based on CRLB when only missed detection, but not clutter, exists [17] and then extended the result
of [17] to the single-sensor multi-target case with the more rigorous restriction that neither clutter nor
missed detection exists [18]. Note that the bounds in [17,18] actually do not include the detection error
generated by the uncertainty of target number, since the target number can be completely determined
by the measurement number by restricting the sensor observation model to the one in [17,18].

This paper proposes an RFS-based single-sensor multi-target JDE error bound when clutter
and missed detection may simultaneously exist in the sensor. In order to obtain the results of this
paper, the multi-target Bayes recursion is approximated as a multi-Bernoulli process [2] or a Poisson
process [2], and all detectors and estimators are restricted to maximum a posterior (MAP) detectors
and unbiased estimators. Since the JDE error is the average distance between true and estimated state
sets, the second-order optimal sub-pattern assignment (OSPA) distance [19] rather than the Euclidean
distance is used as the error metric. Finally, the simulation results show that clutter density and
detection probability have significant impacts on the proposed bound, and the effectiveness of the
proposed bound is verified by indicating the performance limitations of the single-sensor probability
hypothesis density (PHD) [4] and cardinalized PHD (CPHD) [5] filters for various clutter densities and
detection probabilities.

The rest of the paper is organized as follows. Section 2 presents the background for deriving our
results. In Section 3, we derive the proposed bound by using multi-Bernoulli or Poisson approximation.
A numerical example is presented in Section 4. The conclusions and future work are given in Section 5.
Relevant mathematical proofs are provided in Appendices A and B.

2. Background

• Set integral: For any real-valued function ϕ(X) of a finite-set variable X, its set integral is [4]:

∫
ϕ(X)δX=

∞

∑
n=0

1
n!

∫
X n

ϕ (Xn) dx(1) · · ·dx(n) = ϕ(∅) +
∞

∑
n=1

1
n!

∫
X n

ϕ (Xn) dx(1) · · ·dx(n) (1)

where Xn =
{

x(i)
}n

i=1
⊆ X n denotes a n-points set (that is, the cardinality of the set Xn is n) and

X n denotes the space of Xn. In this paper, we note X0 = ∅.
• Multi-Bernoulli RFS: A multi-Bernoulli RFS X is a union of M independent Bernoulli RFSs X(i),

X =
⋃M

i=1 X(i). Its density is completely described by parameter Υ =
{(

r(i), p(i)
)}M

i=1
as [6]:

f (X) = π(∅) ∑
1≤j1 6=···6=j|X|≤M

|X|

∏
i=1

r(ji)

1− r(ji)
p(ji)

(
x(i)
)

, with π(∅) =
M

∏
i=1

(
1− r(i)

)
(2)

where | · | denotes the cardinality of a set, r(i) ∈ (0, 1) denotes the probability of X(i) 6= ∅ and
p(i)

(
x(i)
)

denotes the density of x(i).

• Poisson RFS: An RFS X is Poisson if its density f (X) is:

f (X) = e−η ∏
x∈X

υ(x), with η =
∫

υ(x)dx and υ(x) = η f (x) (3)

where υ(x) denotes the intensity function of the Poisson RFS X, η is the average number of elements
in X and f (x) is the density of single element x ∈ X.
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• Second-order OSPA distance: The OSPA distance of order p = 2 between set X and its estimate X̂
is [19]:

d2 (X, X̂
)
=


0, |X̂| = |X| = 0

min
τ∈Πmax(|X̂|,|X|)

min(|X̂|,|X|)
∑

t=1
min

(
c2,‖x(t)−x̂(τ(t))‖2

2

)
+c2||X̂|−|X||

max(|X̂|,|X|) , |X̂|+ |X| > 0
(4)

where Πn denotes the set of permutations on {1, 2, ..., n}, c > 0 denotes the cut-off parameter,
max(·) or min(·) denotes the maximization or minimization operation and || · ||2 denotes the
two-norm. The OSPA metric is comprised of two components, each separately accounting for
“localization” and “cardinality” errors between two sets. The localization error arises from the
estimates paired with the nearest truths, while the cardinality error arises from the unpaired
estimates. Schuhmacher et al. [19] have proven that the OSPA distance with p ∈ [1, ∞) and c > 0 is
indeed a metric, so it can be used as a principled performance measure.

• Information inequality and CRLB: Given a joint probability density f (x, z) on X × Z , under
regularity conditions and the existence of ∂2 log f (x, z)/∂xi∂xj , the information inequality states
that [20,21]: ∫

Z

∫
X

f (x, z)(xl − x̂l(z))
2dxdz ≥

(
∂

∂xl
E f [x̂l(z)]

)2
·
[

J−1
]

l,l
(5)

where x̂(z) denotes an estimate of L dimensional vector x based on z, xl and x̂l(z) are, respectively,
the l-th components of x and x̂(z), l = 1, ..., L, the notation E f means the expectation with respect
to density f and J is known as the L× L Fisher information matrix:

[J]i,j = −E f

[
∂2 log f (x,z)

∂xi∂xj

]
= −

∫
Z
∫
X f (x, z) ∂2 log f (x,z)

∂xi∂xj
dxdz, i, j = 1, 2..., L (6)

where [J]i,j denotes the element on the i-th row and j-th column of matrix J.

For the particular case in which the estimator x̂(z) is unbiased (that is, E f [x̂(z)] = x), the
information inequality of Equation (5) reduces to:∫

Z

∫
X

f (x, z)(xl − x̂l(z))
2dxdz ≥

[
J−1
]

l,l
(7)

which is a result known as the CRLB. The Fisher information matrix J in Equation (7) is also
computed by Equation (6).

Note that the ordinary information inequality of Equation (5) holds without the unbiasedness
requirement on the estimator x̂(z). However, unbiasedness is critical in the CRLB of Equation (7).

Explanation: In the current set up of this paper, our attention is restricted to the unbiased estimator
of multi-target states. Our future work will study the extension of the proposed bound to the
biased estimator by using the ordinary information inequality of Equation (5).

Moreover, Equation (5) or Equation (7) is satisfied with equality depending on a very restricted
condition. In [21], Poor concludes that, within regularity, the information lower bound is achieved
(that is, the “=” in Equation (5) or Equation (7) holds) by x̂(z) if and only if x̂(z) is in a one-parameter
exponential family (e.g., the linear Gaussian models for target dynamics and sensor observation
described in [11] for achieving the CRLB). More details about this can be found in [21].
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• RFS-based multi-target dynamics and sensor observation models: Let xk ∈ Xk denote the state
vector of a target and Xk the set of multi-target states at time k, where Xk is the state space of a
target. The multi-target dynamics is modeled by:

Xk =

[
∪

xk−1∈Xk−1
Ψk|k−1 (xk−1)

]
∪ Γk (8)

where Ψk|k−1 (xk−1) is the set evolved from the previous state xk−1, Ψk|k−1 (xk−1) = {xk} with
surviving probability pS,k (xk−1) and transition density fk|k−1 ( xk| xk−1), otherwise
Ψk|k−1 (xk−1) = ∅ with probability 1− pS,k (xk−1); Γk is the set of spontaneous births.

Let zk ∈ Zk denote a measurement vector and Zk the set of measurements received by a sensor at
time k, where Zk is the sensor measurement space. The single-sensor multi-target observation is
modeled by:

Zk =

[
∪

xk∈Xk
Θk (xk)

]
∪Kk (9)

where Θk (xk) is the measurement set originated from state xk, Θk (xk) = {zk} with sensor
detection probability pD,k (xk) and likelihood gk (zk| xk), otherwise Θk (xk) = ∅ with probability
1− pD,k (xk); Kk is the clutter set, which is modeled as a Poisson RFS with density:

fc,k (Kk) = e−λk ∏
zk∈Kk

κk (zk), with λk =
∫

κk (zk) dzk and κk (zk) = λk fc,k (zk) (10)

where κk (zk) is the clutter intensity, λk is the average clutter number and fc,k (zk) is the density of
a clutter.

The transition model in Equation (8) jointly incorporates motion, birth and death for multiple
targets, while the sensor observation model in Equation (9) jointly accounts for detection
uncertainty and clutter. Assume that the RFSs constituting the unions in Equations (8) and
(9) are mutually independent. The multi-target JDE at time k is to derive the estimated state set
X̂k (Z1:k) using the collection Z1:k=Z1, ..., Zk of all sensor observations up to time k. The paper aims
to derive a performance limit to multi-target joint detectors-estimators for the observation of a
single sensor with clutter and missed detection. The performance limit is measured by the bound
of the average error between Xk and X̂k (Z1:k).

3. Single-Sensor Multi-Target JDE Error Bounds Using Multi-Bernoulli or Poisson Approximation

At time k, the RFS-based mean square error (MSE) between Xk and X̂k (Z1:k) is defined as:

σ2
k = E

[
e2

k
(
Xk, X̂k (Z1:k)

)]
=
∫ ∫

fk (Xk, Zk| Z1:k−1) e2
k
(
Xk, X̂k (Z1:k)

)
δXkδZk

=
∫ ∫

γk (Zk|Xk) fk|k−1 (Xk| Z1:k−1) e2
k
(
Xk, X̂k (Z1:k)

)
δXkδZk

(11)

where ek
(
Xk, X̂k (Z1:k)

)
denotes the error metric between Xk and X̂k (Z1:k), which is defined by the

second-order OSPA distance in (4), fk (Xk, Zk| Z1:k−1) denotes the density of (Xk, Zk) given Z1:k−1 and
γk (Zk|Xk) = fk (Zk|Xk) denotes the likelihood for the total sensor measurement process.

At time k, given multi-target state set Xn
k and sensor measurement set Zm

k , all association
hypotheses can be represented as a function from target index set {1, ..., n} to sensor measurement
index set {0, 1, ..., m} [2]. Defining that:

θn,m : {1, ..., n} → {0, 1, ..., m} (12)
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denotes the association hypothesis function with clutter and missed detection. That is, the t-th target
x(t)k with θn,m(t) = 0 generates no detection, while target x(t)k with θn,m(t) > 0 generates a sensor

measurement z(θn,m(t))
k , t = 1, 2, ..., n. θn,m satisfies the property that θn,m(t) = θn,m(t′) > 0 implies

t = t′.
Then, according to the sensor observation model in Equation (9), the likelihood γk

(
Zm

k

∣∣Xn
k
)

with
Poisson clutter and missed detection can be denoted as [2]:

γk (Zm
k |X

n
k ) = e−λk κ

Zm
k

k ∑
θn,m

n

∏
t=1

Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

)
(13)

where the summation is taken over all association hypotheses θn,m, and Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

)
is

defined as:

Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

)
=


pD,k

(
x(t)k

)
gk

(
z(θn,m(t))

k

∣∣∣x(t)k

)
κk

(
z(θn,m(t))

k

) , θn,m(t) > 0

1− pD,k

(
x(t)k

)
, θn,m(t) = 0

(14)

while the notation κZ denotes:

κZ =

 ∏
z∈Z

κ(z), Z 6= ∅

1, Z = ∅
(15)

For deriving the error bound for multi-target JDE, the following two conditions must be satisfied
as in [16]:

1. MAP detection criterion: This is applied to determine the number of targets: given a measurement
set Zk at time k, the cardinality of the estimated state set X̂k (Zk) is obtained as the maximum of the
posterior probabilities Pk ( |Xk| = n| Z1:k):

n̂ = arg max
n

Pk ( |Xk| = n| Z1:k) (16)

The reason for the use of the MAP detection rule will be clearly explained later in Remark 1 after
Theorems 1 and 2.

2. Unbiased estimation criterion: This is a necessary condition for applying the CRLB of Equation (7)
in the proof of Theorems 1 and 2.

Next, we derive the proposed bound by using multi-Bernoulli or Poisson approximation for
multi-target Bayes recursion, which are stated in Assumptions A.1 and A.2, respectively.

• Assumption A.1: At time k, the set Γk of spontaneous births is a multi-Bernoulli RFS

with the parameter ΥΓ,k =
{(

r(i)Γ,k, p(i)Γ,k

)}MΓ,k

i=1
(in general, ΥΓ,k is known a priori). Then,

the predicted and posterior multi-target densities fk|k−1 (Xk| Z1:k−1) and fk (Xk| Z1:k) are

approximated as the multi-Bernoulli densities with parameters Υk|k−1 =
{(

r(i)k|k−1, p(i)k|k−1

)}Mk|k−1

i=1

and Υk =
{(

r(i)k , p(i)k

)}Mk

i=1
, respectively. Specifically, the parameter of a multi-Bernoulli RFS that

approximates the multi-target RFS is propagated under this assumption. The recursions for Υk|k−1
and Υk have been presented in [6].

• Assumption A.2: At time k, the set Γk of spontaneous births is a Poisson RFS with the intensity
υΓ,k (xk) (in general, υΓ,k (xk) is known a priori). Then, the predicted and posterior multi-target
densities fk|k−1 (Xk| Z1:k−1) and fk (Xk| Z1:k) are approximated as the Poisson densities with
intensities υk|k−1 (xk) and υk (xk), respectively. Specifically, the intensity of a Poisson RFS that
approximates the multi-target RFS is propagated under this assumption. The recursions for
υk|k−1 (xk) and υk (xk) have been presented in [4].
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Theorem 1. Suppose that Assumption A.1 holds; at time k, given the predicted multi-target multi-Bernoulli

parameter Υk|k−1 =
{(

r(i)k|k−1, p(i)k|k−1

)}Mk|k−1

i=1
, the error for joint MAP detection and unbiased estimation

of multiple targets with the state model in Equation (8) and the sensor observation model in Equation (9) is
bounded by:

σ2
k ≥

∞
∑

m=0

N
∑

n=0

N
∑

n̂=0,n+n̂>0

Ωn,m
k

m!·n!·max(n,n̂) ·(
min(n,n̂)

∑
t=1

min

(
c2ωn̂,n,m

k ,
L
∑

l=1

[(
J(t),n̂,n,m
k

)−1
]

l,l

)
+ c2ωn̂,n,m

k |n− n̂|
) (17)

where:

1. c is the cut-off of the second-order OSPA distance in Equation (4), L is the dimension of state xk and N is
the maximum number of the targets observed by the sensor over the surveillance region;

2. Ωn,m
k is a normalization factor of the density fk

(
Xn

k , Zm
k

∣∣ Z1:k−1
)
; it actually denotes the probability of

|Xk| = n and |Zk| = m given Z1:k−1,

Ωn,m
k =

∫
Zm

k

∫
X n

k

fk (Xn
k , Zm

k | Z1:k−1)dx(1)k · · · dx(n)k dz(1)k · · · dz(m)
k (18)

3. ωn̂,n,m
k is the integration of the density fk

(
Xn

k , Zm
k

∣∣ Z1:k−1
)

over the region X n
k ×Z

n̂,m
k ,

ωn̂,n,m
k =

∫
Z n̂,m

k

∫
X n

k

fk (Xn
k , Zm

k | Z1:k−1)dx(1)k · · · dx(n)k dz(1)k · · · dz(m)
k (19)

Note that the integration region Z n̂,m
k in ωn̂,n,m

k is the subspace in Zm
k , where the MAP detector assigns the

estimated target number to be n̂ (n̂ = 0, 1, ..., N). Z0,m
k ,Z1,m

k , ...,ZN,m
k are mutually disjoint and cover Zm

k .
Therefore, ωn̂,n,m

k actually denotes the probability of |Xk| = n and |Zk| = m given |X̂k| = n̂ and Z1:k−1.

4. J(t),n̂,n,m
k is the Fisher information matrix of the t-th target given |Zk| = m, |Xk| = n, |X̂k| = n̂ and Z1:k−1.

J(t),n̂,n,m
k , ωn̂,n,m

k and Ωn,m
k in Equation (17) are given by (assuming J(t),n̂,n,m

k = ∞ for Z n̂,m
k = ∅,

n̂ = 0, 1, ..., N): [
J(t),n̂,n,m
k

]
i,j
= −1

(ωn̂,n,m
k )

2

∫
Z n̂,m

k

∫
Xk

fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)
·

∂2 log fk

(
x(t)k ,Zm

k

∣∣∣Z1:k−1,|Xk |=n
)

∂x(t)k,i ∂x(t)k,j

dx(t)k dz(1)k · · · dz(m)
k

(20)

ωn̂,n,m
k =

πk|k−1(∅)e−λk

Ωn,m
k

∑
θn,m

∑
1≤j1 6=···6=jn≤Mk|k−1

∫
Z n̂,m

k

κ
Zm

k
k Dj1,...,jn

k

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

)
dz(1)k · · · dz(m)

k

(21)

Ωn,m
k = πk|k−1(∅)e−λk λm

k ∑
θn,m

∑
1≤j1 6=···6=jn≤Mk|k−1

n

∏
t=1

r(jt)
k|k−1

1− r(jt)
k|k−1

K(jt)
k|k−1 (22)

Dj1,...,jn
k

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

)
=

n

∏
t=1

r(jt)
k|k−1

1− r(jt)
k|k−1

H jt
k

(
z(θn,m(t))

k

)
(23)

H jt
k

(
z(θn,m(t))

k

)
=
∫
Xk

p(jt)
k|k−1

(
x(t)k

)
Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

)
dx(t)k (24)
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K(jt)
k|k−1 =


∫
Xk

pD,k

(
x(t)k

)
p(jt)

k|k−1

(
x(t)k

)
dx(t)k

/
λk, θn,m(t) > 0∫

Xk

(
1− pD,k

(
x(t)k

))
p(jt)

k|k−1

(
x(t)k

)
dx(t)k , θn,m(t) = 0

(25)

πk|k−1(∅) =

Mk|k−1

∏
t=1

(
1− r(t)k|k−1

)
(26)

where Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

)
is given by Equation (14), fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)

is the density of(
x(t)k , Zm

k

)
conditioned on Z1:k−1 and |Xk| = n. fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)

in Equation (20), as well

as the integration region Z n̂,m
k in Equations (20) and (21) are given by:

fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)
=

πk|k−1(∅)e−λk κ
Zm

k
k

Ωn,m
k

∑
θn,m

∑
1≤j1 6=···6=jn≤Mk|k−1

D
j1,...,jn
k

(
z(θn,m(1))

k ,...,z(θn,m(n))
k

)
H jt

k

(
x(θn,m(t))

k

) p(jt)
k|k−1

(
x(t)k

)
Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

)
(27)

Z n̂,m
k =

{
Zm

k ∈ Z
m
k : arg max

n

{
ξn

k
(

Zm
k

∣∣ Z1:k−1
)}

= n̂
}

(28)

ξn
k
(

Zm
k

∣∣ Z1:k−1
)
=

(
∑

1≤j1 6=···6=jn≤Mk|k−1

n
∏

t=1

r(jt)
k|k−1

1−r(jt)
k|k−1

)
·

∑
θn,m

∑
1≤j1 6=···6=jn≤Mk|k−1

Dj1,...,jn
k

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

) (29)

where ξn
k
(

Zm
k

∣∣ Z1:k−1
)

denotes a function of Zm
k and n given Z1:k−1.

Theorem 2. Suppose that Assumption A.2 holds; at time k, given the predicted multi-target Poisson intensity
υk|k−1 (xk), the error bound for joint MAP detection and unbiased estimation of multiple targets with the state
model in Equation (8) and the sensor observation model in Equation (9) takes the same form as in Theorem 1,
except that ωn̂,n,m

k , Ωn,m
k , fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)

and ξn
k
(

Zm
k

∣∣ Z1:k−1
)

are changed to:

ωn̂,n,m
k =

e−ηk|k−1−λk

Ωn,m
k

∑
θn,m

∫
Z n̂,m

k

κ
Zm

k
k Dk

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

)
dz(1)k · · · dz(m)

k (30)

Ωn,m
k = e−ηk|k−1−λk λm

k ∑
θn,m

n

∏
t=1

K(t)
k|k−1 (31)

fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)
=

e
−ηk|k−1−λk κ

Zm
k

k
Ωn,m

k
∑

θn,m

Dk

(
z(θn,m(1))

k ,...,z(θn,m(n))
k

)
Hk

(
z(θn,m(t))

k

) ·

υk|k−1

(
x(t)k

)
Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

) (32)

ξn
k (Zm

k | Z1:k−1) =
(

ηk|k−1

)n
∑
θn,m

Dk

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

)
(33)

where:

Dk

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

)
=

n

∏
t=1

Hk

(
z(θn,m(t))

k

)
(34)

Hk

(
z(θn,m(t))

k

)
=
∫
Xk

υk|k−1

(
x(t)k

)
Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

)
dx(t)k (35)

K(t)
k|k−1 =


∫
Xk

pD,k

(
x(t)k

)
υk|k−1

(
x(t)k

)
dx(t)k

/
λk, θn,m(t) > 0∫

Xk

(
1− pD,k

(
x(t)k

))
υk|k−1

(
x(t)k

)
dx(t)k , θn,m(t) = 0

(36)
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ηk|k−1 =
∫

υk|k−1 (xk) dxk (37)

The proofs of Theorems 1 and 2 can be found in Appendices A and B. In the following, we refer
to the bound in Theorem 1 or 2 as the multi-Bernoulli approximated bound (MBA-B) or the Poisson
approximated bound (PA-B), respectively.

• Remark 1: It is well-known that the lower bound is independent of the specific estimation methods.
However, it is necessary for the use of the MAP detection rule in deriving the bounds in Theorems
1 and 2. The reasons are as follows.

First, we have known that the error metric ek
(
Xk, X̂k (Z1:k)

)
in Equation (11) is the second-order

OSPA distance in Equation (4). Obviously, the estimated target number has to be considered in
the OSPA distance. At time k, the estimated target number depends on the measurement set Zk
received by the sensor. We assume that if Zk ∈ Z n̂

k , which is a subspace of the measurement space
Zk, then the estimated target number by the detector is n̂ (n̂ = 0, 1, ..., N). Therefore, to compute
the MSE σ2

k in Equation (11), we have to partition the measurement space Zk into the regions of
Z0

k ,Z1
k , ...,ZN

k , which correspond to all possible estimated target numbers n̂ = 0, n̂ = 1, ..., n̂ = N,
respectively. In addition, Z0

k ,Z1
k , ...,ZN

k are mutually disjoint and cover Zk.

In the proof of Theorems 1 and 2, to obtain the bound on σ2
k in Equation (A13) (Equation (A13) is

the extended form of the MSE σ2
k in Equation (11)), we need to find the best integration regions

Z0,m
k ,Z1,m

k , ...,ZN,m
k in Equation (A14) that minimizes Equation (A14). Nevertheless, it is very

difficult to define Z0,m
k ,Z1,m

k , ...,ZN,m
k for the detector without using the MAP criterion because

the minimization of Equation (A14) depends on the estimator X̂k(·). This reflects the extreme
complexity in defining Z0,m

k ,Z1,m
k , ...,ZN,m

k for the detector that minimizes the σ2
k in Equation (11)

and its intricate interconnection with the estimator that may jointly achieve a lower σ2
k using the

MAP detector. A detailed analysis is presented in [16] to illustrate the complicated dependency
of the detector and estimator for minimizing the MSE σ2

k . As a result, without the MAP detector
restriction, it is nearly impossible to characterize the joint detector-estimator that minimizes the
MSE σ2

k in Equation (11) due to their extremely complex interrelationship in determining the
number of targets and estimating the states of existing targets.

In summary, with the MAP detection constraint, the estimated target number at time k can be
determined just by the detector (that is, independent of the estimator). However, this may make the
minimum MSE defined by Equation (11) unachievable. Therefore, imposing the MAP constraint
can be regarded as an approximated method to obtain the proposed JDE bounds. In our future
work, we will study the JDE error bound without the MAP detection constraint.

• Remark 2: In general, the integration region Z n̂,m
k for calculating J(t),n̂,n,m

k and ωn̂,n,m
k at time k

is different from the previous integration region Z n̂′ ,m′
k−1 for calculating J(t

′),n̂′ ,n′ ,m′

k−1 and ωn̂′ ,n′ ,m′
k−1 at

time k− 1, where the superscripts t, n̂, n, m and t′, n̂′, n′, m′ denote the target indices, estimated
target numbers, true target numbers and sensor measurement numbers at time k and time k− 1,

respectively. As a result, J(t),n̂,n,m
k cannot be derived directly from J(t

′),n̂′ ,n′ ,m′

k−1 by using a closed-form

recursion like the posterior CRLB (PCRLB) in [11]. The recursion of J(t),n̂,n,m
k depends on the

propagation of parameter Υk|k−1 or intensity υk|k−1 (xk) of multi-Bernoulli or Poisson RFS that
approximates the predicted multi-target RFS.

• Remark 3: In the special case of no clutter or missed detection, we have Kk = ∅ and pD,k(·) = 1
for the sensor observation model in Equation (9). The numbers of estimated targets, true targets
and measurements are obviously equal in this case, |X̂k| = |Xk| = |Zk|. As a result, multi-target
JDE reduces to multi-target state estimation only (that is, target detection no longer exists here,
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and so, the restriction of MAP detection can be omitted) using the sensor measurement. Moreover,
given multi-target state set Xn

k , the total likelihood reduces to:

γk (Zn
k |X

n
k ) = ∑

τ∈Πn

n

∏
t=1

gk

(
z(τ(t))k

∣∣∣ x(t)k

)
(38)

and the second-order OSPA distance reduces to:

d2
k
(
Xn

k , X̂n
k
)
=

 0, n = 0
1
n min

τ∈Πn

n
∑

t=1

∥∥∥x(t)k − x̂(τ(t))k

∥∥∥2

2
, n > 0

(39)

because there is no need to consider the cut-off c for cardinality mismatches here. Only for the
special case, a theoretically rigorous (that is, without multi-Bernoulli or Poisson approximation to
multi-target Bayes recursion) single-sensor multi-target error bound can be derived in [18] using a
PCRLB-like recursion.

4. Numerical Examples

A maximum of 10 targets appears on a two-dimensional region S = [−50, 50]× [−50, 50] (in m)
with various births and deaths. The targets are observed by a single sensor with clutter and missed
detection throughout a surveillance period of T = 25 time steps. The sensor sampling interval is
∆t = 1 s. At time k, the state of a target is xk = [xk, yk, ẋk, ẏk, ẍk, ÿk]

T , where [xk, yk]
T , [ẋk, ẏk]

T and
[ẍk, ÿk]

T denote the position, velocity and acceleration vectors along the x axis and y axis, respectively.
The state transition density fk|k−1 ( xk| xk−1) is assumed to be:

fk|k−1 ( xk| xk−1) = N (xk; Fkxk−1, Qk) (40)

whereN (·; m, Q) denotes the density of a Gaussian distribution with mean m and covariance matrix Q
and Fk and Qk are the state evolution matrix and process noise covariance matrix at time k, respectively.
Assuming that the kinematics of each target is governed by the constant acceleration (CA) model [22],
we have:

Fk =

 1 ∆t ∆t2

2
0 1 ∆t
0 0 1

⊗ I2, Qk = q2
CA


∆t4

4
∆t3

2
∆t2

2
∆t3

2
∆t2

2 ∆t
∆t2

2 ∆t 1

⊗ I2 (41)

where⊗ denotes the Kronecker product, In is the identity matrix of dimension n and qCA = 0.01 m/s2

is the standard deviation of process noise, i.e., acceleration. Target births and deaths occur at random
instances and states. The probability of target survival is pS,k(·) = 0.9. The state of a target birth satisfies

one of the distributions p(i)Γ (xk) = N
(

xk; x(i)Γ , QΓ

)
(i = 1, ..., 4), x(1)Γ = [20, 20,−2,−2, 0.1, 0.1]T ,

x(2)Γ = [20,−20,−2, 3, 0.1,−0.1]T , x(3)Γ = [20,−20,−2, 3, 0.1,−0.1]T , x(4)Γ = [20,−20,−2, 3, 0.1,−0.1]T ,
QΓ = diag(25, 25, 0.25, 0.25, 0.0025, 0.0025), where diag(·) denotes a diagonal matrix. The sensor
measurement model for state xk is:

gk (zk| xk) = N
([

ρk
ok

]
;

[ √
x2

k + y2
k

arctan
(
yk
/

xk
) ] , Rk

)
(42)

where ρk, ok are, respectively, the range and bearing measurements of the target and Rk = diag(ς2
ρ, ς2

o)

is the sensor measurement noise covariance matrix. In this example, we assume that ςρ = 2.5 m,
ςo = 0.1 rad. The detection probability of the sensor is pD,k(·) = pD. The average clutter number and
the density of the clutter are λk = λ and fc,k (zk) = U (zk;S), where U (·;S) = 1/104 denotes the
density of a uniform distribution over the region S .
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For Assumption A.1, the parameter for the multi-Bernoulli set Γk of spontaneous births is

ΥΓ =
{(

0.1, p(i)Γ

)}4

i=1
. For Assumption A.2, the intensity for the Poisson set Γk of spontaneous births

is υΓ (xk) = ∑4
i=1 0.1p(i)Γ (xk).

Then, the proposed bound (MBA-B or PA-B) in this example can be easily obtained
by substituting these parameters into Theorem 1 or 2. The second partial derivative
∂2 log fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)

/∂x(t)k,i ∂x(t)k,j involved in Equation (20) can conveniently be
obtained by using the software Mathematica 8.0.1. The Monte Carlo (MC) method [23] is used
to numerically calculate

[
J(t),n̂,n,m
k

]
i,j

and ωn̂,n,m
k because the involved integrals in them have

no closed-forms.
First, let us see how the sensor measurement uncertainty would affect the proposed bound. It is

clear that the measurement uncertainty of a sensor is mainly determined by its detection probability
and clutter. Therefore, in Figure 1, the proposed two bounds of multi-target position vectors are
shown versus scan for three groups of detection probability and clutter intensity: (1) pD = 1, λ = 50,
(2) pD = 0.6, λ = 150 and (3) pD = 0.2, λ = 250, respectively, where the cut-off of OSPA distance is
c2 = 400.

5 10 15 20 25
0

50

100

150

200

250

300

350

400

Number of scans, k (s)

P
ro

po
se

d 
bo

un
ds

 fo
r 

m
ul

ti−
ta

rg
et

 p
os

iti
on

s

 

 

MBA−B, p
D
=1, λ=50

PA−B, p
D
=1, λ=50

MBA−B, p
D
=0.6, λ=150
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=0.2, λ=250

PA−B, p
D
=0.2, λ=250

Figure 1. Proposed bounds for multi-target positions versus scan in the cases: pD = 1, λ = 50
(black lines); pD = 0.6, λ = 150 (green lines); pD = 0.2, λ = 250 (red lines).

From Figure 1, it can be seen that both bounds are asymptotically convergent for various pD and
λ. As the number of sensor measurement scans increases, they will get closer. The bounds for the case
pD = 1, λ = 50 are the smallest in the three cases. However, it is somewhat surprising that the bounds
for the case pD = 0.2, λ = 250 are lower than the bounds for the case pD = 0.6, λ = 150. Moreover,
the bigger λ becomes for pD, or the lower pD becomes for λ, the longer the convergence time of the
bounds seems to be. Figure 1 indicates that clutter density and detection probability of the sensor do
have a significant impact on the proposed bound.

To verify the effectiveness of the proposed bounds, we compare the steady-state bounds with the
JDE errors of the single-sensor PHD and CPHD filters, which are the average of 200 MC runs of their
time-averaged OSPA distances between the true and estimated state sets. The comparison results are
presented in Figure 2.

From Figure 2, we can obtain the following observations.

1. The proposed bound does not always increase with λ for given pD or decrease with pD for given λ.
This is because of the two contrary effects generated by the increase of λ or pD when pD < 1 or
λ > 0: reducing the possibility for missed targets and increasing the possibility for false targets. If
the bound is dominated by the former, then it decreases with λ or pD; otherwise, it increases with
λ or pD. Moreover, PA-B is a little higher than MBA-B when λ is relatively large or pD is relatively
small. However, they are very close in general. A possible reason for this is that the multi-Bernoulli
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assumption (Assumption A.1) outperforms the Poisson assumption (Assumption A.2) slightly for
approximating the multi-target Bayes recursion under lower signal-noise-ratio (SNR) conditions.

2. Although the JDE errors of the single-sensor PHD and CPHD filters are a little higher than the
proposed bound, all of them are always close versus λ and pD. The extra errors of the two filters are
generated by the first-order moment approximations for the posterior multi-target density and the
clustering processes involved in their particle implementations for state extraction. Figure 2 also
shows that the CPHD filter outperforms the PHD filter. The reason for this is that the former can
propagate the cardinality distribution and, thus, has more stable target number estimation than
the latter.
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Figure 2. Comparisons of joint detection and estimation (JDE) errors of single-sensor probability
hypothesis density (PHD) and cardinalized PHD (CPHD) filters with steady-state bounds for
multi-target positions. (a) pD = 1; (b) pD = 0.6; (c) pD = 0.2.

3. The bigger λ becomes for given pD, or the lower pD becomes for given λ, the bigger the gaps
between the errors of the two filters and the proposed bound will be. This is because the
aforementioned approximation errors of the two filters increase as λ becomes bigger or pD becomes
smaller. However, the maximum relative errors of the PHD and CPHD filters, which seem to
appear in the case of pD = 0.2 and λ = 300, do not exceed 15% and 8% of MBA-B, as well as
12% and 5% of PA-B in any case, respectively. In fact, the total average relative errors of the two
filters are about 7% and 4% of MBA-B, as well as about 6% and 3% of PA-B for various λ and
pD, respectively.



Sensors 2016, 16, 169 12 of 18

Finally, the comparison results in Figure 2 show that for various clutter densities and detection
probabilities of the sensor, the proposed bounds are able to provide an effective indication of
performance limitations for the two single-sensor multi-target JDE algorithms.

5. Conclusions

Within the RFS framework, we develop two multi-target JDE error bounds using the measurement
of a single sensor with clutter and missed detection. The multi-Bernoulli and Poisson approximation
to multi-target Bayes recursion are used in deriving the results of the paper, respectively. The proposed
bounds are based on the OSPA distance rather than the Euclidean distance. The simulation results
show that the clutter density and detection probability of the sensor significantly affect the bounds and
verify the effectiveness of the bounds by indicating the performance limitations of the single-sensor
PHD and CPHD filters in various sensor measurement environments.

Our future work will focus on the following four aspects:

1. Extending the results to the case of multiple sensors;
2. Extending the results to the case of the biased estimator by using the ordinary information

inequality of Equation (5);
3. Studying the JDE error bounds without the MAP detection constraint;
4. Studying the sensor management strategies based on the results.

Acknowledgments: This research was supported by the National Natural Science Foundation of China (61473217,
61174138), the National Key Fundamental Research & Development Programs (973) of China (2013CB329405) and
the Provincial Natural Science Foundation Research Project of Shaanxi (2014JQ8333).

Author Contributions: Feng Lian contributed significantly to the conception of the study, analysis and manuscript
preparation. Guanghua Zhang performed the data analyses. Zhansheng Duan revised and edited the manuscript.
Chongzhao Han helped with performing the analysis with constructive discussions. All authors read and
approved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof of Theorem 1. First, we determine the target number from the sequence of sensor measurements
according to the MAP criterion. Given a measurement set Zm

k received by the sensor at time k, using
the Bayes rule on the posterior probability Pk

(
|Xk| = n| Z1:k−1, Zm

k
)
, we get:

Pk ( |Xk| = n| Z1:k−1, Zm
k ) =

Pk ( |Xk| = n| Z1:k−1) Pk
(

Zm
k

∣∣ |Xk| = n
)

Pk
(

Zm
k

∣∣ Z1:k−1
) (A1)

where Pk
(

Zm
k

∣∣ Z1:k−1
)

is a normalizing factor, Pk ( |Xk| = n| Z1:k−1) and Pk
(

Zm
k

∣∣ |Xk| = n
)

can be
obtained by:

Pk ( |Xk| = n| Z1:k−1) =
∫
X n

k

fk|k−1 (Xn
k | Z1:k−1) dx(1)k · · · dx(n)k (A2)

Pk (Zm
k | |Xk| = n) =

∫
X n

k

fk|k−1 (Xn
k | Z1:k−1) γk (Zm

k |X
n
k ) dx(1)k · · · dx(n)k (A3)

where the likelihood γk
(
Zm

k

∣∣Xn
k
)

is given by Equation (13) and the predicted multi-target density

fk|k−1
(

Xn
k

∣∣ Z1:k−1
)

is a multi-Bernoulli density with the parameter Υk|k−1 =
{(

r(t)k|k−1, p(t)k|k−1

)}Mk|k−1

t=1
according to Assumption A.1,

fk|k−1 (Xn
k | Z1:k−1) = πk|k−1(∅) ∑

1≤j1 6=···6=jn≤Mk|k−1

n

∏
t=1

r(jt)
k|k−1

1− r(jt)
k|k−1

p(jt)
k|k−1

(
x(t)k

)
(A4)
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where:

πk|k−1(∅) =

Mk|k−1

∏
t=1

(
1− r(t)k|k−1

)
(A5)

Substituting Equations (A4) and (13) into Equations (A2) and (A3), respectively, and integrating
out x(1)k , ..., x(n)k in the two equations, we have:

Pk ( |Xk| = n| Z1:k−1) = πk|k−1(∅) ∑
1≤j1 6=···6=jn≤Mk|k−1

n

∏
t=1

r(jt)
k|k−1

1− r(jt)
k|k−1

(A6)

Pk (Zm
k | |Xk| = n) = πk|k−1(∅)e−λk κ

Zm
k

k ∑
θn,m

∑
1≤j1 6=···6=jn≤Mk|k−1

Dj1,...,jn
k

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

)
(A7)

where:

Dj1,...,jn
k

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

)
=

n

∏
t=1

r(jt)
k|k−1

1− r(jt)
k|k−1

H jt
k

(
z(θn,m(t))

k

)
(A8)

H jt
k

(
z(θn,m(t))

k

)
=
∫
Xk

p(jt)
k|k−1

(
x(t)k

)
Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

)
dx(t)k (A9)

and Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

)
is given by Equation (14).

Substituting Equations (A6) and (A7) into Equation (A1), the posterior probability
Pk
(
|Xk| = n| Z1:k−1, Zm

k
)

becomes:

Pk ( |Xk| = n| Z1:k−1, Zm
k ) =

π2
k|k−1(∅)e−λk κ

Zm
k

k

Pk
(

Zm
k

∣∣ Z1:k−1
) ξn

k (Zm
k | Z1:k−1) (A10)

where:

ξn
k
(

Zm
k

∣∣ Z1:k−1
)
=

(
∑

1≤j1 6=···6=jn≤Mk|k−1

n
∏

t=1

r(jt)
k|k−1

1−r(jt)
k|k−1

)
· ∑

θn,m

∑
1≤j1 6=···6=jn≤Mk|k−1

Dj1,...,jn
k

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

)
denotes a function of Zm

k and n given Z1:k−1.
The MAP detector upon observing Zm

k given Z1:k−1 will assign
∣∣X̂k

(
Z1:k−1, Zm

k
)∣∣ = n̂ if:

n̂ = arg max
n

{Pk ( |Xk| = n| Z1:k−1, Zm
k )} = arg max

n
{ξn

k (Zm
k | Z1:k−1)} ⇔ Zm

k ∈ Z
n̂,m
k (A11)

where Z n̂,m
k is the subspace of the m-point sensor measurement space Zm

k . Equation (A12) denotes
that, at time k, the MAP detector assigns the estimated target number to be n̂ (n̂ = 0, 1, ..., N, where N
is the maximum number of targets observed by the sensor over the surveillance region) if receiving
the sensor measurement Zm

k ∈ Z
n̂,m
k . Z0,m

k ,Z1,m
k , ...,ZN,m

k are mutually disjoint and cover Zm
k . For

the m-point measurement space Zm
k , its partitions Z0,m

k ,Z1,m
k , ...,ZN,m

k correspond to the all possible
estimated target numbers n̂ = 0, n̂ = 1, ..., n̂ = N, respectively.

According to the set integral definition in Equation (1), the MSE in Equation (11) can be
extended as:

σ2
k =

∞
∑

m=0

N
∑

n=0

1
m!·n!

∫
Zm

k

∫
X n

k
γk
(

Zm
k

∣∣Xn
k
)

fk|k−1
(

Xn
k

∣∣ Z1:k−1
)
·

e2
k
(
Xn

k , X̂k
(
Z1:k−1, Zm

k
))

dx(1)k · · · dx(n)k dz(1)k · · · dz(m)
k

(A12)
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By partitioning the integration region Zm
k in Equation (A13) into sub-regions Z0,m

k ,Z1,m
k , ...,ZN,m

k
according to the MAP detector in Equation (A12), we have:

σ2
k =

∞
∑

m=0

N
∑

n=0

N
∑

n̂=0

1
m!·n!

∫
Z n̂,m

k

∫
X n

k
γk
(

Zm
k

∣∣Xn
k
)

fk|k−1
(

Xn
k

∣∣ Z1:k−1
)
·

e2
k
(
Xn

k , X̂n̂
k
(
Z1:k−1, Zm

k
))

dx(1)k · · · dx(n)k dz(1)k · · · dz(m)
k

(A13)

Using the Bayes rule on density fk
(

Xn
k , Zm

k

∣∣ Z1:k−1
)
, we get:

fk (Xn
k , Zm

k |Z1:k−1) =
1

Ωn,m
k

γk (Zm
k |X

n
k ) fk|k−1 (Xn

k |Z1:k−1) (A14)

where Ωn,m
k is a normalization factor, and:

Ωn,m
k =

∫
Zm

k

∫
X n

k

fk|k−1 (Xn
k | Z1:k−1) γk (Zm

k |X
n
k )dx(1)k · · · dx(n)k dz(1)k · · · dz(m)

k (A15)

actually denotes the probability of |Xk| = n and |Zk| = m given Z1:k−1.
Substituting Equations (A4) and (13) into Equations (A15) and (A16), respectively, and integrating

out z(1)k , ..., z(m)
k in Equation (A16), fk

(
Xn

k , Zm
k

∣∣ Z1:k−1
)

becomes:

fk
(

Xn
k , Zm

k

∣∣ Z1:k−1
)
=

πk|k−1(∅)e−λk κ
Zm

k
k

Ωn,m
k

∑
θn,m

∑
1≤j1 6=···6=jn≤Mk|k−1

n
∏

t=1

r(jt)
k|k−1

1−r(jt)
k|k−1

p(jt)
k|k−1

(
x(t)k

)
Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

) (A16)

and Ωn,m
k is obtained as:

Ωn,m
k = πk|k−1(∅)e−λk λm

k ∑
θn,m

∑
1≤j1 6=···6=jn≤Mk|k−1

n

∏
t=1

r(jt)
k|k−1

1− r(jt)
k|k−1

K(jt)
k|k−1 (A17)

where:

K(jt)
k|k−1 =


∫
Xk

pD,k

(
x(t)k

)
p(jt)

k|k−1

(
x(t)k

)
dx(t)k

/
λk, θn,m(t) > 0∫

Xk

(
1− pD,k

(
x(t)k

))
p(jt)

k|k−1

(
x(t)k

)
dx(t)k , θn,m(t) = 0

(A18)

For Equation (A14), replacing γk
(

Zm
k

∣∣Xn
k
)

fk|k−1
(

Xn
k

∣∣ Z1:k−1
)

with Ωn,m
k fk

(
Xn

k , Zm
k

∣∣ Z1:k−1
)

according to Equation (A15) and then replacing e2
k
(
Xn

k , X̂n̂
k
(
Z1:k−1, Zm

k
))

with the second-order OSPA
distance defined in Equation (4), we get:

σ2
k =

∞
∑

m=0

N
∑

n=0

N
∑

n̂=0,n+n̂>0

Ωn,m
k

m!·n!·max(n̂,n)

∫
Z n̂,m

k

∫
X n

k
fk
(

Xn
k , Zm

k

∣∣ Z1:k−1
)
·(

min
τ∈Πmax(n̂,n)

min(n̂,n)
∑

t=1
min

(
c2,
∥∥∥x(t)k − x̂(τ(t))k

(
Z1:k−1, Zm

k
)∥∥∥2

2

)
+ c2|n− n̂|

)
dx(1)k · · · dx(n)k dz(1)k · · · dz(m)

k

(A19)

where c is the cut-off of the OSPA distance.
Let:

ωn̂,n,m
k =

∫
Z n̂,m

k

∫
X n

k

fk (Xn
k , Zm

k | Z1:k−1)dx(1)k · · · dx(n)k dz(1)k · · · dz(m)
k (A20)

denote the integral of the density fk
(

Xn
k , Zm

k

∣∣ Z1:k−1
)

over the region Z n̂,m
k × X n

k . ωn̂,n,m
k actually

denotes the probability of |Xk| = n and |Zk| = m given |X̂k| = n̂ and Z1:k−1, where |X̂k| = n̂ is from
the MAP detector of Equation (A12).
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Replacing fk
(

Xn
k , Zm

k

∣∣ Z1:k−1
)

in Equation (A21) with Equation (A17) and integrating out

x(1)k , ..., x(n)k , ωn̂,n,m
k can be rewritten as:

ωn̂,n,m
k =

πk|k−1(∅)e−λk

Ωn,m
k

∑
θn,m

∑
1≤j1 6=···6=jn≤Mk|k−1

∫
Z n̂,m

k
κ

Zm
k

k Dj1,...,jn
k

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

)
dz(1)k · · · dz(m)

k (A21)

Let:

τ∗ = arg min
τ∈Πmax(n̂,n)

{
min(n̂,n)

∑
t=1

min
(

c2,
∥∥∥x(t)k − x̂(τ(t))k (Z1:k−1, Zm

k )
∥∥∥2

2

)}
(A22)

denote the permutation in Πmax(n̂,n), which minimizes ∑
min(n̂,n)
t=1 min

(
c2,
∥∥∥x(t)k − x̂(τ(t))k

(
Z1:k−1, Zm

k
)∥∥∥2

2

)
.

By the use of ωn̂,n,m
k defined in Equation (A21) and τ∗ defined in Equation (A23), then Equation (A20)

can be rewritten as:

σ2
k =

∞
∑

m=0

N
∑

n=0

N
∑

n̂=0,n+n̂>0

Ωn,m
k

m!·n!·max(n̂,n)

·


min(n̂,n)

∑
t=1

min

 c2ωn̂,n,m
k ,

∫
Z n̂,m

k

∫
X n

k
fk
(

Xn
k , Zm

k

∣∣ Z1:k−1
)
·∥∥∥x(t)k − x̂(τ

∗(t))
k

(
Z1:k−1, Zm

k
)∥∥∥2

2
dx(1)k · · · dx(n)k dz(1)k · · · dz(m)

k


+c2|n− n̂|ωn̂,n,m

k

 (A23)

Let fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)

denote the joint probability density of
(

x(t)k , Zm
k

)
conditioned

on Z1:k−1 and |Xk| = n. fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)

can be obtained by:

fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)
=
∫
X n−1

k

fk (Xn
k , Zm

k | Z1:k−1) dx(1)k · · · dx(t−1)
k dx(t+1)

k · · · dx(n)k (A24)

Replacing fk
(

Xn
k , Zm

k

∣∣ Z1:k−1
)

in Equation (A25) with Equation (A17) and integrating out

x(1)k , ..., x(t−1)
k , x(t+1)

k , ..., x(n)k , fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)

can be rewritten as:

fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)
=

πk|k−1(∅)e−λk κ
Zm

k
k

Ωn,m
k

∑
θn,m

∑
1≤j1 6=···6=jn≤Mk|k−1

Dj1,...,jn
k

(
z(θn,m (1))

k ,...,z(θn,m (n))
k

)
H jt

k

(
z(θn,m (t))

k

) p(jt)
k|k−1

(
x(t)k

)
Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

) (A25)

According to the density fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)

defined in Equation (A25), the integral∫
Z n̂,m

k

∫
X n

k
fk
(

Xn
k , Zm

k

∣∣ Z1:k−1
) ∥∥∥x(t)k − x̂(τ

∗(t))
k

(
Z1:k−1, Zm

k
)∥∥∥2

2
dx(1)k · · · dx(n)k dz(1)k · · · dz(m)

k involved in

Equation (A24) can be rewritten as:

∫
Z n̂,m

k

∫
X n

k
fk
(

Xn
k , Zm

k

∣∣ Z1:k−1
) ∥∥∥x(t)k − x̂(τ

∗(t))
k

(
Z1:k−1, Zm

k
)∥∥∥2

2
dx(1)k · · · dx(n)k dz(1)k · · · dz(m)

k

=
∫
Z n̂,m

k

∫
Xk

fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)

∑L
l=1

(
x(t)k,l − x̂(τ

∗(t))
k,l

(
Z1:k−1, Zm

k
))2

dx(t)k dz(1)k · · · dz(m)
k

(A26)

where L is the dimension of the state xk.
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Since the estimator has been assumed to be unbiased, we can apply the CRLB of Equation (7) to
the density fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)

in Equation (A27),

∫
Z n̂,m

k

∫
Xk

fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
) (

x(t)k,l − x̂(τ
∗(t))

k,l
(
Z1:k−1, Zm

k
))2

dx(t)k dz(1)k · · · dz(m)
k

≥
[(

J(t),n̂,n,m
k

)−1
]

l,l
, l = 1, ..., L

(A27)

where: [
J(t),n̂,n,m
k

]
i,j
= −1(

ω
(t),n̂,n,m
k

)2

∫
Z n̂,m

k

∫
Xk

fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)
·

∂2 log fk

(
x(t)k ,Zm

k

∣∣∣Z1:k−1,|Xk |=n
)

∂x(t)k,i ∂x(t)k,j

dx(t)k dz(1)k · · · dz(m)
k

(A28)

ω
(t),n̂,n,m
k =

∫
Z n̂,m

k

∫
Xk

fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)

dx(t)k dz(1)k · · · dz(m)
k (A29)

From Equations (A21), (A25) and (A30), it can be easily seen that:

ω
(t),n̂,n,m
k = ωn̂,n,m

k (A30)

Finally, by substituting Equation (A28) into Equation (A27) and then Equation (A24), we have
Equation (17). This completes the proof.

Appendix B

Proof of Theorem 2. The proof of Theorem 2 is similar to that of Theorem 1. Therefore, only the main
differences between them are presented next.

According to Assumption A.2, it follows that the predicted multi-target density fk|k−1
(

Xn
k

∣∣ Z1:k−1
)

at time k is a Poisson density with intensity υk|k−1 (xk),

fk|k−1 (Xn
k | Z1:k−1) = e−ηk|k−1

n

∏
t=1

υk|k−1

(
x(t)k

)
(A31)

where:
ηk|k−1 =

∫
υk|k−1 (xk) dxk (A32)

denotes the expected number of predicted targets at time k.
Substituting Equations (A32) and (13) into Equations (A2) and (A3), respectively, and

integrating out x(1)k , ..., x(n)k in the two equations, the probabilities Pk ( |Xk| = n| Z1:k−1) and
Pk
(

Zm
k

∣∣ |Xk| = n
)

become:
Pk ( |Xk| = n| Z1:k−1) = e−ηk|k−1 ηn

k|k−1 (A33)

Pk (Zm
k | |Xk| = n) = e−ηk|k−1−λk κ

Zm
k

k ∑
θn,m

Dk

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

)
(A34)

where:

Dk

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

)
=

n

∏
t=1

Hk

(
z(θn,m(t))

k

)
(A35)

Hk

(
z(θn,m(t))

k

)
=
∫
Xk

υk|k−1

(
x(t)k

)
Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

)
dx(t)k (A36)
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The posterior probability Pk
(
|Xk| = n| Z1:k−1, Zm

k
)

can be obtained by substituting Equations
(A34) and (A35) into Equation (A1), and hence, the function ξn

k
(

Zm
k

∣∣ Z1:k−1
)

involved in the MAP
detector of Equation (A12) becomes:

ξn
k (Zm

k | Z1:k−1) =
(

ηk|k−1

)n
· ∑

θn,m

Dk

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

)
(A37)

Substituting Equations (A32) and (13) into Equations (A15) and (A16), respectively, and integrating
out z(1)k , ..., z(m)

k in Equation (A16), the density fk
(

Xn
k , Zm

k

∣∣ Z1:k−1
)

becomes:

fk (Xn
k , Zm

k | Z1:k−1) =
e−ηk|k−1−λk κ

Zm
k

k
Ωn,m

k
∑
θn,m

n

∏
t=1

υk|k−1

(
x(t)k

)
Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

)
(A38)

where the normalization factor Ωn,m
k is:

Ωn,m
k = e−ηk|k−1−λk λm

k ∑
θn,m

n

∏
t=1

K(t)
k|k−1 (A39)

with:

K(t)
k|k−1 =


∫
Xk

pD,k

(
x(t)k

)
υk|k−1

(
x(t)k

)
dx(t)k

/
λk, θn,m(t) > 0∫

Xk

(
1− pD,k

(
x(t)k

))
υk|k−1

(
x(t)k

)
dx(t)k , θn,m(t) = 0

(A40)

Replacing fk
(

Xn
k , Zm

k

∣∣ Z1:k−1
)

in Equation (A21) with Equation (A39), and integrating out

x(1)k , ..., x(n)k in Equation (A21), ωn̂,n,m
k becomes:

ωn̂,n,m
k =

e−ηk|k−1−λk

Ωn,m
k

∑
θn,m

∫
Z n̂,m

k

κ
Zm

k
k Dk

(
z(θn,m(1))

k , ..., z(θn,m(n))
k

)
dz(1)k · · · dz(m)

k (A41)

Similarly, replacing fk
(

Xn
k , Zm

k

∣∣ Z1:k−1
)

in Equation (A25) with Equation (A39), and integrating

out x(1)k , ..., x(t−1)
k , x(t+1)

k , ..., x(n)k in Equation (A25), the density fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)

becomes:

fk

(
x(t)k , Zm

k

∣∣∣ Z1:k−1, |Xk| = n
)
=

e
−ηk|k−1−λk κ

Zm
k

k
Ωn,m

k
∑

θn,m

Dk

(
z(θn,m(1))

k ,...,z(θn,m(n))
k

)
Hk

(
z(θn,m(t))

k

) υk|k−1

(
x(t)k

)
Gk

(
z(θn,m(t))

k

∣∣∣ x(t)k

) (A42)

The rest of the proof of Theorem 2 is completely the same as that of Theorem 1. This completes
the proof.

References

1. Bar-Shalom, Y.; Fortmann, T. Tracking and Data Association; Academic Press: San Diego, CA, USA, 1988.
2. Mahler, R. Statistical Multisource Multitarget Information Fusion; Artech House: Norwood, MA, USA, 2007;

pp. 332–335.
3. Blackman, S. Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag.

2004, 19, 5–18.
4. Mahler, R. Multi-target Bayes filtering via first-order multi-target moments. IEEE Trans. Aerosp. Electron.

Syst. 2003, 39, 1152–1178.
5. Mahler, R. PHD filters of higher order in target number. IEEE Trans. Aerosp. Electron. Syst. 2007, 43,

1523–1543.
6. Vo, B.T.; Vo, B.N.; Cantoni, A. The cardinality balanced multi-target multi-Bernoulli filter and its

implementations. IEEE Trans. Signal Process. 2009, 57, 409–423.



Sensors 2016, 16, 169 18 of 18

7. Xu, Y.; Xu, H.; An, W.; Xu, D. FISST based method for multi-target tracking in the image plane of optical
sensors. Sensors 2012, 12, 2920–2934.

8. Vo, B.T.; Vo, B.N.; Hoseinnezhad; R.; Mahler, R. Robust multi-bernoulli filtering. IEEE J. Sel. Top. Signal Process.
2013, 7, 399–409.

9. Vo, B.N.; Vo, B.T.; Phung, D. Labeled random finite sets and the bayes multi-target tracking filter. IEEE Trans.
Signal Process. 2014, 62, 6554–6567.

10. Zhang, F.H.; Buckl, C.; Knoll, A. Multiple vehicle cooperative localization with spatial registration based on
a probability hypothesis density filter. Sensors 2014, 14, 995–1009.

11. Tichavsky, P.; Muravchik, C.; Nehorai, A. Posterior Cramér-Rao bounds for discrete time nonlinear filtering.
IEEE Trans. Signal Process. 1998, 46, 1701–1722.

12. Hernandez, M.; Farina, A.; Ristic, B. PCRLB for tracking in cluttered environments: Measurement sequence
conditioning approach. IEEE Trans. Aerosp. Electr. Syst. 2006, 42, 680–704.

13. Hernandez, M.; Ristic, B.; Farina, A.; Timmoneri L. A comparison of two Cramér-Rao bounds for nonlinear
filtering with Pd < 1. IEEE Trans. Signal Process. 2004, 52, 2361–2370.

14. Zhong, Z.W.; Meng, H.D.; Zhang, H.; Wang, X.Q. Performance bound for extended target tracking using
high resolution sensors. Sensors 2010, 10, 11618–11632.

15. Tang, X.W.; Tang, J.; He, Q.; Wan, S.; Tang, B.; Sun, P.L.; Zhang, N. Cramér-Rao bounds and coherence
performance analysis for next generation radar with pulse trains. Sensors 2013, 13, 5347–5367.

16. Rezaeian, M.; Vo, B.N. Error bounds for joint detection and estimation of a single object with random finite
set observation. IEEE Trans. Signal Process. 2010, 58, 1943–1506.

17. Tong, H.S.; Zhang, H.; Meng, H.D.; Wang, X.Q. A comparison of error bounds for a nonlinear tracking
system with detection probability Pd < 1. Sensors 2012, 12, 17390–17413.

18. Tong, H.S.; Zhang, H.; Meng, H.D.; Wang, X.Q. The recursive form of error bounds for RFS state and
observation with Pd < 1. IEEE Trans. Signal Process. 2013, 61, 2632–2646.

19. Schuhmacher, D.; Vo, B.T.; Vo, B.N. A consistent metric for performance evaluation of multi-object filters.
IEEE Trans. Signal Process. 2008, 86, 3447–3457.

20. Herath, S.C.K.; Pathirana, P.N. Optimal sensor arrangements in angle of arrival (AoA) and range based
localization with linear sensor arrays. Sensors 2013, 13, 12277–12294.

21. Poor, V. An Introduction to Signal Detection and Estimation; Springer-Verlag: New York, NY, USA, 1994.
22. Cho, T.; Lee, C.; Choi, S. Multi-sensor fusion with interacting multiple model filter for improved aircraft

position accuracy. Sensors 2013, 13, 4122–4137.
23. Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B. Numerical Recipes in C; Cambridge: New York, NY,

USA, 1992.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Background
	[1.0]Single-Sensor Multi-Target JDE Error Bounds Using Multi-Bernoulli or Poisson Approximation
	Numerical Examples
	Conclusions

