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Abstract: Hyperspectral images possess properties such as rich spectral information, narrow
bandwidth, and large numbers of bands. Finding effective methods to retrieve land features
from an image by using similarity assessment indices with specific spectral characteristics is an
important research question. This paper reports a novel hyperspectral image similarity assessment
index based on spectral curve patterns and a reflection-absorption index. First, some spectral
reflection-absorption features are extracted to restrict the subsequent curve simplification. Then,
the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without
setting the thresholds. Finally, the simplified curves with the feature points are matched, and the
similarities among the spectral curves are calculated using the matched points. The Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS)
hyperspectral image datasets are then selected to test the effect of the proposed index. The practical
experiments indicate that the proposed index can achieve higher precision and fewer points than the
traditional spectral information divergence and spectral angle match.

Keywords: similarity assessment; spectrum absorption-reflection idex; simplified curve pattern;
Douglas-Peucker algorithm; hyperspectral remote sensing

1. Introduction

A hyperspectral remote sensing image has the combined characteristics of an image and spectrum;
in addition, undetectable substances can be easily detected in multi-spectral remote sensing images [1].
In recent years, hyperspectral remote sensing technologies have developed rapidly and are being
widely applied in many industries. Remote sensing image classification has evolved from rough
recognition using multi-spectral images to undertake spectrum-analysis-based fine identification using
hyperspectral images [2,3]. However, due to the increased cost of hyperspectral remote sensing image
data volume, high correlation among the bands and training samples, the traditional hyperspectral
remote sensing image classification and recognition technologies cannot satisfy the requirements of
hyperspectral remote sensing applications [4].

To address issues in hyperspectral remote sensing image feature identification and classification,
scholars have proposed various methods, which can be roughly divided into two categories: ones
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based on feature space and those based on spectral space. For the first category, according to the
Hughes phenomenon, the number of training samples can sharply increase with the increase of band
number. The common solution is to reduce the dimensionality of the hyperspectral image by using
the methods of principal component analysis [5,6], independent component analysis [7], information
entropy [8], genetic algorithm, projected track [9], wavelet analysis [10], minimum noise fraction
transformation [11], neural networks [12], particle swarm optimization, manifold learning algorithm,
and so on. The Hughes phenomenon can be avoided once the dimensionality of the hyperspectral
remote sensing image is controlled. The hyperspectral remote sensing image classification can be
completed using conventional remote sensing image classification methods, such as the maximum
likelihood method [13], Bayesian classifier method [14], decision tree, artificial neural networks [15],
and so on, Another interesting classification approach is based on kernel space, and includes support
vector machines (SVM) and kernel fisher discriminates (KFD), to name a few. Such methods have been
widely used because they are not limited by the Hughes phenomenon [16].

The other category is based on spectral space, and includes Euclidean distance (ED), spectral
absorption index (SAI), spectral angle mapper (SAM) [17,18], spectral correlation mapper (SCM),
mutual information [19], spectral gradient angle [20] spectral information divergence (SID) [21],
set methodology, and so on. Based on the fine spectral information of hyperspectral remote sensing
images, such methods do not require complex analysis and dimension reduction.

As the essence of remote sensing image classification is to divide objects into several different
categories by extracting the characteristics of different objects and using a certain similarity
measurement combining some classification criteria, the key aspect of hyperspectral remote sensing
image classification is the assessment of spectral similarities among different objects. Some scholars
have carried out impact studies on the similarity assessment of the classification results by combining
spectral amplitude and shape.

Du et al. [22] proposed a classification method combining the spectral information dispersion
and spectral cosine angular, while Kumar et al. [23] proposed a method using the combination of the
correlation coefficient (CC) and spectral information dispersion. Kong et al. [24] presented a spectral
similarity metric that combines various spectral features using geometric distance, the CC, and relative
entropy. Meanwhile, Du et al. [25] extracted the characteristics of spectral absorption/reflection, central
moment, fractal dimension and information entropy for image retrieval, and concluded that these are
actually inappropriate parameters for image retrieval. Spectral curve feature extraction has also been
applied to various fields, such as crop identification and chemistry analysis [26,27]. SAM has been
used extensively for distinguishing different objects because it is capable of repressing the influence of
shading to enhance the target reflectance [28]. However, this method can only distinguish between
negative and positive correlations because only the absolute value is considered [29]. In comparison,
SID models the spectrum as a probability distribution and describes the spectral features by using
statistical moments; it also considers the spectral variability as a random uncertainty [21]. Based
on these advantages, some studies have combined SAM and SID to increase the discriminatory
capacity for effective image retrieval [30]. These studies have proven that the classification accuracy of
using a combination of two or more similarity measures is higher than that using a single similarity
measure. However, the comparisons and evaluations of similarity measures have been carried out
using only spectral data or a few samples of land cover types. Furthermore, the comparison methods
do not use uniform standards and, to date, there have been few systematic evaluations of similarity
measure methods.

All the bands of reference and measured spectra are involved in the computation when using
various similarity metrics. In this case, the enormous amount of required calculation can lead to low
efficiency in similarity assessment because there may be hundreds of thousands of bands involved.
Thus, certain simplified or filtration methods must be used to reduce the amount of computation.
The Douglas-Peucker (DP) algorithm is an efficient and extensively used method to simplify a curve.
However, the simplification effect depends on the threshold, which cannot be adaptively set. Therefore,
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in this paper, an improved DP (IDP) algorithm without threshold under spectral reflection-absorption
index (SRAI)-restriction is proposed to meet this requirement. In addition, a similarity index is
proposed to assess the similarities among different spectrum curves. Section 2 reviews two widely
used similarity metrics, i.e., SAM and SID. Section 3 presents the proposed SRAI-restrained IDP
method. Section 4 illustrates the assessing experiments using the proposed method and traditional
ones. Then, the effects of the parameters are evaluated. The final section draws the conclusions based
on the obtained results.

2. Related Similarities of Spectral Vectors

A spectral vector (curve) is the representation of ground feature that is used in hyperspectral
remote sensing. Ground feature identification can be achieved by measuring the similarities of the
spectral vectors. Two typical similarity indices are shown below.

2.1. SID

SID is based on the information entropy; it can measure the similarities and separability of pixels.
First, the information entropy of each point is calculated; then, they are compared to measure the
similarities of the spectral vectors using the formula:

SIDpA, Bq “ DpA||Bq `DpB||Aq (1)

where:
DpA||Bq “ ´

N
ÿ

i“1

pilogppi{qiq (2)

DpB||Aq “ ´
N

ÿ

i“1

qilogpqi{piq (3)

pi “ Ai{

N
ÿ

i“1

Ai (4)

qi “ Bi{

N
ÿ

i“1

Bi (5)

In the equations above, N refers to the number of bands, and A “ pA1, A2, ¨ ¨ ¨, ANq and
B “ pB1, B2, ¨ ¨ ¨, BNq refer to the two spectral vectors, respectively. Here, the lower the SID value,
the higher the similarity of both spectral vectors.

2.2. SAM

SAM, also known as vector-included angle cosine method, assess similarity by calculating the
angle between two spectral vectors. The spectral angle refers to the angle of two spectral vectors with
the same wavelength range, which is given by:

cosα “
A ¨ B
|A||B|

“

N
ÿ

i“1

AiBi{p

g

f

f

e

N
ÿ

i“1

Ai Ai

g

f

f

e

N
ÿ

i“1

BiBiq (6)

where A and B refer to the two spectral vectors, respectively, and α refers to the spectral angle.
The cosine value of α is needed in the computation. Here, the higher the SAM value, the higher the
similarity of the two spectral vectors.

3. Proposed Approach

3.1. SRAI

The spectral curves of various ground features have different properties in terms of absorption
wave peak and valley, location, width, depth, and symmetry. Therefore, SRAI can be used to illustrate
the spectral curve identification feature.
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Spectral absorption is characterized by the valley (M) and its corresponding peaks (S1 and S2),
or the peak and its corresponding valleys valleys as shown in Figure 1. H represents the spectral
absorption depth, and is the distance between the non-absorption baseline formed by valley (M) and
its corresponding peaks. Let us suppose thatρS1, ρS2, and ρM are the reflectances of S1, S2 and M,
respectively, and λS1, λS2 and λM are the wavelengths of S1, S2, and M, respectively. Thus, the width of
absorption band, asymmetry parameter, and the reflectance rate of peak can be respectively obtained
using the expressions:

W “ λS2 ´ λS1 (7)

d “
λS2 ´ λM

W
(8)

∆ρS “ ρS2 ´ ρS1 (9)

Therefore, the formula of the non-absorption baseline is:

W ¨ ρ´ ∆ρS ¨ λ “ ρS1 ´ ∆ρS ¨ λS1 (10)

Equation (10) expresses the spectral contribution and spectral behavior of ground features without
the spectral absorption characteristics. In this case, SRAI can be defined as the ratio of the spectral
value of absorption and the corresponding baseline, as expressed by:

SRAI “
dρS1 ` p1´ dqρS2

ρM
(11)
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Figure 2 shows the spectral curves of tree and wheat from an AVIRIS hyperspectral image, from 
which 20 SRAI feature points (including 10 valley points and 10 peak points) are extracted.  
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Figure 2. The SRAI features extracted from the spectral curves of a (a) tree and (b) wheat. 

Figure 1. Illustrations of SRAI (a) absorption and (b) reflection.

Figure 2 shows the spectral curves of tree and wheat from an AVIRIS hyperspectral image, from
which 20 SRAI feature points (including 10 valley points and 10 peak points) are extracted.
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3.2. Classical DP Algorithm

Hundreds of bands are involved in calculating similarities among hyperspectral images.
One possible way to reduce the computation load is to simplify the spectral vector. The DP algorithm,
vertical distance algorithm, and Li-Openshaw algorithm are among the most common methods used,
of which the DP algorithm is the most popular. The basic principles of using the DP algorithm are
listed below:

(1) Connect both ends of the curve with a straight line and calculate the distances (d) from all the
points on curve to the line.

(2) Compare the maximum distance (dmax) and threshold D; if dmax < D, then eliminate all points
on the curve; otherwise, retain the point with the maximum distance (dmax) and split the curve
into two parts;

(3) Repeat steps 1 and 2 until dmax < D is true for all points on the curve, and all the retained points
comprise the final simplified spectral curve.

Figure 3 illustrates the simplified spectral curve using the DP algorithm with different thresholds
(D). As can be seen, as the threshold increases, more points are removed and the spectral curve becomes
more simplified.
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Figure 3. The simplified spectral curve using the DP algorithm with different thresholds. (a) The
original spectral curve with 183 points, (b) D = 0.05, 30 retained points, (c) D = 0.1, 23 retained points,
and (d) D = 0.2, 13 retained points.

The DP algorithm is able to preserve the curve pattern feature; however, recursion is needed for
processing, which further complicates the process. This process also has three main disadvantages,
which are listed below:
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(1) The threshold must be specified as it can significantly affect the performance of curve
simplification. On the one hand, if the threshold becomes higher, fewer points are retained,
which may destroy the pattern. On the other hand, if the threshold becomes lower, more points
are retained; therefore, less simplification is achieved.

(2) Knowing how many points are left using a threshold before computing is impossible; in other
words, setting a proper threshold to maintain the feature of a spectral curve using the necessary
points is a difficult and complex task.

(3) For the effective simplification of multiple curves, particularly for hyperspectral images, different
thresholds are needed for various curves; moreover, to retain enough points, every curve should
set different thresholds.

3.3. IDP Algorithm

To address the problems mentioned above, this paper proposes an improved version of the DP
algorithm, which we call IDP. This algorithm does not require setting the threshold but is able to
preserve the curve pattern. The major steps are listed below:

(1) Connect the starting point S and ending point E, calculate the distance from each point to segment
SE, and retain the point M, which has the maximum distance; this is the same as step one in the
traditional DP algorithm.

(2) Connect SM and ME, calculate the distance from each point to segment SM and ME, and retain
the point N, which has the maximum distance.

(3) Divide the curve into three parts using points M and N. Repeat step (2) until it meets the point
number retaining requirement.

(4) If the distances are equal in step (2), calculate the ratio of the distance to the line sector and the
length of sector, the point with the lower ratio is then retained.

In other words, in every iteration, only one point with maximum distance is retained, and once
the total number of retained points reach the specified number of points, the iteration stops. Hence,
the problems mentioned in the above section could be solved without the threshold. Figure 4 shows
the simplified results using different numbers of points. As shown in the figure, the proposed IDP
algorithm can well maintain the feature pattern of the spectral curve. Comparing Figures 4b and 3d,
we find that the retained points of IDP are the same as those of the traditional DP algorithm, thus
indicating the robust results of the proposed IDP.
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By specifying the number of retained points, the algorithm can lead to convergence and ensure
effective simplification. At the same time, as the threshold is not required, the algorithm can adapt to
different curve patterns.

3.4. The IDP Algorithm under SRAI-Restriction

As described in Section 3.1, the SRAI points are essential for representing the basic features of
the spectral curve; hence they must be preserved. The IDP algorithm can retain the specified number
of points. Combining these two requirements, we propose the IDP algorithm under SRAI-restraint,
which consists of the following steps:

(1) Specify the number of SRAI points and then calculate the SRAI feature points.
(2) Specify the number of all the retained points and then set the SRAI points as the initial points of

the IDP algorithm. Finally, run the IDP algorithm to determine the remaining points.

Figure 5 presents the 20 SRAI feature points extracted from the spectral curve. Using the improved
algorithm, retention of 30, 50 and 70 feature points are achieved, as shown in Figure 5b–d, respectively,
so compared with Figure 5a, the improved algorithm can better preserve the overall pattern of
the curve.
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3.5. SRAI for the Hyperspectral Curves

For hyperspectral curve similarity assessment, the spectral curves are first simplified by
SRAI-restrained IDP algorithm, after which the similarity of the simplified curves are compared
with the same number of feature points. The calculation of similarity assessment index consists of
two steps: band matching and distance calculation:

(1) For the simplified spectral curves A and B, for a point Ai on curve A, if a point Bj on curve B has
the same band number as Ai, then Bj is matched with Ai. Repeat this procedure until all points
on curve A have been processed. Let variable N denote the total number of matched points.

(2) For every matched point, calculate the ED between the reflectance of every matched point, and
obtain the sum of all the distances as the final distance.

The final similarity assessment index is thus defined as:

Sim “ p
C
N
q

2
ˆ

g

f

f

e

1
N

N
ÿ

i

pRA_i ´ RB_iq
2 (12)

where N is the number of matching points and C is the number of all feature points; RA_i and RB_i

are the reflectance of the matched points Ai and Bi, respectively; and
C
N

is the punishment coefficient.

This means that fewer matched points result in higher
C
N

, thus leading to lower similarity. Hence, the
lower value of Sim indicates the higher similarity of two curves.

4. Experiment and Analysis

To test the performance of the proposed similarity assessment index, two datasets, i.e., AVIRIS
dataset and ROSIS dataset were used, and the typical indices, i.e., correlation coefficient (CC), ED,
first-order approximation of Kullback-Leibler divergence (KL), SID and SAM, were compared. The
mathematical expression of KL is given by:

KL “
N

ÿ

i“1

rr1piq ´ r2piqs2

r1piq ` r2piq
(13)

where r1 and r2 are the two spectrum curves, respectively.
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4.1. Airborne Visible Infrared Imaging Spectrometer (AVIRIS) Dataset

The AVIRIS hyperspectral image from the Purdue University Remote Sensing Image Processing
Lab was used for our experiments. The original image was captured in June 1992 in an experiment
field located in Indiana, USA. The image had 224 bands, the spectral range was from 0.4 to 2.45 µm,
the spatial resolution was 20 m, and the image size was 145 ˆ 145 pixels. A total of 183 bands were
used for the experiment after removing water absorption and noise bands. Figure 6a presents the RGB
composite image of bands 97, 37, and 7.

Sensors 2016, 16, 152 9 of 16 

 

4.1. Airborne Visible Infrared Imaging Spectrometer (AVIRIS) Dataset 

The AVIRIS hyperspectral image from the Purdue University Remote Sensing Image Processing 
Lab was used for our experiments. The original image was captured in June 1992 in an experiment 
field located in Indiana, USA. The image had 224 bands, the spectral range was from 0.4 to 2.45 μm, 
the spatial resolution was 20 m, and the image size was 145 × 145 pixels. A total of 183 bands were 
used for the experiment after removing water absorption and noise bands. Figure 6a presents the 
RGB composite image of bands 97, 37, and 7. 

 
(a) (b) 

Figure 6. RGB color composite AVIRIS image. (a) True color image and (b) mean spectral curve of 
three types of land cover. 

According to the ground truth, three cover types [i.e., grass (A), wheat (B), and forest (C)] were 
chosen for the similarity assessment. For simplicity, three pixels of every type were selected for the 
experiment. Figure 6b shows the similar mean spectral curves of the three types. The evaluation 
results of our method were compared with those obtained using the CC, ED, SID, KL and SAM 
methods. The results are listed in Tables 1–6, where A1, A2 and A3 correspond to grass; B1, B2 and 
B3 correspond to wheat; and C1, C2 and C3 correspond to forest. A total of 20 SRAI feature points 
were exacted and then used to retain 50 points on the spectral curve. The bold back values are the 
correct rank result, while the bold red values are the wrong ones. In addition, the rank of similarity 
are listed in the last column. For example, looking at the horizontal view of A3, the similarity between 
A3 and B2 (0.9977) is bigger than that between A3 and A2 (0.9960), which is obviously wrong (Table 1). 
Meanwhile, for the rank view of A3, the rank is “A3 > A1 > B2,” where B2 should not be in the third 
order, thus indicating an error. 

Table 1. The performance of CC for the AVIRIS dataset. 

CC 

 A1 A2 A3 B1 B2 B3 C1 C2 C3 Rank 
A1 1 0.9980 0.9982 0.9979 0.9977 0.9967 0.9964 0.9969 0.9968 A1, A3, A2 
A2 0.9980 1 0.9960 0.9983 0.9972 0.9962 0.9969 0.9976 0.9968 A2, B1, A1 
A3 0.9982 0.9960 1 0.9967 0.9977 0.9973 0.9963 0.9968 0.9968 A3, A1, B2 
B1 0.9979 0.9983 0.9967 1 0.9983 0.9968 0.9982 0.9983 0.9982 B1, B2, C1/C2
B2 0.9977 0.9972 0.9977 0.9983 1 0.9982 0.9971 0.9978 0.9978 B2, B1, B3 
B3 0.9967 0.9962 0.9973 0.9968 0.9982 1 0.9962 0.9969 0.9965 B3, B2, A3 
C1 0.9964 0.9969 0.9963 0.9982 0.9971 0.9962 1 0.9994 0.9993 C1, C2, C3 
C2 0.9969 0.9976 0.9968 0.9983 0.9978 0.9969 0.9994 1 0.9993 C2, C1, C3 
C3 0.9968 0.9968 0.9968 0.9982 0.9978 0.9965 0.9993 0.9993 1 C3, C1, C2 
  

Figure 6. RGB color composite AVIRIS image. (a) True color image and (b) mean spectral curve of
three types of land cover.

According to the ground truth, three cover types [i.e., grass (A), wheat (B), and forest (C)] were
chosen for the similarity assessment. For simplicity, three pixels of every type were selected for the
experiment. Figure 6b shows the similar mean spectral curves of the three types. The evaluation results
of our method were compared with those obtained using the CC, ED, SID, KL and SAM methods.
The results are listed in Tables 1–6 where A1, A2 and A3 correspond to grass; B1, B2 and B3 correspond
to wheat; and C1, C2 and C3 correspond to forest. A total of 20 SRAI feature points were exacted and
then used to retain 50 points on the spectral curve. The bold back values are the best rank results.
In addition, the rank of similarity are listed in the last column. For example, looking at the horizontal
view of A3, the similarity between A3 and B2 (0.9977) is bigger than that between A3 and A2 (0.9960),
which is obviously wrong (Table 1). Meanwhile, for the rank view of A3, the rank is “A3 > A1 > B2,”
where B2 should not be in the third order, thus indicating an error.

Table 1. The performance of CC for the AVIRIS dataset.

CC

A1 A2 A3 B1 B2 B3 C1 C2 C3 Rank
A1 1 0.9980 0.9982 0.9979 0.9977 0.9967 0.9964 0.9969 0.9968 A1, A3, A2
A2 0.9980 1 0.9960 0.9983 0.9972 0.9962 0.9969 0.9976 0.9968 A2, B1, A1
A3 0.9982 0.9960 1 0.9967 0.9977 0.9973 0.9963 0.9968 0.9968 A3, A1, B2

B1 0.9979 0.9983 0.9967 1 0.9983 0.9968 0.9982 0.9983 0.9982 B1, B2,
C1/C2

B2 0.9977 0.9972 0.9977 0.9983 1 0.9982 0.9971 0.9978 0.9978 B2, B1, B3
B3 0.9967 0.9962 0.9973 0.9968 0.9982 1 0.9962 0.9969 0.9965 B3, B2, A3
C1 0.9964 0.9969 0.9963 0.9982 0.9971 0.9962 1 0.9994 0.9993 C1, C2, C3
C2 0.9969 0.9976 0.9968 0.9983 0.9978 0.9969 0.9994 1 0.9993 C2, C1, C3
C3 0.9968 0.9968 0.9968 0.9982 0.9978 0.9965 0.9993 0.9993 1 C3, C1, C2
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Table 2. The performance of ED for the AVIRIS dataset.

ED

A1 A2 A3 B1 B2 B3 C1 C2 C3 Rank
A1 0 0.3739 0.3280 0.9241 0.8188 1.0386 1.3415 1.3367 1.2500 A1,A3,A2
A2 0.3739 0 0.3088 0.6276 0.3471 0.8056 1.0458 1.0417 0.9627 A2,A3,B2
A3 0.3280 0.3088 0 0.6942 0.5721 0.7933 1.0870 1.0815 0.9946 A3,A2,A1
B1 0.9241 0.6276 0.6942 0 0.2499 0.4251 0.4784 0.4823 0.4068 B1,B2,C3
B2 0.8188 0.3471 0.5721 0.2499 0 0.4570 0.6084 0.5983 0.4155 B2,B1,A2
B3 1.0386 0.8056 0.7933 0.4251 0.4570 0 0.4460 0.5134 0.4949 B3,B1,C1
C1 1.3415 1.0458 1.0870 0.4784 0.6084 0.4460 0 0.1618 0.1800 C1,C2,C3
C2 1.3367 1.0417 1.0815 0.4823 0.5983 0.5134 0.1618 0 0.1874 C2,C1,C3
C3 1.2500 0.9627 0.9946 0.4068 0.4155 0.4949 0.1800 0.1874 0 C3,C1,C2

Table 3. The performance of SID for the AVIRIS dataset.

SID

A1 A2 A3 B1 B2 B3 C1 C2 C3 Rank
A1 0 0.0087 0.0066 0.0154 0.0183 0.0101 0.0159 0.0109 0.0147 A1,A3,A2
A2 0.0087 0 0.0082 0.0085 0.0114 0.0141 0.0105 0.0064 0.0117 A2,A3,C2
A3 0.0066 0.0082 0 0.0110 0.0126 0.0117 0.0112 0.0083 0.0109 A3,A1,A2
B1 0.0154 0.0085 0.0110 0 0.0078 0.0210 0.0059 0.0069 0.0076 B1,C1,C2
B2 0.0183 0.0114 0.0126 0.0078 0 0.0214 0.0100 0.0085 0.0075 B2,C3,B1
B3 0.0101 0.0141 0.0117 0.0210 0.0214 0 0.0219 0.0150 0.0214 B3,A1,A3
C1 0.0159 0.0105 0.0112 0.0059 0.0100 0.0219 0 0.0071 0.0078 C1,B1,C2
C2 0.0109 0.0064 0.0083 0.0069 0.0085 0.0150 0.0071 0 0.0076 C2,A2,B1
C3 0.0147 0.0117 0.0109 0.0076 0.0075 0.0214 0.0078 0.0076 0 C3,B2,B1/C2

Table 4. The performance of KL for the AVIRIS dataset.

KL

A1 A2 A3 B1 B2 B3 C1 C2 C3 Rank
A1 0 0.2441 0.2080 0.8186 0.7634 1.3321 1.4262 1.4227 1.2981 A1,A3,A2
A2 0.2441 0 0.2109 0.4512 0.2323 1.1203 0.9707 0.9656 0.9177 A2,A3,B2
A3 0.2080 0.2109 0 0.4835 0.4373 0.9866 0.9297 0.9518 0.8453 A3,A1,A2
B1 0.8186 0.4512 0.4835 0 0.2207 0.7410 0.2934 0.3687 0.3044 B1,B2,C1
B2 0.7634 0.2323 0.4373 0.2207 0 0.8417 0.4877 0.5064 0.3786 B2,B1,A2
B3 1.3321 1.1203 0.9866 0.7410 0.8417 0 0.6529 0.4534 0.6356 B3,C1,C2
C1 1.4262 0.9707 0.9297 0.2934 0.4877 0.6529 0 0.1272 0.1388 C1,C2,C3
C2 1.4227 0.9656 0.9518 0.3687 0.5064 0.4534 0.1272 0 0.1473 C2,C1,C3
C3 1.2981 0.9177 0.8453 0.3044 0.3786 0.6356 0.1388 0.1473 0 C3,C1,C2

Table 5. The performance of SAM for the AVIRIS dataset.

SAM

A1 A2 A3 B1 B2 B3 C1 C2 C3 Rank
A1 1 0.9988 0.9992 0.9981 0.9980 0.9986 0.9972 0.9979 0.9976 A1,A3,A2
A2 0.9988 1 0.9982 0.9991 0.9986 0.9977 0.9983 0.9989 0.9984 A2,B1,C2
A3 0.9992 0.9982 1 0.9980 0.9985 0.9986 0.9977 0.9982 0.9981 A3,A1,B3
B1 0.9981 0.9991 0.9980 1 0.9991 0.9975 0.9992 0.9993 0.9992 B1,C2,C1/C3
B2 0.9980 0.9986 0.9985 0.9991 1 0.9977 0.9987 0.9990 0.9990 B2,B1,C2/C3
B3 0.9986 0.9977 0.9986 0.9975 0.9977 1 0.9966 0.9975 0.9970 B3,A1,A3
C1 0.9972 0.9983 0.9977 0.9992 0.9987 0.9966 1 0.9990 0.9987 C1,B1,C2
C2 0.9979 0.9989 0.9982 0.9993 0.9990 0.9975 0.9990 1 0.9991 C2,B1,C3
C3 0.9976 0.9984 0.9981 0.9992 0.9990 0.9970 0.9987 0.9991 1 C3,B1,C2
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Table 6. The performance of the proposed index for the AVIRIS dataset.

Proposed

A1 A2 A3 B1 B2 B3 C1 C2 C3 Rank
A1 0 0.0637 0.0748 0.1495 0.1960 0.2151 0.3167 0.2271 0.2295 A1,A2,A3
A2 0.0637 0 0.0568 0.1202 0.1343 0.1516 0.1829 0.1678 0.1838 A2,A3,A1
A3 0.0748 0.0568 0 0.1797 0.1412 0.2417 0.1819 0.2116 0.2304 A3,A2,A1
B1 0.1495 0.1202 0.1797 0 0.0518 0.0726 0.1101 0.1001 0.0934 B1,B2,B3
B2 0.1960 0.1343 0.1412 0.0518 0 0.0883 0.1509 0.1445 0.1443 B2,B1,B3
B3 0.2151 0.1516 0.2417 0.0726 0.0883 0 0.1122 0.1242 0.0966 B3,B1,B2
C1 0.3167 0.1829 0.1819 0.1101 0.1509 0.1122 0 0.0293 0.0412 C1,C2,C3
C2 0.2271 0.1678 0.2116 0.1001 0.1445 0.1242 0.0293 0 0.0461 C2,C1,C3
C3 0.2295 0.1838 0.2304 0.0934 0.1443 0.0966 0.0412 0.0461 0 C3,C1,C2

From Figure 6b, we can see that these three types can be easily confused with one another. For SID
results, there are 11 confusing pairs (i.e., A2 and C2, B1 and C1, B1 and C2, B2 and C3, B3 and A1,
B3 and A3, C1 and B1, C2 and A2, C2 and B1, C3 and B2, C3 and B1), which can also be seen from
the rank column. For the SAM results, there are 13 confusing pairs (i.e., A2 and B1, A2 and C2, A3
and B3, B1 and C2, B1 and C1/C3, B2 and C2/C3, B3 and A1, B3 and A3, C1 and B1, C2 and B1, C3
and B1). For the CC, ED and KL indices, there are five, four and five confusing pairs, respectively.
In comparison, for the proposed index, all the types are clearly distinguished, which is also reflected
in both the similarity assessment values and ranking. The results indicate that the proposed index is
effective in distinguishing different vegetation types with similar spectra.

4.2. Reflective Optics System Imaging Spectrometer (ROSIS) Dataset

The ROSIS dataset was acquired using Reflective Optics System Imaging Spectrometer-DLR
(ROSIS_03), Schneider Systemtechnik-HySens Pavia Campaign (2002). The data set acquired from the
ROSIS sensor does not fully cover the areas of interest because of the narrower field of view of the DAIS
instrument on which the flight lines have been designed. Data were atmospherically corrected but
not geometrically corrected. The number of spectral bands was 103 for the “University” dataset, and
geometric resolution was 1.3 meters. The images were acquired during a flight campaign over Pavia,
in northern Italy (45˝11’ N, 9˝9’ E), on the 8th of July 2002 from 10:30 a.m. to 12:00 noon. Figure 7a
presents the RGB composite image.
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According to the ground truth land cover map, three cover types, i.e., Asphalt (A), Self-Blocking
Bricks (B), and Meadows (C), on the image were chosen for the similarity assessment. For simplicity,
three pixels of every type were selected for the experiment. Figure 7b shows the mean spectral curves
of the three types, from which it can be observed that Asphalt and Self-Blocking Bricks are similar
while Meadows is different. The results of SID, SAM, and the proposed index are listed in Tables 4–6
respectively, in which A1, A2 and A3 denote Asphalt; B1, B2 and B3 denote Self-Blocking Bricks; and
C1, C2 and C3 denote Meadows. A total of 50 points were retained on the spectral curve, and 10 SRAI
feature points were selected. The bold back values show the best ranking results. In addition, the
similarity rankings are listed in the last column.

Similar to Figure 6b, in Figure 7b, the spectral curves of cover types A and B can be easily confused
with each other. In Tables 7–9 there are nine confusing pairs in total. Table 10 shows three confusing
pairs (A2 and B2, A3 and B1, B2 and A2), while Table 11 shows five confusing pairs (A2 and B3, A3
and B2, B1 and A2, B2 and A3, B3 and A2). These results are also shown in the ranking columns.
In comparison, in Table 12, all cover types are clearly distinguished, indicating that the proposed index
shows better performance compared with CC, ED, KL, SID and SAM.

Table 7. The performance of CC for the ROSIS dataset.

CC

A1 A2 A3 B1 B2 B3 C1 C2 C3 Rank
A1 1.0000 0.9775 0.9798 0.9024 0.9156 0.9054 0.9441 0.9376 0.9437 A1,A3,A2
A2 0.9775 1.0000 0.9645 0.9570 0.9673 0.9579 0.9362 0.9327 0.9382 A2,A1,B2
A3 0.9798 0.9645 1.0000 0.9560 0.9643 0.9593 0.9392 0.9350 0.9406 A3,A1,A2
B1 0.9024 0.9570 0.9560 1.0000 0.9524 0.9961 0.9128 0.9152 0.9176 B1,B3,A2
B2 0.9156 0.9673 0.9643 0.9524 1.0000 0.9937 0.9243 0.9264 0.9278 B2,B3,A2
B3 0.9054 0.9579 0.9593 0.9961 0.9937 1.0000 0.9202 0.9223 0.9245 B3,B1,B2
C1 0.9441 0.9362 0.9392 0.9128 0.9243 0.9202 1.0000 0.9991 0.9994 C1,C3,C2
C2 0.9376 0.9327 0.9350 0.9152 0.9264 0.9223 0.9991 1.0000 0.9994 C2,C3,C1
C3 0.9437 0.9382 0.9406 0.9176 0.9278 0.9245 0.9994 0.9994 1.0000 C3,C1,C2

Table 8. The performance of ED for the ROSIS dataset.

ED

A1 A2 A3 B1 B2 B3 C1 C2 C3 Rank
A1 0.0000 0.1923 0.4887 0.3429 0.4139 0.4501 1.5770 2.0089 1.6241 A1,A2,B1
A2 0.1923 0.0000 0.0787 0.2705 0.3597 0.3867 1.4922 1.9360 1.5395 A2,A3,A1
A3 0.4887 0.0787 0.0000 0.3112 0.4091 0.4314 1.5348 1.9820 1.5831 A3,A2,B1
B1 0.3429 0.2705 0.3112 0.0000 0.3444 0.1491 1.3785 1.7978 1.4199 B1,B3,A2
B2 0.4139 0.3597 0.4091 0.3444 0.0000 0.0904 1.3043 1.7101 1.3443 B2,B3,B1
B3 0.4501 0.3867 0.4314 0.1491 0.0904 0.0000 1.2787 1.6847 1.3175 B3,B2,B1
C1 1.5770 1.4922 1.5348 1.3785 1.3043 1.2787 0.0000 0.4871 0.0842 C1,C3,C2
C2 2.0089 1.9360 1.9820 1.7978 1.7101 1.6847 0.4871 0.0000 0.4313 C2,C3,C1
C3 1.6241 1.5395 1.5831 1.4199 1.3443 1.3175 0.0842 0.4313 0.0000 C3,C1,C2



Sensors 2016, 16, 152 13 of 17

Table 9. The performance of SID for the ROSIS dataset.

SID

A1 A2 A3 B1 B2 B3 C1 C2 C3 Rank
A1 0.0000 0.0165 0.0190 0.0468 0.0456 0.0594 0.5079 0.5212 0.5029 A1,A2,A3
A2 0.0165 0.0000 0.0020 0.0166 0.0138 0.0224 0.3945 0.4035 0.3859 A2,A3,B2
A3 0.0190 0.0020 0.0000 0.0018 0.0164 0.0234 0.4069 0.4172 0.3992 A3,A2,B1
B1 0.0468 0.0166 0.0018 0.0000 0.0040 0.0028 0.3804 0.3839 0.3682 B1,B3,B2
B2 0.0456 0.0138 0.0164 0.0040 0.0000 0.0046 0.3675 0.3703 0.3568 B2,A2,B1
B3 0.0594 0.0224 0.0234 0.0028 0.0046 0.0000 0.3516 0.3542 0.3395 B3,B2,B1
C1 0.5079 0.3945 0.4069 0.3804 0.3675 0.3516 0.0000 0.0035 0.0028 C1,C3,C2
C2 0.5212 0.4035 0.4172 0.3839 0.3703 0.3542 0.0035 0.0000 0.0029 C2,C3,C1
C3 0.5029 0.3859 0.3992 0.3682 0.3568 0.3395 0.0028 0.0029 0.0000 C3,C1,C2

Table 10. The performance of KL for the ROSIS dataset.

KL

A1 A2 A3 B1 B2 B3 C1 C2 C3 Rank
A1 0.0000 0.1542 0.1540 0.4020 0.4914 0.5996 4.7123 6.0548 4.8043 A1,A3,A2
A2 0.1542 0.0000 0.0203 0.3606 0.0828 0.4234 3.9258 5.3117 3.9991 A2,A3,B1
A3 0.1540 0.0203 0.0000 0.0955 0.4606 0.5081 4.1037 5.5636 4.1915 A3,A2,A1
B1 0.4020 0.3606 0.0955 0.0000 0.0916 0.0542 3.5761 4.6501 3.5883 B1,B3,A2
B2 0.4914 0.0828 0.4606 0.0916 0.0000 0.0411 3.4130 4.3212 3.4172 B2,B3,B1
B3 0.5996 0.4234 0.5081 0.0542 0.0411 0.0000 3.2701 4.1749 3.2621 B3,B2,B1
C1 4.7123 3.9258 4.1037 3.5761 3.4130 3.2701 0.0000 0.3048 0.0321 C1,C3,C2
C2 6.0548 5.3117 5.5636 4.6501 4.3212 4.1749 0.3048 0.0000 0.2392 C2,C3,C1
C3 4.8043 3.9991 4.1915 3.5883 3.4172 3.2621 0.0321 0.2392 0.0000 C3,C1,C2

Table 11. The performance of SAM for the ROSIS dataset.

SAM

A1 A2 A3 B1 B2 B3 C1 C2 C3 Rank
A1 1.0000 0.9932 0.9947 0.9841 0.9845 0.9805 0.8631 0.8601 0.8628 A1,A3,A2
A2 0.9932 1.0000 0.9993 0.9950 0.9954 0.9991 0.9009 0.8985 0.9011 A2,A3,B3
A3 0.9947 0.9993 1.0000 0.9940 0.9989 0.9930 0.8967 0.8941 0.8968 A3,A2,B2
B1 0.9841 0.9950 0.9940 1.0000 0.9948 0.9933 0.9014 0.9006 0.9025 B1,A2,B2
B2 0.9845 0.9954 0.9989 0.9948 1.0000 0.9989 0.9063 0.9054 0.9070 B2,B3,A3
B3 0.9805 0.9991 0.9930 0.9933 0.9989 1.0000 0.9114 0.9106 0.9124 B3,A2,B2
C1 0.8631 0.9009 0.8967 0.9014 0.9063 0.9114 1.0000 0.9996 0.9997 C1,C3,C2
C2 0.8601 0.8985 0.8941 0.9006 0.9054 0.9106 0.9996 1.0000 0.9997 C2,C3,C1
C3 0.8628 0.9011 0.8968 0.9025 0.9070 0.9124 0.9997 0.9997 1.0000 C3,C1,C2

Table 12. The performance of the proposed index for the ROSIS dataset.

Proposed

A1 A2 A3 B1 B2 B3 C1 C2 C3 Rank
A1 0.0000 0.0829 0.0622 0.1473 0.1192 0.2132 0.5461 0.9955 0.6399 A1,A3,A2
A2 0.0829 0.0000 0.0339 0.1180 0.1333 0.1645 0.4875 1.0929 0.5742 A2,A3,A1
A3 0.0622 0.0339 0.0000 0.1149 0.1514 0.1349 0.6716 0.6859 0.4885 A3,A2,A1
B1 0.1473 0.1180 0.1149 0.0000 0.0510 0.0736 0.6502 0.7601 0.4397 B1,B2,B3
B2 0.1192 0.1333 0.1514 0.0510 0.0000 0.0501 0.5167 0.5091 0.5821 B2,B3,B1
B3 0.2132 0.1645 0.1349 0.0736 0.0501 0.0000 0.4990 0.5677 0.3716 B3,B2,B1
C1 0.5461 0.4875 0.6716 0.6502 0.5167 0.4990 0.0000 0.1852 0.0376 C1,C3,C2
C2 0.9955 1.0929 0.6859 0.7601 0.5091 0.5677 0.1852 0.0000 0.1232 C2,C3,C1
C3 0.6399 0.5742 0.4885 0.4397 0.5821 0.3716 0.0376 0.1232 0.0000 C3,C1,C2
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4.3.The Impacts of the Parameters

There are two parameters, i.e., the number of retained points and the number of SRAI feature
points, in the previous experiments. In this experiment, the impacts of these two parameters were
tested. The mean spectral curves of the AVIRIS dataset used in the first experiment (A, B, and C)
were used, after which the similarity index using different numbers of retained points and number
of SRAI feature points were calculated. When testing the impact of the number of retained points,
the number of SRAI feature points was kept at 10, and the number of retained points increased from
30 to 90. In every increasing step, the similarities of A and B, B and C, and C and A were calculated.
Meanwhile, when testing the impact of number of SRAI feature points, the number of retained points
was kept at 50, whereas the number of SRAI feature points increased from 5 to 20. The above three
similarities were calculated. The results are shown in Figures 8 and 9 respectively. As shown in the
figures, the x axis indicates the number of retained points or SRAI feature points, and the y axis shows
the similarities among A, B, and C.
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Analogous to the AVIRIS dataset in Figure 8, the ROSIS dataset was also used to demonstrate the
impacts of the two parameters of the proposed method. The results are shown in Figure 9.
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From Figures 8 and 9 we can see that a higher number of retained points does not necessarily
imply a higher number of matched points; hence, the value of the similarity index may be different.
No matter how the similarity index values changed, the similarity trends were coincident, as shown in
Figures 8 and 9. These results indicated that for practical use, any number of SRAI feature points or
retained points could be set. However, as a more proper choice, we can choose a point at which the
difference between similarities is the largest.

5. Conclusions

Spectral similarity assessment is a basic issue in hyperspectral image classification and object
recognition. As the most intuitive way to express the spectral features, the spectrum curve and its
features have always been investigated in the literature. Given that a hyperspectral image usually
contains hundreds of bands, reducing the dimensions of a hyperspectral image is an important
research topic.

As a solution, the DP algorithm can be used in a single spectrum curve and, therefore, is more
suitable for single spectrum curve similarity comparison. However, given that there is a distance
threshold in the traditional DP algorithm, it is difficult to determine the most proper threshold, which
can retain enough points to complete the similarity assessment.

This paper proposes an improved DP algorithm to solve this problem. After setting the number
of retained points, the proposed method could automatically extract the expected points without using
the threshold. This algorithm can consistently achieve convergence, resulting in a higher number
of extracted points that, in turn, facilitates a more effective similarity assessment. As the reflection
and absorption features are important for spectral recognition, SRAI is introduced to restrain the
simplification process. Finally, enough points (including the important SRAI features) are obtained for
the proposed method.

To test the performance of the proposed method, two widely used hyperspectral image datasets,
i.e., AVIRIS and ROSIS, were used. The assessment results were compared with the results of existing
indices, i.e., CC, ED, SID, SAM, and KL. The experiment results indicate that the existing indices
may lead to obvious incorrect results, especially when the testing curves are similar. In comparison,
our proposed method could achieve high accuracy using fewer points, because the most import SRAI
features are retained. Finally, the impacts of the number of SRAI points and the number of all retained
points have been analyzed. Further research may focus on investigating the practicality of this method.
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