
sensors

Article

Semantic Agent-Based Service Middleware and
Simulation for Smart Cities
Ming Liu 1, Yang Xu 1,*, Haixiao Hu 1 and Abdul-Wahid Mohammed 2

1 School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China; mingliu.uestc@gmail.com (M.L.); 201511060118@std.uestc.edu.cn (H.H.)

2 School of Engineering, University for Development Studies, Tamale 00233, Ghana;
abdulwahid.mohammed@uds.edu.gh

* Correspondence: xuyang@uestc.edu.cn; Tel.: +86-28-6183-1677

Academic Editors: Andrea Zanella and Toktam Mahmoodi
Received: 10 August 2016; Accepted: 14 December 2016; Published: 21 December 2016

Abstract: With the development of Machine-to-Machine (M2M) technology, a variety of embedded
and mobile devices is integrated to interact via the platform of the Internet of Things, especially
in the domain of smart cities. One of the primary challenges is that selecting the appropriate
services or service combination for upper layer applications is hard, which is due to the absence of
a unified semantical service description pattern, as well as the service selection mechanism. In this
paper, we define a semantic service representation model from four key properties: Capability (C),
Deployment (D), Resource (R) and IOData (IO). Based on this model, an agent-based middleware is
built to support semantic service enablement. In this middleware, we present an efficient semantic
service discovery and matching approach for a service combination process, which calculates the
semantic similarity between services, and a heuristic algorithm to search the service candidates for
a specific service request. Based on this design, we propose a simulation of virtual urban fire fighting,
and the experimental results manifest the feasibility and efficiency of our design.

Keywords: smart city; agent-based middleware; semantic service; M2M

1. Introduction

Machine-to-Machine (M2M) technology offers powerful support for integrating various devices,
equipment and units, gives rise to new synergistic services for the smart city and goes beyond
the services that can be provided by an isolated embedded system [1]. Recently, the leading
standardization organization oneM2M [2] presented a normalized semantic M2M supporting
framework, which integrates products and design standards from various manufacturers, shielding the
heterogeneous differences in order to provide users with better service-oriented support.

Any standardization work has to go through a long stage of development and would be influenced
by many factors, especially the constant emergence of new technologies. The current barrier is that
every application has respective domain characteristics, strong independence, heterogeneity and
difficulties with respect to reusability [3]. Albeit that some works provide registration-based service
discovery and response mechanisms, the resources are scattered in every corner of the system,
and it is still difficult to resolve the heterogeneity and loose coupling. As a consequence, a new
middleware design pattern should be added to the existing M2M applications to support the general
semantic service processing and scheduling of tremendous services within the system. This is the
main motivation of the work proposed here. As the principal component in this paper, the authors
introduce an agent-based middleware design for semantic service support and enablement in detail
and discuss its performance in urban fire response.

Sensors 2016, 16, 2200; doi:10.3390/s16122200 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 2200 2 of 25

The rest of the paper is organized as follows: Section 2 overviews and analyzes the related
work on agent-based middleware design and some current M2M platforms in line with the European
Telecommunication Standards Institute (ETSI) standard. By analyzing the deficiencies of the current
work, it expounds the necessity of semantic-oriented middleware design. Next, the authors propose
a novel middleware design pattern and give details in Section 3. The service description and ontology
definition are presented in Section 4. Services’ discovery, matching, combination and scheduling
mechanism are detailed in Section 5. The evaluation of the proposed design and simulation results are
presented in Section 6. Finally, the conclusion and future work are given in Section 7.

2. State of the Art

Recently, M2M technology has received significant attention from both industry and academia.
As an emerging paradigm, M2M can manage billions of devices, resources, data and actuators and
gives strong support to the new smart city era [4]. Curwen, P. et al. [5] estimates that in the next
two decades, there will be more than 20 billion devices providing diverse services and bridging
different domains with more connections and interactions based on Radio Frequency Identification
(RFID), Wireless Sensor Network (WSN) and other entities. In the traditional service domain,
services are typically defined by a set of Hypertext Transfer Protocol (HTTP) request messages
along with a definition of response messages and follow such principles as the Simple Object Access
Protocol (SOAP), Representational State Transfer (REST) [6] and Extensible Markup Language-Remote
Procedure Call (XML-RPC) [7]. The primary objective of SOA is to facilitate service integration between
independent entities or organizations by using a set of service publication and discovery facilities.
To facilitate diversification and a convenient service support, some approaches, such as the Web Service
Description Language (WSDL), Universal Description Discovery and Integration (UDDI), as well as
Web Ontology Language (OWL), Web Service Semantics (WSDL-S) [8], Semantic Annotations for WSDL
and XML Schema (SAWSDL) [9], have been specified for helping the publication component to better
describe the services and the discovery component to more easily identify the right content/service
matching the user’s requests, context and preferences.

Middleware provides an encapsulated software function layer between the application layer
and the network communications layers and which facilitates and coordinates the integration of
heterogeneous computation and communication devices, supporting the interoperability within
the diverse applications and domains [10]. Some research proposed the agent-based approach to
middleware design, where an agent can proxy a specific function or device and cooperate with
other agents to proactively gather data and update the state of the system. Typical agent-based
middleware solutions are as follows: ActorNet [11] is designed to improve the interoperability
in multitasking execution in resource-constrained Wireless Sensor Network (WSN) applications.
Agilla [12] provides self-adaptive mobile agents to proxy sensors within the WSNs. Each agent is
designed to be event driven and maintains a tuple space to enable the resource discovery. Some other
similar middleware are Ubiware [13], TinyMAPS [14], etc. A drawback of these middlewares
came from the design mechanism used; they do not address the heterogeneity of M2M, and
most middlewares cater to WSNs or lightweight mobile devices. Moreover, these middlewares
cannot support a complex application possible in more resource-rich devices and lack support for
semantic and syntactical interoperability. Furthermore, extensibility and operation management
pose a challenge because of the low level of resource abstraction. Some researches also proposed a
semantic-oriented middleware design, and PSWare [15], Hydra [16], UbiROAD [17] and SENSEI [18]
are typical examples. They all provide a lightweight semantic layer that separates the application from
the underlying hardware, operating system and network infrastructure. Moreover, some agent-based
middlewares were proposed in [19–21] that integrated a context-aware model and a resource-service
layer. These middlewares provide a virtual function entity working between the application and
communication service layers in M2M applications.

Sensors 2016, 16, 2200 3 of 25

The European Telecommunication Standards Institute (ETSI) provides a resource-oriented M2M
standard with a generic set of capabilities for M2M services [22]. It defines the service capability layer
as a provider shared between different applications, M2M devices and a subnetwork, which is shared
by different applications. Some current M2M platforms in line with the ETSI standard are in Table 1.
The corresponding characteristic of a platform is marked with “4”. The resource sharing feature
indicates that these platforms can share the intrasystem resources with other platforms, which have
applied the same resource definition schema and protocol. The data analysis feature indicates that
these platforms can provide the content analysis and representation of the underlying data, not just the
data package transport [23], and the final column briefly presents some characteristics of the platform.
As a primary member, ETSI together with six other international organizations jointly established the
oneM2M organization [24]. The oneM2M inherited the existing design of the ETSI standard, proposed
a general architecture specification for an end-to-end M2M system and is compatible with many
existing M2M designs. It introduces a novel semantic supporting functional model (Layer) in oneM2M
Technical Specification (TS)-0007 [24]. However, the current work is more focused on specifying the
interfaces used to interact with external entities and only gives a brief functional description, which
follows the popular REST operation and interfaces; it is still difficult to cater to a more sophisticated
demand. The oneM2M wants to promote an easy creation of interworking proxy functions, and the
resources can be built according to the information model; however, these resources should contain
a special attribute that contains a link to the XML Schema Definition (XSD) file of the information
model [24], but such work is still underway.

Table 1. Current typical M2M platforms.

Platform Protocol Interface Resource Share Data Analysis Characteristics

ThingSpeak HTTP RESTful 4 4 Real-time data, Ruby,
Integrated in ioBridge.

AllJoyn HTTP RESTful 4 4 RTOS, Arduino, Linux,
Android, cloud services.

Nimbits HTTP RESTful 4 4
Event Driven, Rule based,

Google App Engine,
Amazon EC2, Java.

Bugswarm HTTP RESTful 4 Tag and Rule,
Linux, 3G, WiFi.

RIOT CoAP RESTful 4
6LoWPAN, IPv6, RPL ,

support embedded devices,
C, C++.

Nitrogen HTTP RESTful 4
ZigBee, WiFi,

support embedded devices,
home environment.

SensorCloud HTTPS RESTful 4 MathEngine,
MicroStrain sensors.

ThingWorx HTTP 4 Enterprise oriented,
cloud service.

Axeda HTTPS RESTful 4 Axeda Wireless Protocol,
cloud service.

openAlerts HTTP/CoAP RESTful
ZigBee, Linux/BSD ,

e-mail or text message alerts.

CoAP: Constrained Application Protocol. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks.
BSD: Berkeley Software Distribution for Unix.

Although partial existing middlewares can support the abstraction by its nature, most of the
current work still lacks the support of the semantic service enablement and the resource constraint;
in addition, their predefined and deterministic composition mechanisms will not scale well in dynamic

Sensors 2016, 16, 2200 4 of 25

M2M applications. In addition, most of the existing work are WSN-centric, and their scale is limited to
WSNs, which is typically in the range of thousands; there is no standard ontology design principle
for scalable, complex and dynamic M2M environments. Consequently, an agent-based, scalable
and semantic-oriented middleware is required, and in this paper, we are more focused on a smart
cities-oriented semantic service framework design, operation and support.

3. Design of the Agent-Based Middleware

3.1. The Basic Model

An abstract M2M middleware system can be modeled as shown in Figure 1; it can be built
with three layers: the M2M applications layer, which provides an interface with various M2M
applications; the agent-based semantic middleware layer, which performs the main functionalities
for service creation and enablement for M2M data and devices; the semantic supporting functional
layer provides semantic abstraction and connections with a device and/or accessing M2M data;
it inherited the main features of the semantics support functional model, which is defined in oneM2M
technical specification TS-0007 [24]. The middleware adopted the characteristics of autonomous,
proactive and social capabilities of the multi-agent, in distributed service scheduling and management.
It keeps the semantic benefits in the former approaches [15–18] and has been extended from our
previous multi-agent platform design [25]. When the upper-level application needs service support,
the middleware generates a cross entity service scheduling, as shown with the green dotted line.

M2M Applications

Semantic Supporting

Functional Layer

Agent-based Semantic Middleware

Service Agent n

ServiceTracker

ServiceAnnotation

Service with StandardFormat

Hadoop coreManagement Agent 1

Service Management Agent Management

Local Service Management

Service Agent 2

ServiceTracker

ServiceAnnotation

...

Service Agent 1

ServiceTracker

ServiceAnnotation

domian 1

Service Agent n

ServiceTracker

ServiceAnnotation

Service with StandardFormat

Hadoop coreManagement Agent 1

Service Management Agent Management

Local Service Management

Service Agent 2

ServiceTracker

ServiceAnnotation

...

Service Agent 1

ServiceTracker

ServiceAnnotation

domain i

...

cross entity service scheduling

Task flows

Knowledge flowsnetwork

interface

network

interface

communication

Figure 1. Middleware architecture and cross entity service scheduling.

There are two kinds of agents in the middleware: the Management Agent (MA), which manages
the service agents; and service execution: request response (local or cross domain), annotation,
matching, combination, etc. Each MA is in charge of a service domain, which is composed of several
tightly coupled entities, such as hundreds of sensors or e-health equipment in a local area. The Service
Agent (SA) represents and maintains an entity’s services (device, resource or data source, etc.)
in a specific service domain. In this middleware, M2M entities are abstracted into different service
agents, which can be mutually scheduled between the management agents. The MA is in charge of the
request service scheduling and selecting the best service or a service combination. The SA is in charge
of maintaining the proxy service, complete registration of the service and publishing service to the
management agent.

3.1.1. Management Agent

The main goal of an MA is executing the services requested by the upper applications
and returning the filtered services. The specific functions of this agent include: managing the SAs
and service discovery, matching and combination. The demand for services may be a combination of
several services within the current system. Therefore, depending on the complexity of finding the right
service, the main MA’s goal would usually be separated into several sub-goals. The important beliefs

Sensors 2016, 16, 2200 5 of 25

for an MA are: the service request description, which contains the service requirements, constraints
and other restrictions of the services.

The execution states and implementation of the MAs are listed in Table 2. When a service request
is received, the MA activates one or several sub-goals and triggers the execution of the plan to find
services to meet the demand. These plans model how the MA behaves for each situation. For instance,
when a new service execution is in the request state, MA activates the goal for getting services for the
request and executes the plans’ Constraints (Cons.) annotation of the service Requirement (Req.) and
its decomposition. An appropriate decomposition changes the service state to match. In match, the
MA first executes the query plan. If it cannot return the satisfied constraint services, the requirement
will be split into a demand combination. In execution, the MA activates its sub-goal to monitor the
service scheduling of the managed SAs. It triggers two corresponding plans: scheduling and Evaluate
(Eval.) matching. Scheduling is searching the candidate services in the local and the MA’s neighbors.
Eval. matching is evaluating whether the requirement is fulfilled. If all of the constraints have been
satisfied, MA will change the state to succeed. If any deviation exists, MA activates the pause status,
which triggers the evaluation and updates the plans, until it returns an appropriate service combination
(status succeed) or a failure. A service request reaches a cancel status when the service fails to meet the
requirement. In this case, the MA falls to recover from the status of execution, and this will be notified
as cancel. The execution states diagram is shown in Figure 2.

Table 2. Execution states of the management agent. Cons., Constraint; Req., Requirement; Eval., Evaluate.

States Sub-Goal Plans

Request Get appropriate services Cons. annotation, Req. decomposition
Match Find better match Query, generate combination

Execution Monitoring Scheduling, Eval. matching
Pause Recover Performance evaluation, update execution

Succeed Secede Return outcome
Cancel Cancel request Notify cancellation

Service Request

received

Management Agent activates

Request State

Activate plans for requirement

annotation and decomposition

Activate goal for getting

services for the Request

Request state is transformed

to Match state

Management Agent executes

service query and services

combination plan

check if requests meet

service constraints

split requirements

into a demand

combination

[No]

Put service(s) in

Execution states

Activate goal for

monitoring

execution[Yes]

Trigger plans for

Execution state Check for deviations

Activate Pause state

Trigger evaluation

and update of

execution plans

[Yes]

Check for appropriate

service combination for

Request

[No]

[No]

[Yes]

Put Service Request

in Succeed state

Cancel Service

Request
Notify cancellation

Figure 2. Management agent execution states diagram.

MA can only manage its local services and store it neighbors’ services, but cross domain service
scheduling needs to query the other MAs. The query is based on its observation of other MAs, so it
can be a directional query rather than broadcast queries. In addition, as the system expands, each MA

Sensors 2016, 16, 2200 6 of 25

may only know its neighbors’ services rather than the whole system (global synchronization states in a
large-scale system; the cost is too high and unnecessary). Furthermore, each service within the system
is constantly changing (affected by its entity state), and the update is not reported to each neighbor
synchronized; it is often based on the query. Therefore, establishing a decision model to support cross
domain service scheduling is needed; the details are in Section 3.2.

3.1.2. Service Agent

The main goal of an SA is to maintain its proxy services. The specific functions include:
service registration; service publication; and maintaining the semantic description of a service.
For achieving this, the services’ semantic information should be provided. These are the semantic
properties and capabilities described by the agent, which are related to the current status of the service.
In addition to the status, a set of sub-goals and plans has been defined to model the SA’s behavior.
These details can be found in Table 3.

Table 3. Execution states of the service agent.

States Sub-Goal Plans

Maintain Update Registration semantic annotation
Pause Recover pause Performance Eval. renewal
Cancel Cancel registration Notify cancellation

SA has three states: maintain, pause and cancel; and three corresponding sub-goals. Every time
a sub-goal is activated, the upper MA will execute a sub-goal to monitor the scheduling of this SA,
as defined in the execution state. In the sub-goal of update, SA achieves its local service registration,
semantic annotations and updates of its proxy entity periodically. When a service request arrives,
MA executes scheduling based on the existing service registration. The sub-goal recover pause is
executed for the performance evaluation (Eval.) calculation based on the outdated check. If the service
is outdated, SA evaluates the service to decide whether to update or renew the service. The execution
states diagram is shown in Figure 3.

Management Agent starts Service

Agent / puts Service Agent in

Execution State

Service Agent starts

Update subgoal

Service Agent performs

service registration

semantic annotation on

service description

Check if service

is outdated

Service performance

evaluation

[Yes]

[No]

Update service
Check if deadline

is due

Service Agent

cancels service

[Yes]

Send cancellation notification

to Management Agent

[No]

Check if assigned

requirement has

been met

[No]

Submit results to

Management Agent

[Yes]

Figure 3. Service agent execution states diagram.

In the cancel state, SA prepares to reach service failures. It checks the status and the deadline of
a service. If the deadline is due, the SA cancels the service and sends a notification to the MA whose
services were scheduled, but failed; the MA treats these notifications according to the plans explained
in Section 3.1.1. Once the service is active, SA annotates the service description and registers it to the

Sensors 2016, 16, 2200 7 of 25

MA to support the service discovery and scheduling. Furthermore, in the scheduling process, if the
current service cannot meet the requirement, the SA submits a message to the MA to inform it of the
mismatch. The scheduling process is explained in detail in Section 3.3.

3.2. Management Agent Decision Model

Each management agent in the middleware abides by a Belief-Desire-Intention (BDI) model [26];
a set of beliefs, desires and intentions are defined to model the behavior of the agent. At runtime,
the BDI engine monitors the agent’s belief, which is the state about its managed SAs and neighbors’
SAs, together with a probability distribution. The desire is represented by the agent’s goal, which is
aimed at maximizing its utility reward. The intentions are agent’s behaviors to realize the goal, which
seeks to maximize the expected utility. The decision model can be modeled as the following four basic
elements: perception, desire, belief and intentions.

• Perception: Agent perception constitutes its local knowledge kt−1 with its local service states.
Formally, let Si = {s1, s2, ..., sn} denote the set of local services of MAi. Then, MAi’s perception is
defined as the function Ji : Ω→ Qi. If the current perception is ω, then MAi knows only that the
state of the system belongs to the set Ji(t) =< Ji(ω

0), Ji(ω
1), ..., Ji(ω

t) >, and Ji(ω
t) denotes the

perception of MAi’s in time t.
• Desire: MAi’s desire Pt

i = {p1, p2, ..., pk} can be described by its aspiration level αi; it is defined
by the task requirement. Utility function ui denotes the rewards of selecting services, which is
based on its perceptions. Desire is aimed at finding the max reward in the current local services:
arg max ui(S∗i |Pt′

i) ≥ αi and S∗i ∈ Si, Pt′
i ∈ Pt

i .
• Belief: At time t, the whole system’s service states are denoted as S̄t, MAi’s belief belt

i is
a distribution on S̄t and Ji(t). MAi’s knowledge can be denoted as kt = {belt

i , Ji(t)|kt−1}.
• Intentions: The agent’s intention can be denoted as an action function of belt

i × ui(i|belt
i , kt−1)→ i,

which means the action i is based on its perception and belief; i∗ is regarded as an optimum action.

According to the above definitions, the agent activates the decision model by executing the plan
and actions to reach its goals. The decision processing is shown in Figure 4.

peception negotiation

knowledge

beliefprocessing

decision

desire

belief

intention

revised

decision

revised

knowledge

action mutual knowledge

time t

time t+1

action

Figure 4. Decision processing in the middleware.

• From perception to kt: MAi gets its local perception Ji(ω
t); it knows that the true global state

belongs to the set J−1
i (t). Hence, this transformation consists of determining and removing the

inconsistent global states at time t with the local observation Ji(ω
t) from kt−1.

Sensors 2016, 16, 2200 8 of 25

• From perception to belief: MAi knows the services of its neighbors, and it can deduce roughly
what services they can provide. If a service request comes, MAi checks its service registration list
and finds the probable services maintained by its neighbors MAj and MAk, then sends the query
to the two agents; when receiving feedback, MAi knows the services’ current states; MAi can get
its revised knowledge kt and make the service selection.

• From decision to revised decision: If i× Pt′
i →arg max ui(S∗i), that is the action i is consistent with

desire, then i = i∗, and MAi will remove these impossible (inconsistent) desires from the set Pt
i .

Meanwhile, MAi may deduce what should be its neighbors’ ground state at time t.

3.3. Distributed Service Scheduling

In the distributed service scheduling approach, the service scheduling for a particular request is
decided between the management agent and a set of service agents using the aforementioned decision
model. Figure 5 shows the workflow during the service scheduling process. Steps 1–9 achieved the
agents instantiation and service registration procedures.

Applications Entity Middleware Platform Management Agent Service Agent

1. Initialization

2. set up and loading agents
3. Registration

5. Create local proxy instance

9. Service registration

8. Loading entity data

19. Matching & selection

11. Service request
12. Service request

15. Invoke service

17. Return entity data & state

21. Return services

14. Local & Neighbors search

6. Create local SA instance

4. Create MA instance

13. Generate service

combination

16. Query

18. Return service

20. Publish service

7. Return agent information

10. Service domain

registration

Figure 5. Service scheduling process.

When the middleware receives a service request from the upper layer applications, it sends the
request to a particular service domain management agent, the management agent selection is based on
the registration in the middleware. Based on the service registration and annotation, the management
agent builds a query for selecting a candidate service agent in Steps 13–17 (after obtaining the services’
combination table). In this process, the management agent checks its local service list and its neighbors’
service list and finds the candidate service agents, whether they are in the local are; in this case, the first
step of service invoking is finding the candidate service agents that fulfill the requirements instead of
directly looking for the services. Once the service agent has been selected, the service agent initiates the
query process to update its proxy service, when the new data and state are returned, The management
agent initiates a matching process to evaluate all of the received candidate services and selects the best
ones for the current needs while rejecting the others, in Steps 15–17. Then, it returns the service or the
services’ combination to the application (Step 20).

4. Enriching the Functionality Building of the Service Ontology

In this section, we give the service ontology design and demonstrate the constraint annotation
process, the constraint of which is obtained from the upper application’s requirement.

Sensors 2016, 16, 2200 9 of 25

4.1. General Service Design Pattern

In most current work, semantic web services are concentrated on the service’s input, output,
condition and enablement, e.g., Ontology Web Language-Service (OWL-S) ontology, Semantic
Annotations for WSDL and XML Schema (SAWSDL), Web Service Modeling Ontology (WSMO) and
Semantic Web Services Ontology (SWSO). In addition, the W3C Semantic Sensor Network Incubator
group (the SSN-XG) introduced a Stimulus-Sensor-Observation (SSO) design pattern to model sensor
data in the Semantic Sensor Network (SSN) ontology [27]. Hence, we followed the bottom-up data
flow and the REST operation style and extended the aforementioned design pattern to achieve a more
generic framework.

The Capability of the

service, including support

operation, constraints,

parameter and condition.

∞

∞

∞

∞

The Deployment of the
service, including the

depoyment information, life

cycle and work cycle

The Resource of the service,

including the name type

amount and aviable time.

∞

Output data of the service,

including the commands and

state.

∞ ∞

Input data of the service,
including the commands of

create and invoke.

∞ ∞

Figure 6. Service XML schemas definition.

For any service, it should have some basic characteristics, such as: name, capability, location,
resources (can be null) and its input/output. The ontology takes a liberally-inclusive view of what
a service is: any characteristics that it has and allowing such services to be described at any level of
detail; for example, allowing services to be seen simply as objects that play the role of ID, as well as

Sensors 2016, 16, 2200 10 of 25

allowing services to be described in terms of their components and method of operation. Defining an
ontology by the basic characteristics can increase the modularity and reusability of an ontology.
Thus, the ontology should enable the service aspects of the use cases, without needing to fulfill all of
the modeling requirements. As previously mentioned, for a more convenient service scheduling, in this
paper, a four-component-based service design pattern was proposed, describing them in a detailed
design model shown in Figure 6. This design model acts as a framework to semantically annotate
through building the service schema and the service ontology.

4.1.1. Input and Output Data

The InputData property describes the commands that shows how to invoke the service.
The OutputData property describes the semantic information of the service, which includes the
service state information (it is dynamically changed) and the service profile. In the service profile,
it described the service basic information and the encapsulation of underlying data, which need to be
understood and parsed by the scheduler. According to the IOData property, the SA can get all-around
information about the service and the transmitting data for its proxy entity. All information will be
used to build the service and provide semantic information to support semantic service enablement.
Consequently, two complex data types were defined in the IOData property, CommandItemType and
StateItemType. This follows the versatile REST operation methods: create(C), retrieve(R), update(U)

and delete(D) are involved and supported. A CommandItem contains four basic properties as in
Figure 7:

• Name: this indicates the name of the command, and it is helpful in linking this command to the
domain knowledge.

• Method: this describes what operation is performed on the service.
• URL: this formally describes the command as a service and points to it.
• Parameter: this describes the parameters required by the command in key-value pairs.

<xs:complexType name="CommandItemType">

<xs:annotation>

<xs:documentation>The definition of command for the service, including

a name to mark this command, an operation method, an URL to find

the service accepted this command and an optional control parameter.

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="Name" type="xs:string"/>

<xs:element name="Method">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="C"/>

<xs:enumeration value="R"/>

<xs:enumeration value="U"/>

<xs:enumeration value="D"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="URL" type="xs:string"/>

<xs:element name="Parameter" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

Figure 7. CommandItemType in service XML schemas definition.

In web service domain, the definition and description of a service state is often complex and
inconsistent; each system has its own service state-defined formats. Hence, towards a semantic-oriented
service design pattern, a general state can be described by its Name, Description and Time, as shown
in Figure 8. Moreover, more information should be allowed to be annotated as a instance.

Sensors 2016, 16, 2200 11 of 25

��������	
����
���
������
��
����
��

���������������

���������
�������� ��
�
��������������
������
�
����
��
���� ��������
��������

� ��������������

�����
!�
��
�

����
	
�
�����
��"��
� ���
������������ �

����
	
�
�����
��#
���������� ���
������������ �

����
	
�
�����
�����
� ���
��������
���
� �

� ����
!�
��
�

� �������	
����
�

Figure 8. StateItemType in service XML schemas definition.

4.1.2. Capability, Deployment and Resource

The capability property illustrates the proxy entity’s specific features, namely SupportOperation,
as shown in Figure 9; e.g., the air condition’s capability can be described as indoor temperature
changes; the sensor’s capability can be described as its environment measurement, etc. The apparent
characteristic of modeling methods nowadays is that models only apply to specific vertical domains,
resulting in poor compatibility and completeness. In this service design pattern, the capability is
designed to support the operations that the service can provide, including operations Constraints,
Condition, Parameter and Method. This design pattern also simplifies the capability searching process
in finding an appropriate service and provides the semantic capability information to better support
the service discovery.

����������	
�����������	�����	����

����������������

�������������

����������	
���������	����	 	��������	������

����������	
�����������	�� 	���������	������

����������	
����������	����

����������������

�������������

����������	
�������������	��� 	��������	������

����������	
��������	�����	��� 	��������	������

��������������

�����������������

�����������	�

��������������

�����������������

�����������	�

Figure 9. SupportOperation in service XML schemas definition.

The deployment property describes where and when a service can be invoked. A management
agent shares its maintained services with its neighbor agents and accessed by other agents based on
agent’s deployment description. Nowadays, affiliation is considered the most common way to describe
the service deployment information. In one way, the deployment is a property that reflects all features
of the service agent and the service provider, as shown in Figure 10. In another way, the deployment
affiliation relationship reflects the service distribution and their invoking location. The deployment
property of services can be described from three elements: li f eCycle, workCycle and Description.

A service resource is typically represented as the service can access the underlying functionality
elements, such as: entities, data, etc. In RESTful operation methods, a service is usually treated as a
resource; therefore, it is easy to achieve the resource-oriented service invoking and accessing other
resources that exist within the system. Therefore, in our design, we provide five basic elements to
describe the resource: Name, Type, Amount, AvailableTime and Constraint, as shown in Figure 11.

Sensors 2016, 16, 2200 12 of 25

<xs:element name="Deployment">

<xs:annotation>

<xs:documentation>The Deployment of the service, including the

geographical information, life cycle and work cycle.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="lifeCycle" type="xs:integer"/>

<xs:element name="workCycle" type="xs:integer"/>

<xs:element name="Locatoion">

<xs:complexType>

<xs:sequence>

<xs:element name="Description" type="xs:string"/>

<xs:element name="Address" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Figure 10. Depolyment in service XML schemas definition.

����������	
��������������

��������	�	����

�����������	�	�������
��������
��
	��
��������

���������
	��
����
	���
�����	
���
�������
	����

� ����������	�	����

� �������	�	����

����������������

������!������

����������	
�����"��� 	���������	���� �

����������	
��������� 	���������	���� �

����������	
�����#����	 	���������	���� �

����������	
�����#������������ 	���������	���� �

����������	
�����$���	����	 	���������	���� �

� �����!������

� ���������������

� ���������	�

Figure 11. Resource in service XML schemas definition.

4.2. Service Description Ontology Building

Even though the semantic supporting functional layer provides the basic analysis and query
function to support the semantic enablement, upper applications still cannot directly access the
appropriate services with different requirements. Therefore, we designed a general service ontology
based on the XSD design in Section 4.1.

Figure 12 illustrates our general service ontology where the oval box indicates the service
abstraction describing a concept, solid arrows indicate an object’s attribute definition and dash dotted
arrows indicate inheritance relationships between concepts. It defines a service with multiple interfaces,
and each interface definition includes multiple actions. Actions are defined as independent functional
descriptions in the description of the SupportOperation, which plays a very important role. In addition,
to define the parameters of each parameter name, the parameter types are also defined as shown in
the XSD definition file indicated earlier. We can also have semantic annotation properties for each
parameter element defined in the system. For each type, simple type and complex type, we can also
define semantic annotation.

Sensors 2016, 16, 2200 13 of 25

Figure 12. General service description ontology.

As previously mentioned, the underlayer heterogeneous data can be transformed into a structured
XML. These data files are in compliance with a unified data structure and can support the interaction
with upper-level applications. However, these data when contacted by an M2M application still
cannot be understood, as well as what data are provided by the entity and what these data mean.
As a consequence, it will be difficult to meet overwhelmingly complex application requirements and
also difficult to filter out the required data from the multiple services. Therefore, we designed the
compatible generic service description ontology to fill this gap.

Each service is associated with a service domain, which has an interface and potentially many
implementations. Considering that an ontology can formally describe semantic information and for
completeness and consistency of our semantic model, we construct the service ontology based on the
aforementioned design model and four properties with range classes: output, capability, deployment
and resource are the major elements. These classes have their respective subclasses, as well. Besides,
the correspondences between XSD and the ontology enable the standardized, structured data to
instantiate the service ontology. Thus, the semantical annotation of information will be accomplished
after generating a service ontological data file. In particular, current web service designs usually regard
the service Quality of Service (QoS) factor. Considering the QoS requirement in real semantic service
applications, the service quality of the service data extracted from the underlying entity can only be
judged by the service scheduler or the consumer. Besides, there are many services in the system, and
services that provide the same functionality will co-exist with a number. Hence, in our design, the
service ontology does not include QoS, and it acquiesces the aggregated services to the middleware,
which has consistent default qualities.

5. Service Discovery and Combination

We will present in this section the details about the service discovery, matching and combination
processing. The unitary requirement can be obtained by service discovery and matching,
but the complex requirements need to be decomposed, acquire the service combination and then
perform a service discovery and matching. Based on the aforementioned middleware design,
a middleware-based distributed service scheduling problem with multiple entities can be described as
a tuple <Ri, Λi, I, Ω, S, V>, where:

Sensors 2016, 16, 2200 14 of 25

• Ri = {r1, r2, ...rn} denote the current service combination request and ri is a segmented
minimum requirement.

• Λi = {AM1, AM2, ...AMK;×K[AS1, AS2,ASN]} denotes the set of agents, AMi is the
management agent, ASi is one of the N service agents maintained by AMi in its domain and N is
a dynamic constant, which is the number of entities.

• I = {i0, i1, ...in} denotes an n step workflow.
• Ωt = ×iωi denotes the finite constraint set.
• S = {s0, s1, ...sn} denotes the finite set of services existing in the system.
• V(S′|I, R) = ∑ri∈Ri

ui(si, ri) denotes the utility reward value obtained from taking work
procedure I and S′ is the actual obtained service set.

Time limitation Ti is in terms of the maximum value of the whole service request Ri, and for
each ri, it has time limitation ti. In each procedure, MA checks and evaluates all of the candidate
services, selects the best-matched ones for the current needs while rejecting the others and then returns
them to the application. The scheduling process is shown in Figure 5. Similar calculations are carried
out in the following subsection.

5.1. Constraints Annotation and Matching

The semantic supporting functional layer does not know the upper applications’ needs and
constraints. Therefore, in our design, we defined the constraint class to support the instance of
constraint annotation. Although the current auto (semi-)semantic annotation technology has emerged,
in this paper, we are more concerned with the effect of the constraint annotation and its follow-up,
thereby making the annotated technology not our focus here.

In a semantic annotation processing, the annotation can improve the semantic description
capability of a service, namely a service can be simultaneously marked and described by its concepts
and constraints. In this paper, we built a semantic conceptual service and constraint description graph
G(s) = {Cs, Ct, Co}. Cs denotes the main concepts that correspond to the basic characteristics of the
service. Ct denotes the constraint predicates, which are used to identify the properties or characteristics
of the service specified. Co represents the service object, which can be represented by any concept or
text. Similarly, a service in the system can be denoted by G(s), and a service request can also can be
denoted by G(r). Therefore, we can define three major constraint predicates:

• isPropertyo f , which is used to indicate that concept A is an attribute of concept B; it shows the
conceptual category of A, and an instance of A can meet part of the requirement of the instance
of B.

• CanOperate, which is used to indicate that concept A can carry out operations on concept B;
as the aforementioned design, a service can have or operate resources; hence, here, CanOperate
refers to the variety of action verbs.

• isRestrictby, which is to indicate that concept A is restricted by concept B; B can be the instance
of time, scope, number, etc.

As in the above definition, a service can be represented by its basic concepts and constraint
annotation triple collections. Figure 13 shows the request query on a 〈 f ire, extinguishing, device〉
service description fragment. The service returns the extinguisher with location, status and operation
method information. The CanOperate information is implied in the mission object, and isRestrictby
implied in the constraints. The similarity comparison between each service request and a service is
determined by the degree of matching between the constraint description graph and service request
graph. For the matching process with the mean values of all similarity comparisons as the n matching
values, the formula is as follows.

Sensors 2016, 16, 2200 15 of 25

 fire extinguishing

device

location

operation method

extinguisher

status

isPropertyof

isPropertyof

isRestrictby

isPropertyof

CanOperate

fire

resource

isRestrictby

Figure 13. Fire extinguishing service annotation.

sim(G(s), G(r)) =
1
n

n

∑
i=1
{sim(Gs

i , Gr
j)} (1)

From Equation (1), sim(Gs
i , Gr

j) = sim(opr, ops) + sim(desr, dess) + sim(anr, ans) denotes the
similarity between every basic con-triple, corresponding to Operation, Description and Annotation
similarities, respectively. The similarity of Operation is denoted as below:

sim(opr, ops) =
1

3n

n

∑
i=1
{x1SCondition(opr · oCon, ops · oCon)

+ x2SParameter(opr · oPar, ops · oPar)

+ x3SMethod(opr · oDes, ops · oDes)}

(2)

where xi, i ∈ {1, 2, 3} denotes the relative effect category of information. Input and Output are the main
features of Parameter. Hence, it can be represented as a tuple: SA(Parameter) = 〈⋃{pi · parannotation},⋃{pi · parannotation}〉, where pi in the two elements is separately from Input and Output. Description
is a common basic description element of both request and service, which can be defined from each
component of the natural language representation. The similarity between two concepts can be
measured by using the similitude calculation through its collection of keywords. In this paper, we
used Dice’s coefficient [28] to calculate the similarity between the keyword set (KEY1) and (KEY2) as:

sim(desi, desj) =
1
k

k

∑
i=1

2× |key1|
⋂ |key2|

|key1|+ |key2|
(3)

The Annotation exists at the interface, deployment, resource, state, error definition, as well as
element type: simple type (xs:SimpleType); complex type (xs:complexType); and attributes (xs:attribute)
may have semantic annotations. Therefore, Annotation is an important factor in similarity processing.
In this paper, we used Jensen–Shannon information divergence [29] to measure the similarity between
two annotations:

sim(anr, ans) =
1

2log2

n

∑
i=1
{h(pi, r) + h(pi, s)} − h(pi, r)(pi, s) (4)

where (pi, x) denotes the appearance probability of the index entry i in x, and h(x) = −xlogx.
As previously mentioned, there may several similar services that can meet the same requirement;

hence, for a management agent MAi, the service selection problem can be modeled as: a service
request consists of M minimum service requirement ri and N similar service candidates; the similarity
relationship between requirements and service candidates is denoted by an M × N matrix.

Sensors 2016, 16, 2200 16 of 25

Every element sim(G(s), G(r)) in this matrix represents a vector of matching utility value that is
observed by ri on the service candidate si. If si cannot meet ri, sim(G(s), G(r)) = 0. In every matching
process, choose the highest similarity value candidate service as the return.

5.2. Service Discovery

Service discovery is used to find the eligible services in the decentralized system. When MAi
receives a service request, it will execute the service discovery step by step following the workflow in
Figure 5: MAi first checks its local service list; if it can meet the request, it returns the corresponding
service(s). If there is any unsatisfied part, MAi will check its neighbors’ services and find out whether
any of them has services for the unsatisfied part and then sends the unsatisfied part to the selected
neighbors respectively. This process continues until requirements are met or timeout. During this
process, there may exist many similar services that can meet one requirement, but are dispersed around
the system. In such a case, how to choose the eligible services becomes a big question because that
affects the efficiency of task execution greatly.

As shown in Figure 14, MAi denotes the management agent, and the gray circles denote the
service agent maintained by MAi. When a service request arrives MA1, the arrow lines indicate
the direction of request transmission. Therefore, the service discovery problem can be transformed
into a transmission problem; the traditional routing approach can be used. According to the service
searching procedure definition, we designed a decentralized Semantic-Based Neighbor Discovery
(SBND) algorithm and provided a searching strategy to deal with some troublesome points in M2M,
such as decentralized and unstable node information and usage scenarios. For a service combination
request Ri, it can be represented as n minimum requirement ri; each ri is a service request with its
lifetime l and service quality requirement ωi as previously mentioned. Therefore, a complete service
requirement can be denoted as 〈Ri, Ωi, L〉.

MA1

MA2

MAk

Management Agent

Service Agent
MA3

Figure 14. Service discovery via management agents.

To identify the next hop neighbor, MAi maintains an estimation matrix T to evaluate its neighbors’
service states. Ti[j] represents MAi’s estimation about MAj; its current value is determined by the last
time the service was accessed. The Ti[j] value is not fixed; it is updated based on the query process
between agents. In this case, it can determine the probability of forwarding the service request ri
to MAi’s neighbors based on the estimation of its neighbors; Pi[j] as MAj’s selection probability;
Pi[j] is based on Ti[j]. threshold expresses the service quality about the request; it is set by the request
sender. When the request was being passed, but no agent was able to provide such services needed,
this indicates that few management agents in the system can satisfy the threshold. In this case,
the threshold value will decrease gradually until the request can be satisfied, on the premise that in the
system, there is such a service that can meet the request.

Algorithm 1 illustrates the searching process of agent MAj when it receives ri from its neighbor
MAi. For each ri ∈ Ri, it can use function matched(MAj, ri) to determine whether the requirement
will be satisfied by MAj (Line 4). When a requirement ri is kept, MAj will send a receipt to ri.path[0],
which refers to Ri’s sender (Line 5). If MAj is unable to satisfy ri, it will reduce ri.li f etime (Line 7).
If ri.li f etime is no more than zero, its lifecycle is over, such that it cannot be forwarded in the network

Sensors 2016, 16, 2200 17 of 25

(Lines 8–9). If MAj decides to pass ri, it will add itself to ri.path (Line 11). For all of the neighbors
of MAj, since they cannot satisfy ri, it can reason that the current searching direction in this spread
area is risky, so this searching should be terminated, and the searching process should return to the
former agent MAi to find the new neighbor with better evaluation (Lines 12–20). As for the previous
node of agent MAj, since it cannot satisfy ri.threshold, this means that the former sender overestimated
MAj’s service quality; now it needs to bring down the value. For all of the other agents that are
within ri.path and that are neighbors of agent MAj, it has to detect ri.threshold when ri transmits to
this neighbor. However, in the transmission process, ri.threshold has reduced by every time passing
through an agent. As a consequence, there is a correction between the ri.threshold value at that time
and that of now. The value of cor is related to the numbers of agents that ri has passed through and the
step length that ri.threshold has reduced by when passing through every hop. The value is as follows:
cor = α× [|ri.path| − |loc(MAj, ri.path)|]; function loc(MAj, ri.path) returns the agents sequence in
ri.path (starts from zero); α is the step length (Lines 13–18). After the Ti[j] vector has been adjusted, the
next process is to consider how to update the forward probability of agent MAj. Our approach is to
make full use of the Ti[j] vector; that is, to normalize the value of MAj forwarding ri to its neighbors,
and the larger Ti[j] is, the greater PMAj is. Then, it can judge whether the value of ri.threshold to
minimize; if not, then it reduces the value of it. Then, MAj will choose the best neighbor to pass ri
according to Pj (Lines 14–15).

Algorithm 1 Searching process of the SBND algorithm.

1: while true do
2: for all ri ∈ Ri do
3: repeat
4: if matched(MAj, ri) then
5: send receipt to ri.path[];
6: else
7: ri.l-=1;
8: if ri.l ≤ 0 then
9: kill(ri) and return unsatisfied message ℵ to MAi;

10: else
11: append(self, ri.path);
12: for all MAk ∈ [ri.path ∪ neighbor(MAj)] do
13: for all MAk ∈ neighbor(MAj)] do
14: if unmatched(ωk, ri) then
15: update Pj[k]←ri.threshold-=cor;
16: end if
17: end for
18: neighbor MAk← choose argmax(Pj[k]);
19: if unmatched(ωk, ri) then

20: return unsatisfied message ℵ to MAi;
21: end if
22: end for
23: end if
24: end if
25: until Ri is satisfied;
26: end for
27: return S′;
28: end while

Sensors 2016, 16, 2200 18 of 25

5.3. Service Combination Construction

In this subsection, we introduce the service combination approach in detail. In the middleware,
each management agent maintains a table to record the combinational service list. An example is
presented in Table 4 with the parameters and the activities’ execution information.

Table 4. A instance of the combination table.

Initial Agent Combination
Activity ID Target Prior

Agent
Inferior
Agent

Available
Agent State Assessment

A1 006 Temperature A5 A2 A6 Active 0.85

For each management agent, it can determine the path of performing tasks and retransmitting
information requested according to its combination table. With all of the services done, an integrated
combinational service will be formed in terms of accomplished results. Therefore, the whole service
combination contains two processes: constructing combination tables and executing the services’
combination. The following introduces each concept in the combination table.

• Initial agent: The original agent starts the services’ combination. The initial agent is responsible
for the initialization task of the workflow of the combinational service, such as constructing the
global data table, distributing the combinational activity ID, and so on.

• Combinational activity ID: During the process of the combinational task, each activity will be
given an ID.

• Target: the target of the executing service requested.
• Prior agent: to record the agent executing the last services’ combination.
• Inferior agent: to record the agent executing the next services’ combination.
• Available agent: to record the agent providing the executing service.

5.3.1. Combination Table Construction

The original form of the combination table is empty; it gradually formed in the process of the
execution and discovery of the service over many times. The process contains two stages: dynamic
generation and information exchange. When a request comes, the management agent compiles its
combination table through the execution of the local services and forwards the request information.
Service requests arrive randomly, and during each exchange process, a management agent can obtain
more service combination information for its neighbors. The dynamic generation of the combination
table will be discussed in the following:

• When receiving a request, the management agent first checks its local records. If there are any,
return the services and renew the combination activity ID, the prior agent and the computing
assessment of these services. After the current request is completed, the agent continues executing
the next request and works as above, and them modifies the prior agent in the table as the current
one. The system performs this loop until there is no relevant item in the table or timeout.

• If there is an unsatisfied part in the table, the management agent will search in its local neighbors’
service list. If found, it returns the services and and updates the combination table. Otherwise,
the agent would send request information to its neighbors. The neighbor agent needs to renew
the combination activity in the previous table of the prior agent. The inferior agent is the most
suitable neighbor via computing.

• When the unsatisfied combination table arrives at the new agent, this agent would repeat the first
and second steps until the timeout or the number of hops is exhausted.

• In this procedure, if an agent always does not satisfy a certain request type, this agent will be
reduced in priority when the same type of request comes, until no selection. If an agent always
satisfies a certain request type, its priority will be promoted.

Sensors 2016, 16, 2200 19 of 25

Similar neighbor selection is an important step for service scheduling; in MAi’s neighbor list,
there may exist k neighbors that provide similar services; hence, sending the unsatisfied part R′ to
which neighbor needs to be identified, since different neighbors will decrease the scheduling execution
efficiency. Agents in the propagation path are unable to execute requirements, which causes many
problems, such as taking too much time and invalid returns. Furthermore, this paper takes the agent’s
network degree into consideration. According to related research [30], a higher network degree agent
has better data collection. In this way, we redefine the agent’s evaluation function on the basis of the
original function.

V(S′|I, R) = ∑
MAj∈Λ′i

∑
ri∈R′i ,ij∈I

P(MAj|Λ′i, R′) ·V(s′|ij, r) (5)

In this formula, Λ′i means the set of agents with higher network degrees and R′ is the
unsatisfied part.

With the execution of services and the formation of the combination table, the services’
combination is also in synchronous execution. It includes two parts: recording the participant and its
service and forming the path of services’ combination. As shown in Figure 15, in the initialization,
the participant list will be constructed and initiated, for the same services that multiple agents
participate in; the chosen agent would be the one with the maximum assessment of service. One agent
is likely to be discovered in a sequence more than once under the condition that this agent can provide
different kinds of service. Moreover, because the same service can appear in a combination of services
many times, a repeating service can be discriminated by combination ID in a participant sequence.
Here is given the definition of the participant sequence made of a triad: agent, combination activity ID
and assessment. For example, the sequence in Figure 15 shows that agents a4 and a6 can provide their
own services.

1

5

4

2

6

3

7

Management Agent

Service Agent

Figure 15. Services combination diagram.

Constructing the combination path: The prior agent in the combination table is employed for
combining services to constitute the combination path. The agent gets involved in the executing
process together with the combination table. When the final task has been executed successfully, the
time is up or the limitations of jumps have been used up; the last agent of the execution starts to go
back to its prior agent and constructs the combination path. This path is shown in Figure 15 as arrows.

5.3.2. Service Combination Process

Service combination is not the simple superposition of multiple services, but rather, a composition
of different services according to the characteristics of the interaction. Therefore, it should be
emphasized that all service combination processes need to be established based on the specific domain
knowledge, whether it is expert defined or based on context awareness. When MAi receives a request,
it computes all of the semantic relations between the relevant services for the request. The service
combination can be described as a directed acyclic graph, G = (V, E), where:

Sensors 2016, 16, 2200 20 of 25

• V = Si
⋃

A is the set of vertices of the graph, where S is the set of services, and A ∈ Ri is the set
of annotations from services requested (inputs and outputs).

• E is the set of edges in the graph indicating the connections between the services.

This graph contains all of the candidate services that could directly be invoked by MAi.
The graph is divided into K layers, and two special layers, namely L0 and LK+1, contain the
dummy services as the input request IRi and output result OSi, respectively. An example of an
online movie booking service is L0: IRi = {MovieTitle, Pre f erence, CreditCard, Address, Email} and
L4: OSi = {CinemaIn f o, BookingTicketCode, PaymentIn f o}, as shown in Figure 16. As previously
mentioned, the first step of the service composition construction is to calculate the relevance between
candidate services and requests. These services can be easily calculated layer by layer, using the
matching mechanism in the previous sections. The algorithm selects from the set of all available
services in each layer, by using the relevant calculation Equation (1), for each candidate service, and
performs a match between the input annotations and the services by using the matching method
defined in Section 5.1. All of the candidate services are calculated from those unmatched by using
the similarity calculation method defined in Section 5.2. For example, the first eligible service set for
the request shown in Figure 16 is the services in the layer L1, which correspond with the inputs in L0.
The second eligible service set is those services in the layer L2, whose inputs are fully matched with
the previous layers’ outputs, and so on. The complexity analysis of service composition construction
is: O(l ·m · n · w

k). The first part corresponds with the complexity of the matching process, which costs
l times; the second part corresponds with the complexity of the similarity calculation process, which
costs m times; whereas the third part corresponds with the complexity of the looping accessibility
check for each candidate service, which costs m times. It can expected that there is a subset of the
candidate services w invoked from all of the candidate services k. Thus, w

k is a reduction factor that
depends on the number of candidate services.

Movie Info Service

Director Info Service

GeoLocation Service

Classification Service

Cinema

Recommendation

Service

Booking Service

Payment Service

Preference

CreditCard

Email

Address

Movie Store Service

CinemaInfo

PaymentInfo

BookingTicketCode

MovieTitle
searchTitle

IndexTerm

IndexTerm

IndexTerm

CreditCardInfo

EmailAddress

AddressInfo AddressInfo

TicketCode

CinemaInfo

MovieName

PaymentInfo

SelectionResult

SelectionResult

SelectionResult

L0 L1 L2 L3 L4

MovieInfo

Price
CinemaInfo

Figure 16. Services’ Combination example of booking movies.

6. Simulation and Results

To manifest the feasibility and efficiency of our design, we designed a smart city fire hazard
response scenario; we built a hypothetical urban area stochastic fire hazard incident in Unity3D.
The simulation parameters in Himoto’s work [31] are maintained for our work. The parameters and
properties relating to the burning of the building are shown in Table 5. The fire model and the effect
data are adopted from the Wildland urban interface Fire Dynamics Simulator (WFDS) simulation [32].
The communication model and protocols are also from our previous work [33].

Sensors 2016, 16, 2200 21 of 25

Table 5. Hypothetical urban and building parameters.

City Area Size 10 × 10 km2

Number of buildings 500 (dimensionless)
Side length of a building 8–100 m
Building separation 5–150 m
Wind velocity 2.5–10.0 m/s
Thermal conductivity 0.15 × 10−3 kW/mk
Wall density 500 kg/m3

Heat capacity 1.8 kJ/kg·K
Burn-through time 600 s
Growth rate factor 1.0 × 10−3 m2/s2

In this simulation scenario, the police station, fire company and hospital are scattered around
the urban area; the corresponding police cars, fire engines and ambulances can be invoked, and their
corresponding service agents are built in the middleware. In addition, a surveillance agent is defined to
monitor the fire hazard; all of these social entities are used to achieve the provision of various services
through their respective SAs. The middleware maintains three types of management agent: the fireman
MA is in charge of the fire engine SAs’ management; the security MA manages the police cars SAs;
the rescue MA manages the ambulance SAs. In addition, traffic, meteorological and some other useful
information can be obtained through the traditional web service interface; the urban vehicles are
generated and controlled by the platform. However, since this aspect is not the focus of this paper,
we provide no further details about that. The fire hazard response is as shown in Figure 17; according
to the calculations and scheduling, finally, three police cars, two fire engines and one ambulance were
summoned to the fire scene from the near departments.

Figure 17. Scenario of fire hazard response.

Different searching approaches will not have much impact on small-scale system performance, but
in a large-scale system, they will. In the algorithms’ comparison, we compared our SBND algorithm
with two other approaches: multi-cast [34] and random. In the middleware, each management
agent randomly maintains 1–10 different types of service agents. Each time, the management agents
construct a small-world network; this ensures the network connectivity. Hence, in the following
experiments, multi-cast applied the typical shortest path tree approach; the root of the tree is the

Sensors 2016, 16, 2200 22 of 25

request agent of the multi-cast; the searching over the network formed the branch. In a random
approach, each time from the request agent, it randomly selected a neighbor to check the requirement.
All of the simulation results are averaged over 100 runs; the experimental results are as follows.

Figure 18a shows the average messages that agents received with the three algorithms.
The simulation results reveal that the average number of received messages reduces when the agents’
number scales up and is finally stable until convergence is achieved. The average number of messages
is about 20% less than the messages received in the random algorithm and is about 60% less than the
messages received in the multi-cast algorithm. This means that the algorithm we presented in this
paper can decrease the number of messages transmitted in the network to some extent. We can also
see that the random algorithm fluctuates largely, while our algorithm is relatively smooth.

Figure 18b shows the relationship between the numbers of messages sent and received. The X-axis
represents the average number of agent messages sent, and the Y-axis represents the average number of
agent messages received. After statistical calculations, we found that the average number of messages
received in the random algorithm is 14% more than our algorithm. As to the multi-cast algorithm, it is
45% more, which indicates that our algorithm performs better than the two.

10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

 Multi-Cast

 Random

 SBND

A
v

er
ag

e
M

es
sa

g
es

Number of Agents

(a)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

N
u
m

b
er

 o
f

m
es

sa
g
e

re
ce

iv
ed

Number of messages sent

 Multi-Cast

 Random

 SBND

(b)

Figure 18. Experimental results’ comparison over three approaches. (a) Average messages received by
agents; (b) relationship between sent and received.

Figure 19a shows the comparison of the failure rate under two different service transmission
mechanisms based on the designed middleware system. The figure illustrates the failure probability of
the requirement when executing the combined tasks. We compared our algorithm with the random
algorithm. This figure shows that the convergence rate of our algorithm is faster than the random
algorithm. When the number of agents is 40, the failure rate of our algorithm decreases quickly,
and then, it maintains a constant value at 0.18. However, in the random algorithm, the failure rate
will be stable after the agent number reaches 60, and the failure rate will keep at about 0.23. From the
above analysis, the convergence rate of our algorithm is faster, while its failure rate is 0.05 less than the
failure rate in the random algorithm.

The service executing time is a very important evaluation index. In this regard, we used the
algorithm implemented by the SqarQL-based method to compare with our agent-based design.
Figure 19b shows that when the number of services is less than 40, the performance of the SqarQL-based
method basically coincides with that of our method and sometimes even better. When the number
of services increases, our agent-based method outperforms the SqarQL-based method in terms of
executing time. When the agents are initialized, they do not have much information about their
neighbors. As the services executed increases, the exchange of the combination among agents increases,
as well, and the information agents have about their neighbors gets more accurate. When executing

Sensors 2016, 16, 2200 23 of 25

tasks, agents can choose a more reasonable neighbor to forward the demands. Thus, the accuracy of
executing tasks can be improved; meanwhile, the executing time can be saved.

20 40 60 80 100

0.15

0.20

0.25

0.30

0.35

0.40

F
ai

lu
re

 R
at

e

Number of Agents

 SBND

 Random

(a)

10 20 30 40 50 60 70

50

100

150

200

250

300

350

A
g

en
t-

b
as

ed
 M

et
h

o
d

Number of Services

 Agent-based Method

 SqarQL-based Method

(b)

Figure 19. Experimental results’ comparison. (a) Relationship between sent and received; (b) failure
rate of two mechanisms.

7. Conclusions and Future Works

In this paper, we proposed an agent-based, service-oriented middleware towards semantic
service enablement in M2M application and a prototype implementation of this middleware.
This middleware provides a semantic service representation model to support inter-operability
between heterogeneous M2M services. It further enhances the specification of semantic services
in a decentralized M2M environment using semantic annotation in sensed data. Furthermore, it was
realized that semantically-organized service descriptions can effectively improve the efficiency of
querying and locating services. As part of the middleware design, we present an efficient semantic
service discovery and matching approach for the service combination process, which calculates the
semantic similarity between services and compares services with respect to their suitability for a specific
service request, so that selection can be made among them. Anchored on the integration of service
discovery and matchmaking within the composition process, we also gave a theoretical analysis of
service composition in terms of its dependency with service discovery. Finally, the comprehensive
experimental results show the effectiveness and feasibility of our design.

However, with standardization processes mostly taking long times to complete, the existing
M2M applications are still faced with several significant barriers, such as current systems have strong
independence, heterogeneity and difficulties on code reuse. These issues will be more complex in smart
cities over the next decade. In addition, although some current research provides a registration-based
service discovery and response mechanism, services are still scattered in systems. The formation and
discovery of the complex combination of services are still difficult jobs for the future.

Acknowledgments: National Natural Science Foundation of China: 61370151; National Science and Technology
Major Project of China: 2015ZX03003012; Central University Basic Research Funds Foundation of China:
ZYGX2014J055; Huawei Technology Foundation: YB2013120141, YB2015070068; Science and Technology on
Electronic Information Control Laboratory Project.

Author Contributions: M.L. and Y.X. conceived of and designed the experiments. M.L., Y.X. and H.H. performed
the experiments. M.L., H.H. and A.-W.M. analyzed the data. Y.X. and M.L. contributed analysis tools. M.L.,
Y.X. and A.-W.M. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2016, 16, 2200 24 of 25

References

1. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660.

2. Husain, S.; Kunz, A.; Song, J.; Koshimizu, T. Interworking architecture between oneM2M service layer and
underlying networks. In Proceedings of the 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX,
USA, 8–12 December 2014; pp. 636–642.

3. Vermesan, O.; Friess, P.; Guillemin, P.; Gusmeroli, S.; Sundmaeker, H.; Bassi, A.; Jubert, I.S.; Mazura, M.;
Harrison, M.; Eisenhauer, M.; et al. Internet of things strategic research roadmap. Internet Things Glob.
Technol. Soc. Trends 2011, 1, 9–52.

4. Gomez, C.; Paradells, J. Urban Automation Networks: Current and Emerging Solutions for Sensed Data
Collection and Actuation in Smart Cities. Sensors 2015, 15, 22874–22898.

5. Curwen, P.; Whalley, J. Making Use of Superfast Connectivity. In Fourth Generation Mobile Communication;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 211–230.

6. Fielding, R. Representational State Transfer. In Architectural Styles and the Design of Netowork-Based Software
Architecture; University of California: La Jolla, CA, USA, 2000; pp. 76–85.

7. Huang, C.; Lee, G.M.; Crespi, N. A semantic enhanced service exposure model for a converged service
environment. IEEE Commun. Mag. 2012, 50, 32–40.

8. Curbera, F.; Duftler, M.; Khalaf, R.; Nagy, W.; Mukhi, N.; Weerawarana, S. Unraveling the web services web:
An introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput. 2002, 6, 86–93.

9. Kopeckỳ, J.; Vitvar, T.; Bournez, C.; Farrell, J. Sawsdl: Semantic annotations for wsdl and XML schema.
IEEE Internet Comput. 2007, 11, 60–67.

10. Razzaque, M.A.; Milojevic-Jevric, M.; Palade, A.; Clarke, S. Middleware for internet of things: A survey.
IEEE Internet Things J. 2016, 3, 70–95.

11. Kwon, Y.; Mechitov, K.; Agha, G. Design and implementation of a mobile actor platform for wireless sensor
networks. In Concurrent Objects and Beyond; Springer: Berlin/Heidelberg, Germany, 2014; pp. 276–316.

12. Fok, C.L.; Roman, G.C.; Lu, C. Agilla: A mobile agent middleware for self-adaptive wireless sensor networks.
ACM Trans. Auton. Adapt. Syst. (TAAS) 2009, 4, 16.

13. Scuturici, V.M.; Surdu, S.; Gripay, Y.; Petit, J.M. UbiWare: Web-based dynamic data & service management
platform for AmI. In Proceedings of the Posters and Demo Track, Montreal, QC, Canada, 3–7 December 2012;
p. 11.

14. Aiello, F.; Fortino, G.; Galzarano, S.; Vittorioso, A. TinyMAPS: A Lightweight Java-Based Mobile Agent
System for Wireless Sensor Networks. In Intelligent Distributed Computing V; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 161–170.

15. Lai, S.; Cao, J.; Zheng, Y. PSWare: A publish/subscribe middleware supporting composite event in
wireless sensor network. In Proceedings of the IEEE International Conference on Pervasive Computing and
Communications (PerCom 2009), Galveston, TX, USA, 9–13 March 2009; pp. 1–6.

16. Eisenhauer, M.; Rosengren, P.; Antolin, P. Hydra: A Development Platform for Integrating Wireless Devices
and Sensors into Ambient Intelligence Systems. In The Internet of Things; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 367–373.

17. Terziyan, V.; Kaykova, O.; Zhovtobryukh, D. Ubiroad: Semantic middleware for context-aware smart road
environments. In Proceedings of the 2010 Fifth International Conference on Internet and Web Applications
and Services (ICIW), Barcelona, Spain, 9–15 May 2010; pp. 295–302.

18. Genge, B.; Haller, P.; Gligor, A.; Beres, A. An approach for cyber security experimentation supporting
sensei/IoT for smart grid. In Proceedings of the 2nd International Symposium on Digital Forensics and
Security, Houston, TX, USA, 12–13 May 2014.

19. Navarro, M.; del Val, E.; Rebollo, M.; Julián, V. Composing and ensuring time-bounded agent services.
In Proceedings of the International Work-Conference on Artificial Neural Networks, Salamanca, Spain,
10–12 June 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 553–560.

20. Navarro, M.; del Val, E.; Rebollo, M.; Julián, V. Agent negotiation protocols in time-bounded service
composition. In Intelligent Data Engineering and Automated Learning—IDEAL 2009, Proceedings of the 10th
International Conference, Burgos, Spain, 23–26 September 2009; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 527–534.

Sensors 2016, 16, 2200 25 of 25

21. Palanca, J.; del Val, E.; Garcia-Fornes, A.; Billhardt, H.; Corchado, J.M.; Julián, V. Designing a goal-oriented
smart-home environment. Inform. Syst. Front. 2016, doi:10.1007/s10796-016-9670-x.

22. Grieco, L.A.; Alaya, M.B.; Monteil, T.; Drira, K. Architecting information centric ETSI-M2M systems.
In Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), Budapest, Hungary, 24–28 March 2014; pp. 211–214.

23. Kim, J.; Lee, J.; Kim, J.; Yun, J. M2M service platforms: Survey, issues, and enabling technologies.
IEEE Commun. Surv. Tutor. 2014, 16, 61–76.

24. Ji, Z.; Ganchev, I.; O’Droma, M.; Zhao, L.; Zhang, X. A cloud-based car parking middleware for IoT-based
smart cities: Design and implementation. Sensors 2014, 14, 22372–22393.

25. Liu, M.; Xu, Y.; Mohammed, A.W. Decentralized Opportunistic Spectrum Resources Access Model and
Algorithm toward Cooperative Ad-Hoc Networks. PLoS ONE 2016, 11, e0145526.

26. Visser, S.; Thangarajah, J.; Harland, J.; Dignum, F. Preference-based reasoning in BDI agent systems.
Auton. Agents Multi-Agent Syst. 2016, 30, 291–330.

27. Janowicz, K.; Compton, M. The stimulus-sensor-observation ontology design pattern and its integration into
the semantic sensor network ontology. In Proceedings of the 3rd International Conference on Semantic Sensor
Networks, Shanghai, China, 7–11 November 2010; CEUR-WS. org: Aachen, Germany, 2010; Volume 668,
pp. 64–78.

28. Sharma, D. Stemming algorithms: A comparative study and their analysis. Int. J. Appl. Inform. Syst. 2012,
4, 7–12.

29. Jain, K.; Saraswat, R.N. Some Bounds of Information Divergence Measures in Terms of Relative
Arithmetic-Geometric Divergence. Int. J. Appl. Math. Stat. 2013, 32, 48–58.

30. Galeotti, A.; Goyal, S.; Jackson, M.O.; Vega-Redondo, F.; Yariv, L. Network games. Rev. Econ. Stud. 2010,
77, 218–244.

31. Himoto, K.; Tanaka, T. Development and validation of a physics-based urban fire spread model. Fire Saf. J.
2008, 43, 477–494.

32. McGrattan, K.B.; Hostikka, S.; Floyd, J.E. Fire Dynamics Simulator, User’s Guide; NIST Special Publication:
Gaithersburg, MD, USA, 2010; Volume 1019.

33. Liu, M.; Xu, Y.; Wu, S.; Lan, T. Design and optimization of hierarchical routing protocol for 6LoWPAN. Int. J.
Distrib. Sens. Netw. 2015, 2015, 13.

34. Bechkit, W.; Koudil, M.; Challal, Y.; Bouabdallah, A.; Souici, B.; Benatchba, K. A new weighted shortest path
tree for convergecast traffic routing in WSN. In Proceedings of the 2012 IEEE Symposium on Computers and
Communications (ISCC), Cappadocia, Turkey, 1–4 July 2012.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State of the Art
	Design of the Agent-Based Middleware
	The Basic Model
	Management Agent
	Service Agent

	Management Agent Decision Model
	Distributed Service Scheduling

	Enriching the Functionality Building of the Service Ontology
	General Service Design Pattern
	Input and Output Data
	Capability, Deployment and Resource

	Service Description Ontology Building

	Service Discovery and Combination
	Constraints Annotation and Matching
	Service Discovery
	Service Combination Construction
	Combination Table Construction
	Service Combination Process

	Simulation and Results
	Conclusions and Future Works

