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Abstract: Vision-based pose estimation is an important application of machine vision. Currently,
analytical and iterative methods are used to solve the object pose. The analytical solutions generally
take less computation time. However, the analytical solutions are extremely susceptible to noise.
The iterative solutions minimize the distance error between feature points based on 2D image pixel
coordinates. However, the non-linear optimization needs a good initial estimate of the true solution,
otherwise they are more time consuming than analytical solutions. Moreover, the image processing
error grows rapidly with measurement range increase. This leads to pose estimation errors. All the
reasons mentioned above will cause accuracy to decrease. To solve this problem, a novel pose
estimation method based on four coplanar points is proposed. Firstly, the coordinates of feature
points are determined according to the linear constraints formed by the four points. The initial
coordinates of feature points acquired through the linear method are then optimized through an
iterative method. Finally, the coordinate system of object motion is established and a method is
introduced to solve the object pose. The growing image processing error causes pose estimation errors
the measurement range increases. Through the coordinate system, the pose estimation errors could be
decreased. The proposed method is compared with two other existing methods through experiments.
Experimental results demonstrate that the proposed method works efficiently and stably.

Keywords: pose estimation; four coplanar points; analytical and iterative; linear constraints;
the coordinate system of object motion

1. Introduction

With the development of modern industrial technology, quickly and accurately determining
the position and orientation between objects is becoming more and more important. This process is
called pose estimation. Vision-based pose measurement technology, also known as perspective-n-point
(PNP) problem, is to determine the position and orientation of a camera and a target with n feature
points on the condition of knowing their world coordinates and 2D image pixel coordinates. It has the
advantages of non-contact and high efficiency. It can be widely applied in robotics [1], autonomous
aerial refueling [2], electro-optic aiming systems [3,4], virtual reality [5], etc.

The existing approaches to solve object poses can be divided into two categories: analytical
algorithms and iterative algorithms. Analytical algorithms apply linear methods to obtain algebraic
solutions: Hu et al. [6] uses four points to achieve a linear solution. Lepetit et al. [7] proposed
a non-iterative solution named EPnP algorithm. Tang et al. [8] presented a linear algorithm on
the condition of five points. Ansar et al. [9] presented a general framework to directly recover the
rotation and translation. Duan et al. [10] introduced a new affine invariant of trapezium to realize pose
estimation and plane measurement.
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As for iterative algorithms, pose estimation is formulated as a nonlinear problem with
the constraints, and then it is solved using nonlinear optimization algorithms, most typically,
Levenberg-Marquardt method. DeMenthon et al. [11–13] proposed POSIT algorithm. It gets the initial
value of the solution using a scaled orthographic model to approximate the perspective projection
model. Zhang et al. [14,15] proposed a two-stage iterative algorithm. The iterative algorithm is
divided into a depth recovery stage and an absolute orientation stage. Peng et al. [16] achieved the
object pose non-linearly on the basis of five points using a least squares approach. Liu et al. [17]
gets the object pose based on the corresponding geometrical constraints formed by four non-coplanar
points. Zhang et al. [18] proposed an efficient solution for vision-based pose determination of a parallel
manipulator. Fun et al. [19] proposed a robust and high accurate pose estimation method to solve the
PNP problem in real time.

The analytical solutions generally take less computation time. However, they are sensitive to
observation noise and usually obtain lower accuracy. As for iterative solutions, the pose estimation is
translated into a nonlinear least squares problem through the distance constraints. Then the distance
error between feature points is minimized based on 2D image pixel coordinates. However, the iterative
solutions also have drawbacks: (1) non-linear optimization needs a good initial estimate of the true
solution, (2) they are more time consuming than analytical solutions.

During the pose estimation process, the image processing errors emerge mainly because the
perspective projection point of the feature marker center and the perspective projection image center of
feature markers do not coincide. The current papers focus on the reduction of image processing errors
through better extraction of the image center [20–22]. However, those methods are not powerful enough
to eliminate the inconsistency between the perspective projection point of the feature marker center
and the center of the corresponding perspective projection image, especially when the measurement
range increases.

Based on the discussion above, in this paper a robust and accurate pose estimation method based
on four coplanar points is proposed: In the first step, by utilizing the linear constraints formed by
points, the coordinates of points in the camera coordinate system are solved analytically. The results
obtained in the first step are then set as the initial values of an iterative solving process to ensure
the accuracy and convergence rate of non-linear algorithm. The Levenberg-Marquardt optimization
method is utilized to refine the initial values. In the second step, the coordinate system of object motion
is established and the object pose is finally solved. The growing image processing error causes greater
pose estimation errors with an increasing measurement range. Through the coordinate system, the
pose estimation errors could be decreased.

The rest of the paper is organized as follows: Sections 2 and 3 propose a robust and accurate pose
estimation method. Section 4 provides some experiments to examine the method. Section 5 gives
the conclusion.

2. The Solving of Feature Point Coordinates in the Camera Coordinate System

The target pattern with four coplanar points is designed for pose estimation as shown in Figure 1.
P0, P1, P2 and P3 form a trapezium. P0P1 is parallel to P2P3.

P0 is set as the origin of coordinate system. The connecting line of P0 and P1 is Y axis.
→

P0P1×
→

P1P3

is Z axis. Then X axis is
→
Z ×

→
Y. In this way, the world coordinate system (target coordinate system)

is constructed.
To achieve the solution of target position, the coordinates of points in the camera coordinate

system need to be solved first. oc − xcyczc is the camera coordinate system. ow − xwywzw is the world
coordinate system. The coordinates of each point in the camera coordinate system is Pci = (xci, yci, zci)

T .
The coordinates of each point in the world coordinate system are Pwi = (xwi, ywi, zwi)

T . Pwi is known
before solving the pose. The corresponding ideal image coordinates are Iui = (xui, yui, 1)T(i = 0, 1, 2, 3).
The relationship of Pci and Iui could be described as
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zci Iui =

 sx f /dx 0 u0

0 f /dy v0

0 0 1

Pci = KPci

Pci = λiK−1 Iui(λi = zci)

(1)

where (u0, v0) is the center pixel of the computer image, sx is the uncertainty image factor, dx and dy

are center to center distances between pixels in the row and column directions respectively, f is the
focal length, and λi is the projection depth of Pi.
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Figure 1. The measurement target with four points. 

The coordinates of points in the camera coordinate system could be obtained by solving i . 

Since P0P1 is parallel to P2P3, two linear constraints are introduced. Then i  is solved (The solving 
process is in the Appendix). 
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The coordinates of points in the camera coordinates system is obtained by i . So, the vector 
from the optical center Oc to each point could be calculated through Equation (3). 
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The length between the feature points could be calculated through Equation (4). 
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Figure 1. The measurement target with four points.

The coordinates of points in the camera coordinate system could be obtained by solving λi.
Since P0P1 is parallel to P2P3, two linear constraints are introduced. Then λi is solved (The solving
process is in the Appendix A).

λ0 = σ0λ1, λ2 = σ2λ1/ε, λ3 = σ3λ1/ε

ε = ‖Pw1 − Pw0‖/‖Pw3 − Pw2‖
‖Pw3 − Pw2‖ = ‖Pc3 − Pc2‖ = λ1‖σ3K−1 Iu3/ε− σ2K−1 Iu2/ε‖
λ1 = ‖Pw1 − Pw0‖/‖σ3K−1 Iu3 − σ2K−1 Iu2‖

(2)

The coordinates of points in the camera coordinates system is obtained by λi. So, the vector from
the optical center Oc to each point could be calculated through Equation (3).

→
OcPci = σiK−1 Iui‖Pw1 − Pw0‖/‖σ3K−1 Iu3 − σ2K−1 Iu2‖(i = 0, 1)
→

OcPci = σiK−1 Iui‖Pw3 − Pw2‖/‖σ3K−1 Iu3 − σ2K−1 Iu2‖(i = 2, 3)
(3)

The length between the feature points could be calculated through Equation (4).

D2
i, j = ‖

→
OcPci‖

2
+ ‖

→
OcPcj‖

2
− 2

→
OcPci ·

→
OcPcj(i, j = 0, 1, 2, 3) (4)

In order to maintain the planarity of the four points, the coplanar constraint (CO) expressed as
Equation (5) should also be considered.

CO = (
→

Pc0Pc1 ×
→

Pc2Pc3) · (
→

Pc0Pc2 ×
→

Pc1Pc3) (5)

Through Equation (6), the Levenberg-Marquardt optimization method is then used to solve
λi. The value of λi obtained in Equation (2) is used as the initial value to ensure the accuracy and
convergence speed of the algorithm.
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D2
i, j − ‖PwiPwj‖ = 0

CO = 0
(6)

3. The Solving of Object Pose

The feature points coordinates in the camera coordinate system Pc0, Pc1, Pc2, Pc3 are calculated
through λi. The following step is to solve the object pose. As shown in Figure 2, om − xmymzm is the
rotation and translation coordinate system of target. The three free degrees in rotation are yaw (ym axis
and α angle), pitch (xm axis and β angle), and roll (zm axis and γ angle).
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Figure 2. The rotation and translation coordinate system.

om − xmymzm is established according to the following steps: (1) The target rotates around ym

axis. The images of the target are captured in the locations of different rotation angles. N1 groups
of spatial coordinates Pc0 can be obtained. With the least squares method, the N1 groups of spatial
coordinates Pc0 are used to fit a plane: Ax + By + Cz + D = 0. The vector of the ym axis is,

v =
[

r4 r5 r6

]T
=
[

A√
A2+B2+C2

B√
A2+B2+C2

C√
A2+B2+C2

]T
(7)

(2) The target rotates around xm axis. The images of target are captured in the locations of different
rotation angles. N2 groups of spatial coordinates Pc0 can be obtained. With the least squares method,
the N2 groups of spatial coordinates Pc0 are used to fit a plane: Ex + Fy + Gz + H = 0. The vector of the
xm axis is,

u =
[

r1 r2 r3

]T
=
[

E√
E2+F2+G2

F√
E2+F2+G2

G√
E2+F2+G2

]T
(8)

(3) The point sets Pc0 obtained in steps (1) and (2) share one rotation center. A sphere-fitting is
adopted to describe the center. According to the following sphere-fitting equation, the sphere center
could be calculated. The sphere center is the rotation center (the origin of om − xmymzm).

N1
∑
1
(Pc0x − xom)

2 + (Pc0y − yom)
2 + (Pc0z − zom)

2 − r2 = 0

N2
∑
1
(Pc0x − xom)

2 + (Pc0y − yom)
2 + (Pc0z − zom)

2 − r2 = 0
(9)

(xom, yom, zom) is the sphere center and r is the sphere radius.

(4) The vector of the zm axis is w = u× v =
[

r7 r8 r9

]T
. The vector of the ym axis is then

adjusted by v = w× u =
[

r4 r5 r6

]T
.

As om − xmymzm is established, the rotation and translation matrix from oc − xcyczc to
om − xmymzm is obtained. The coordinates of feature points in om − xmymzm are shown below.



Sensors 2016, 16, 2173 5 of 15

Rcm =
[

u v w
]
=

 r1 r4 r7

r2 r5 r8

r3 r6 r9

 Tcm =
[

xom yom zom

]T

Pmi = RcmPci + Tcm

(10)

The coordinates of feature points in om − xmymzm are represented with Pmi.
The positioning accuracy of the feature points during image processing have a direct impact on

the pose estimation accuracy. The automatic identification of circular markers is more convenient.
There are many available algorithms for the center positioning of circular markers. So in this paper,
the center point of the circular markers is selected as the feature point. The nature of imaging is
the perspective projection. It has the characteristic that the object is big when near and small when
far. This causes the perspective projection point of the circular marker’s center and the center of the
corresponding perspective projection image (usually an ellipse) to not coincide, especially when the
measurement range is greater [23]. This inconsistency causes image processing errors. Then image
processing errors emerge, which may result in the pose estimation errors (The ideal image coordinates
Iui = (xui, yui, 1)T in Equation (1) are obtained through these image processing steps). In order to
improve measurement accuracy, the following method is introduced.

The point sets Pc0 obtained in Section 2 represent the known typical position of a target in the
moving space. It means N typical positions of a target. The pose of a target in the typical position is
known. According to Equation (10), N Pm0 are obtained. Then the coordinates of P0 in om − xmymzm

in the typical position j are represented with Qmj0 . Pmki
represents the coordinates of feature points

in om − xmymzm in the location k. The nearest Qmj0 to Pmk0 is QmJ0 as shown in Figure 3. Pmki
is

calculated as →
OmPmki

=
→

OmQmJi +
→

QmJi Pmki
(i = 0, 1, 2, 3) (11)Sensors 2016, 16, 2173 6 of 16 
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Figure 3. The solving of the object pose.

Each pose vector in the moving space corresponds to three angles. They are α (yaw angle), β
(pitch angle), and γ (roll angle). They could be calculated as shown in Equation (12).

αOmPmki
= αOmQmJi

+ αQmJi
Pmki

βOmPmki
= βOmQmJi

+ βQmJi
Pmki

γOmPmki
= γOmQmJi

+ γQmJi
Pmki

(12)

αOmQmJi
, βOmQmJi

and γOmQmJi
are known quantities. αQmJi

Pmki
, βQmJi

Pmki
and γQmJi

Pmki
could be

calculated according to Equation (13). In this way, image processing error caused by the inconsistency
mentioned above is significantly reduced, especially when the measurement range is greater. The pose
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measurement accuracy is then improved. The target pose could be represented with αOmQmki
, βOmQmki

,
and γOmQmki

.

RQ =
[

g1 g2 g3

]
g2 =

−−−−−−→
QmJ0QmJ1/

∣∣∣−−−−−−→QmJ0QmJ1

∣∣∣
l1 =

−−−−−−→
QmJ1QmJ3/

∣∣∣−−−−−−→QmJ1QmJ3

∣∣∣
g3 = g2 × l1
g1 = g3 × g2

RP =
[

g4 g5 g6

]
g5 =

−−−−−→
Pmk0Pmk1/

∣∣∣−−−−−→Pmk0Pmk1

∣∣∣
l2 =

−−−−−→
Pmk1Pmk3/

∣∣∣−−−−−→Pmk1Pmk3

∣∣∣
g6 = g5 × l2
g4 = g6 × g5

RQP = R−1
P RQ

RQP =

 sin α cos γ cos α sin γ − sin α

sin β sin α cos γ− cos β sin γ sin β sin α sin γ + cos β cos γ sin β cos α

cos β sin α cos γ + sin β sin γ cos β sin αSγ− sin β cos γ cos β cos α



(13)

4. Experiment Results

The experimental system that consists of a target, a three-axis rotation stage, and two CCD
cameras is shown in Figure 4. The rotation range of stage in yaw axis, pitch axis, roll axis are ±160◦,
±90◦, ±60◦ respectively.
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Figure 4. The measurement system.

Camera used in this paper is Teli CSB4000F-20 (Teli, Tokyo, Japan) with the resolution
2008 (h) × 2044 (v), pixel size 0.006 × 0.006 mm2. The lens is Pentax (Tokyo, Japan) 25 mm.
The positioning accuracy of rotation stage is less than 20”. The calibration results of camera intrinsic
parameters are shown in Table 1 [24]. k1, k2 are the radial distortion coefficients. p1, p2 are the tangential
distortion coefficients.
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Table 1. Calibration results.

Parameters fx fy cx cy k1 k2 p1 p2

Camera 1 4341.501 4341.918 1034.667 1033.926 −0.361 0.140 −0.00024 0.00008
Camera 2 4373.530 4373.659 1000.997 1020.977 −0.373 0.342 0.00033 −0.00040

The images are captured with a single CCD camera in different locations. The feature point
coordinates in the camera coordinate system are obtained in the current location. Then the rotation
and translation coordinate system of target om − xmymzm is established. αOmQmki

, βOmQmki
and γOmQmki

which could be used to represent the target pose are solved.
The target pose measurement experiment includes three parts: computer simulation experiments,

real image experiments for accuracy, and real image comparative experiments with other methods.

4.1. Computer Simulation Experiments

To validate accuracy and noise immunity of the algorithm in this paper, the algorithm proposed
is compared with the Oberkampf POSIT algorithm [11–13] and the Duan algorithm [10] during the
computer simulation experiment process. In this process, the pinhole imaging model of a camera
is simulated, thus the points are transformed with perspective projection and the simulated image
coordinates of points are acquired. Gaussian noise from 0 pixels to 4 pixels are added to the point’s
coordinates of images. The relative errors of estimated poses using the proposed algorithm, Duan
algorithm, and Oberkampf POSIT algorithm are shown in Figure 5.

It can be seen that the errors are reduced after optimization and they increase with the noise level.
It is noticeable that the method proposed produces better results than the other two methods, especially
when the noise level is greater than one pixel. In addition, it is noted that the errors keep almost the
same level under lower noise disturbance. This phenomenon can be explained as follows: owing to
the fact that the Duan algorithm does not have an iterative solving process, this leads to a relatively
high error. The Oberkampf POSIT method takes no account of both the coplanarity constraint and
initial value of iteration process. With the noise level increasing, the factor of error changes from initial
value of the iteration process to coplanarity. This results in a higher error than the proposed algorithm.
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4.2. The Measurement Experiments for Accuracy

The measurement range of yaw angle, pitch angle, and roll angle is set to−35◦~35◦. The measurement
errors are shown in Figure 6. The measurement error is the absolute difference of the estimated angle
to the true angle.
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4.3. The Comparative Experiments for Accuracy

The algorithm proposed in this paper, Duan algorithm, and Oberkampf POSIT algorithm are used
to calculate target poses. The root mean square (RMS) errors are displayed in Figure 7. Each point in
the figure is the RMS error over multiple measurements. As to the Duan algorithm, when the rotation
angle is greater, the RMS error of our method is less than that of Duan algorithm. The experiment
results demonstrate that the analytical pose measurement process is sensitive to the observation noise.
This error could be reduced by the iterative process in our method. At the same time, in our algorithm
a good initial value is provided at the beginning of iteration to ensure pose estimation accuracy. As to
the Oberkampf POSIT algorithm, experiment results demonstrate that the image processing error
mentioned in Section 3 exists in the pose measurement process. Through the method in Section 3,
the error could be eliminated successfully, especially when the measurement range is greater.

By comparing the results of our method and those of the Oberkampf POSIT and Duan algorithms,
it is obvious that the measurement accuracy of our method is higher than those in the whole
moving space.

As to the real applications, we first take images for the calibration board of the camera, as shown
in Figure 8. The four corner circular markers (marked in red) of the calibration board are used to form
a trapezium. The center points of the four circular markers are extracted from the images. Then the
lengths of the four sides of the trapezium are calculated with the algorithm proposed in this paper,
Duan algorithm, and Oberkampf POSIT algorithm. The measurement errors are shown in Table 2.
Figure 9 shows the image sets of the calibration board. D01 is the distance between P0 and P1. D02 is the
distance between P0 and P2. D23 is the distance between P2 and P3. D13 is the distance between P1 and
P3. The measurement error is the absolute difference of the estimated length to the true length. It can
be seen from Table 2 that the results of our algorithm are more close to the real value. The measurement
error of our method is less than 0.2 mm. The algorithm proposed in this paper is more effective.
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Table 2. The measurement errors of the calibration board.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

D01 (mm)

Duan −0.455 0.456 −0.352 0.568 −0.672 −0.433
Oberk 0.338 −0.209 0.189 −0.209 0.335 −0.326
Our −0.047 0.148 −0.078 −0.041 0.039 −0.086

D02 (mm)

Duan 0.532 −0.622 −0.535 0.659 −0.553 0.436
Oberk 0.248 −0.295 0.306 −0.331 0.359 −0.389
Our 0.040 −0.138 0.025 0.114 0.052 0.088

D23 (mm)

Duan 0.555 −0.636 −0.418 −0.659 −0.559 0.736
Oberk −0.323 0.203 −0.353 0.268 −0.177 0.384
Our 0.063 0.055 0.156 −0.125 −0.029 −0.139

D13 (mm)

Duan −0.708 −0.654 −0.555 0.715 −0.453 −0.359
Oberk 0.448 −0.407 −0.348 0.207 −0.248 0.307
Our −0.027 −0.072 0.076 −0.165 −0.089 −0.134
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Then we test the proposed algorithm by experimentally detecting the pose information of
a rotation stage in yaw angle, pitch angle, and roll angle. Figure 10 shows the image sets of the
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rotation stage with feature points. Through the target on the rotation stage as shown in Figure 10, its
pose is calculated using the algorithm proposed in this paper, Duan algorithm, and Oberkampf POSIT
algorithm. The measurement errors are shown in Table 3. The measurement error is the absolute
difference of the estimated angle to the true angle. It can be seen from Table 3 that the results of our
algorithm are more close to the real value. The measurement error of our method is less than 0.2◦.
Using the same information extracted from the images, the proposed algorithm has an advantage to
identify the pose of the rotation stage.
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Table 3. The measurement errors of the rotation stage with feature points.

Position

Yaw 5◦ 10◦ 15◦ 20◦ 25◦

Duan −0.132 0.252 0.245 0.485 −0.532
Oberk −0.056 −0.154 −0.147 0.284 −0.334
Our 0.032 −0.057 0.045 −0.085 −0.132

Pitch (error) 5◦ 10◦ 15◦ 20◦ 25◦

Duan −0.127 −0.196 −0.201 0.386 −0.477
Oberk 0.046 0.177 −0.186 0.295 0.402
Our 0.027 0.043 −0.019 −0.102 −0.137
Roll 5◦ 10◦ 15◦ 20◦ 25◦

Duan 0.129 −0.267 0.245 −0.399 −0.489
Oberk 0.036 −0.200 −0.196 0.247 −0.374
Our −0.026 −0.052 0.049 0.093 0.140

Finally, we estimated the head pose. The pose measurement system based on inertial technology
is mounted on a helmet to calculate the head pose as shown in Figure 11. The results are taken as the
real values. The corresponding images of the head are captured and shown in Figure 12. The vertices
of the trapezium are the outer corners of the two eyes and the mouth. The image points of the four
vertices on each image are located in a manual way. The head pose is calculated using the algorithm
proposed in this paper, Duan algorithm, and Oberkampf POSIT algorithm. The first image (Frame 0) in
Figure 12 is set as the initial position (zero position). The angle between the current positions (Frame 1,
Frame 2, Frame 3, and Frame 4) and the initial position (Frame 0) are calculated. The measurement
errors are shown in Table 4. The measurement error is the absolute difference of the estimated angle to
the real angle.



Sensors 2016, 16, 2173 12 of 15

Sensors 2016, 16, 2173 12 of 16 

 

Table 3. The measurement errors of the rotation stage with feature points. 

 Position 
Yaw 5° 10° 15° 20° 25° 
Duan −0.132 0.252 0.245 0.485 −0.532 
Oberk −0.056 −0.154 −0.147 0.284 −0.334 
Our 0.032 −0.057 0.045 −0.085 −0.132 

Pitch (error) 5° 10° 15° 20° 25° 
Duan −0.127 −0.196 −0.201 0.386 −0.477 
Oberk 0.046 0.177 −0.186 0.295 0.402 
Our 0.027 0.043 −0.019 −0.102 −0.137 
Roll 5° 10° 15° 20° 25° 

Duan 0.129 −0.267 0.245 −0.399 −0.489 
Oberk 0.036 −0.200 −0.196 0.247 −0.374 
Our −0.026 −0.052 0.049 0.093 0.140 

Finally, we estimated the head pose. The pose measurement system based on inertial 
technology is mounted on a helmet to calculate the head pose as shown in Figure 11. The results are 
taken as the real values. The corresponding images of the head are captured and shown in  
Figure 12. The vertices of the trapezium are the outer corners of the two eyes and the mouth. The 
image points of the four vertices on each image are located in a manual way. The head pose is 
calculated using the algorithm proposed in this paper, Duan algorithm, and Oberkampf POSIT 
algorithm. The first image (Frame 0) in Figure 12 is set as the initial position (zero position). The 
angle between the current positions (Frame 1, Frame 2, Frame 3, and Frame 4) and the initial 
position (Frame 0) are calculated. The measurement errors are shown in Table 4. The measurement 
error is the absolute difference of the estimated angle to the real angle. 

 

Figure 11. The motion capture system based on inertial technology. 

 

Figure 12. The image sets of head pose. 

Figure 11. The motion capture system based on inertial technology.

Sensors 2016, 16, 2173 12 of 16 

 

Table 3. The measurement errors of the rotation stage with feature points. 

 Position 
Yaw 5° 10° 15° 20° 25° 
Duan −0.132 0.252 0.245 0.485 −0.532 
Oberk −0.056 −0.154 −0.147 0.284 −0.334 
Our 0.032 −0.057 0.045 −0.085 −0.132 

Pitch (error) 5° 10° 15° 20° 25° 
Duan −0.127 −0.196 −0.201 0.386 −0.477 
Oberk 0.046 0.177 −0.186 0.295 0.402 
Our 0.027 0.043 −0.019 −0.102 −0.137 
Roll 5° 10° 15° 20° 25° 

Duan 0.129 −0.267 0.245 −0.399 −0.489 
Oberk 0.036 −0.200 −0.196 0.247 −0.374 
Our −0.026 −0.052 0.049 0.093 0.140 

Finally, we estimated the head pose. The pose measurement system based on inertial 
technology is mounted on a helmet to calculate the head pose as shown in Figure 11. The results are 
taken as the real values. The corresponding images of the head are captured and shown in  
Figure 12. The vertices of the trapezium are the outer corners of the two eyes and the mouth. The 
image points of the four vertices on each image are located in a manual way. The head pose is 
calculated using the algorithm proposed in this paper, Duan algorithm, and Oberkampf POSIT 
algorithm. The first image (Frame 0) in Figure 12 is set as the initial position (zero position). The 
angle between the current positions (Frame 1, Frame 2, Frame 3, and Frame 4) and the initial 
position (Frame 0) are calculated. The measurement errors are shown in Table 4. The measurement 
error is the absolute difference of the estimated angle to the real angle. 

 

Figure 11. The motion capture system based on inertial technology. 

 

Figure 12. The image sets of head pose. Figure 12. The image sets of head pose.

Table 4. The measurement errors of head pose.

Frame 1 Frame 2 Frame 3 Frame 4

Duan (◦)

Yaw −0.845 −0.831 −0.776 0.766
Pitch 0.476 −0.552 0.544 0.422
Roll −0.577 0.430 0.402 −0.427

Oberk (◦)

Yaw −0.560 −0.620 −0.688 −0.644
Pitch 0.410 −0.374 −0.397 0.294
Roll −0.355 −0.288 0.362 −0.403

Our (◦)

Yaw −0.345 0.344 0.286 −0.374
Pitch −0.177 −0.186 −0.211 0.204
Roll −0.222 −0.199 0.175 0.232

It can be seen from Table 4 that the results of our algorithm are closer to the real value. The rough
localization of the control points (the trapezium) in the image lead to the promotion of the measurement
errors. However, our method could decrease these kinds of measurement errors compared with the
other two methods. The errors of yaw, pitch, and roll are not independent. The errors of yaw, pitch,
and roll influence each other for they constitute the rotation matrix together. When the head rotated in
all the axes, as the errors of yaw, pitch, and roll influence each other, measurement errors are promoted.

The distance between object and camera is limited by the field of view. The corresponding
experiment results (RMS errors) are shown in Table 5. When the camera is in different locations, the
pose of the target is calculated. In Position 1 and Position 2, the camera is near to the target and the
target is out of the field of view of the camera. In Position 5 and Position 6, the camera is far from the
target and the target is out of the field of view of the camera. In Position 3 and Position 4, the target is
in of the field of view of the camera. It can be seen as follows: if the object is out of the range of the
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field of view, the measurement accuracy is lower. If the object is in the range of the field of view, the
measurement accuracy is higher and little influenced by the distance between object and camera. So in
order to obtain a higher accuracy, it is needed to ensure that the object is in the range of the field of
view of the camera.

Table 5. The RMS error of cameras in different locations.

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6

Yaw (◦) 0.411 0.384 0.192 0.189 0.477 0.512
Pitch (◦) 0.400 0.372 0.186 0.177 0.444 0.504
Roll (◦) 0.394 0.346 0.174 0.185 0.500 0.523

5. Conclusions

A robust and accurate vision-based pose estimation algorithm based on four coplanar feature
points is presented in this paper. By combining the advantages of the analytical methods and the
iterative methods, the iterative process is given a preferable initial value acquired independently by
an analytical method. At the same time, the anti-noise ability is strengthened and the result is more
stable. The pose estimation errors depend on the feature extraction accuracy. When the measurement
range is greater, the image processing errors become greater. In the algorithm proposed, the coordinate
system of object motion is established to solve the object pose. In this way, the image processing error
which may result in the pose estimation errors could be reduced.
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Appendix A. Proof of the Solving of λi

ε is the distance ratio of P1P0 and P3P2.

ε = ‖Pw1 − Pw0‖/‖Pw3 − Pw2‖
Pw1 = ε(Pw3 − Pw2) + Pw0 = [Pw0, Pw2, Pw3][1,−ε, ε]T

(A1)

The transformation matrix from the world coordinates system to the camera coordinates system
is R and T. Pci could be expressed as Pci = R · Pwi + T, and then Pc1 could be represented with Pc0, Pc2,
Pc3. The first linear constraint is shown in Equation (A2).

Pc1 = R · Pc4 + T
= R · (ε(Pc3 − Pc2) + Pc0) + T
= R · (ε(Pc3 − Pc2 + T − T) + Pc0) + T
= ε(R · Pc3 − R · Pc2 + T − T) + R · Pc0 + T
= ε(Pc3 − Pc2) + Pc0

Pc1 = ε(Pc3 − Pc2) + Pc0 = [Pc0, Pc2, Pc3][1,−ε, ε]T (A2)

Given Pc = [Pc0, Pc2, Pc3], according to Equations (1) and (A2), Equation (A3) is deduced.

Pc = [Pc0, Pc2, Pc3] = K−1[Iu0, Iu2, Iu3]diag[λ0, λ2, λ3] (A3)
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The both sides of Equation (A3) are multiplied with Pc1. Given [σ0, σ2, σ3] = [Iu0,−Iu2, Iu3]
−1 Iu1,

finally Equation (A4) is obtained which represents the second linear constraint.

P−1
c Pc1 = diag(λ1/λ0, λ1/λ2, λ1/λ3)[σ0,−σ2, σ3]

T (A4)

P−1
c Pc1 could also be expressed as Equation (A5) according to Equation (A2).

P−1
c Pc1 = [1,−ε, ε]T (A5)

According to both Equations (A4) and (A5), λi is solved as shown in Equation (2) in the paper.
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