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Abstract: Most existing wearable gait analysis methods focus on the analysis of data obtained
from inertial sensors. This paper proposes a novel, low-cost, wireless and wearable gait analysis
system which uses microphone sensors to collect footstep sound signals during walking. This is the
first time a microphone sensor is used as a wearable gait analysis device as far as we know. Based on
this system, a gait analysis algorithm for estimating the temporal parameters of gait is presented.
The algorithm fully uses the fusion of two feet footstep sound signals and includes three stages:
footstep detection, heel-strike event and toe-on event detection, and calculation of gait temporal
parameters. Experimental results show that with a total of 240 data sequences and 1732 steps collected
using three different gait data collection strategies from 15 healthy subjects, the proposed system
achieves an average 0.955 F1-measure for footstep detection, an average 94.52% accuracy rate for
heel-strike detection and 94.25% accuracy rate for toe-on detection. Using these detection results,
nine temporal related gait parameters are calculated and these parameters are consistent with their
corresponding normal gait temporal parameters and labeled data calculation results. The results
verify the effectiveness of our proposed system and algorithm for temporal gait parameter estimation.

Keywords: gait analysis; temporal parameter estimation; footstep sound; microphone sensor;
wearable device

1. Introduction

Gait analysis (GA) is the systematic research of human walking locomotion, and it has been
widely used in health diagnostics [1] or rehabilitation [2] for tasks such as assessing balance and
mobility in abnormal gait patients before treatment and monitoring recovery status after treatment.
Objective and quantitative measurements of gait parameters are necessary for better management
of rehabilitation. Measurements of gait temporal parameters are used for the evaluation of lower
extremity disorders and for the quantification of their subsequent improvement after treatment [3].
Various instruments and methods have been developed to assist in the study of gait analysis. Most big
hospital and rehabilitation centers use multi-camera motion capture systems and force platforms to
measure quantitative and accurate gait spatial-temporal parameters [4,5], but this approach has some
disadvantages such as expensive cost, a large footprint, and specialized setups, etc. Thus it cannot meet
the requirement of daily monitoring, especially for abnormal gait patients (stroke, Parkinson, multiple
sclerosis, etc.) at home after leaving the hospital or rehabilitation center. Therefore, quantitative,
low-cost, portable and wearable GA approaches and equipment are attracting more attention and
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becoming popular [6]. Foot switches or pressure sensors (insole) are used for temporal parameter
estimation [7–10]. These techniques generally provide unsatisfactory results for abnormal walking
and difficult sensor attachment [3]. Inertial sensors, which can be embedded in wearable and portable
electronic devices, have been widely used in gait recognition for individual identification [11,12],
gait action recognition [13] and gait analysis [14–17] because they are inexpensive, not limited
by environmental conditions, low-power and tiny. Most wearable GA methods only use inertial
sensor-based methods [14–17]. The temporal parameters of inertial sensor-based methods are mainly
measured by threshold-based peak detection methods, so generally it is not easy to achieve high
detection accuracy because it’s almost impossible to find a fixed threshold adaptable to many kinds
of conditions. In addition, as we know that inertial sensors have chipset drift problems and integral
computation accumulated errors [17], thus requiring a lot of work and processing to reduce the noises
in the signals recorded by them.

On the other hand, it has been proved that footstep sounds can provide useful and important
information during walking [18,19], but the microphones which were used in most previous studies
were not wearable. Although a microphone-based wearable prototype device was demonstrated by
a Korean company [20], it was implemented to determine the walking quality by single foot use,
and was not used for GA parameter measurements. Microphone sensors are useful for wearable
GA because they are tiny, low-cost, portable, etc., and a microphone sensor can get gait information
directly from footstep sounds generated by the impact between someone’s foot and the floor as he or
she moves around, so it can assist in the study of temporal parameter measurements. Besides these
advantages, microphone sensors can more directly represent the foot-friction-floor problems caused by
insufficient foot lift in some abnormal gait patients. In general, microphone sensors can be a promising
technology for wearable GA studies.

The main contribution in this paper is the presentation of a study mode using wearable
microphone sensors for the study of gait analysis fields. We first present a novel, low-cost, wireless,
wearable and microphone-sensor-based system to collect footstep sound signals during walking,
and to our knowledge this is the first time microphone sensors have been used in wearable gait
analysis. Then, based on this system, a gait analysis algorithm is proposed for estimating the temporal
parameters of gait. The algorithm fully uses signal fusion of two feet footstep sounds and includes three
stages: footstep detection, heel-strike event and toe-on event detection, and gait temporal parameter
calculation. Finally, experiments are conducted to assess the effectiveness of our proposed system
and algorithm.

2. System Overview

The system firstly collects footstep sound data, which includes hardware (HW), software (SW)
and data collection procedures. After the data collection, it should then be analyzed by the data
analysis module. The details of our system are shown in Figure 1.
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2.1. Hardware

We present an ankle-worn prototype device/board (our reference design is the Podoor
PW308s [21]) to collect footstep sound data from both feet as shown in Figure 1a. A microphone is the
data collection sensor. The prototype specification list is given in Table 1.

Table 1. Specification list of the device HW.

Part Spec

Microphone Omni-directional, electrets, condenser
Bluetooth CSR, Bluetooth 4.0/3.0 + EDR

Battery 3.7 V, 600 mAH, Li-ion
Memory 1 GB RAM + 8 GB ROM

CPU MT6572, 1.3 GHz, dual-Core

In actual use for this work, to protect the HW board from external impacts and make it comfortable
to wear on the ankles, it was cased into an acrylic cuboid (4.3 cm × 4.8 cm × 1.5 cm) by a 3D printer
and an elastic band is used for attaching it to the ankle tightly. In addition, to reduce the acoustic noise
from the environment, the microphone is covered with a layer of sponge foam. In the remainder of
this paper, we call the HW prototype device the test node.

2.2. Software

The system related software and programs are listed in Table 2.

Table 2. System SW list.

SW Name Target to Be Installed Number

ICT gait client Test node (left foot) 1
ICT gait client Test node (right foot) 1

ICT gait control Control terminal 1
ICT gait data handler PC 1

The test node preinstalls the Google Android operating system, so it’s more easy and convenient
for us to develop SW on it. We developed an Android APK program (we call it the ICT gait client) to
simultaneously read microphone sensor data from the test nodes worn on both feet. Our ICT gait client
program captures the footstep sound data of both feet sampled at 8 kHz in PCM format, mono channel
and 16-bit resolution through the microphone while the user is walking. After installing the ICT gait
client program and turning both test nodes on, the program runs automatically as an Android service.
In addition, one control terminal (we use an Android smartphone) is needed to connect and transmit
control commands to the two test nodes via Bluetooth, and the ICT gait control program should be
installed on it (Figure 1b).

2.3. Data Collection Procedure

As it is shown in Figure 1b, the data collection procedure can be divided into the following stages:

(1) Two test nodes are attached to the lateral side of a test person’s two ankles with a tight elastic
band, with the test nodes’ microphone holes facing the ground (Figure 1c). Both test nodes power
on and the ICT gait client program is running automatically, but sensor data capture has not
begun (green sequence number 1 in Figure 1b).

(2) The ICT gait control program connects to the ICT gait client program of the two feet via Bluetooth
(green sequence number 2 in Figure 1b).
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(3) When the test person starts walking, the ICT gait control program sends a sensor data collection
start command to both ICT gait client programs, thus the two test nodes begin to record the
footstep sound data synchronously.

(4) When the person stops walking, the ICT gait control program sends sensor data collection stop
commands to both ICT gait client programs. Thus all gait data are recorded automatically by the
two test nodes, respectively, by the ICT gait client programs.

Finally, for further data analysis, the data recorded by the two test nodes will be copied to the ICT
gait data handler through a USB connection (green sequence number 3 in Figure 1b).

2.4. Data Analysis

After gait data collection, the ICT gait data handler in Table 2 is the gait data analysis program
which mainly includes the gait parameter estimation algorithm (in the next section, we provide
more details about the estimation algorithm). At present we implement gait analysis at the PC side.
This means that after data capture, all the data should be manually copied to a PC through a USB
connection for analysis. In a next step in our work we will consider deploying and implementing our
gait data analysis in the cloud.

3. The Gait Temporal Parameter Estimation Algorithm

As a part of our gait data analysis module, in this section, a gait analysis algorithm is proposed
for estimating the temporal parameters of gait. As we know, the basic and key process for gait analysis
is to detect every footstep, namely, to detect the accurate timing of every step. After detecting every
footstep, more details of the gait, such as footstep heel events and toe events can be detected accordingly.
Thus more gait temporal parameters can be calculated: cadence, gait cycle time, single step time, etc.
In this section we firstly describe the characteristics of normal walking footstep sounds, and then based
on these characteristics, we present our algorithm for gait temporal parameter estimation.

3.1. The Characteristics of Footsteps

As we know, a normal gait cycle includes a stance phase (60%) and a swing phase (40%) [17],
and only in the stance phase, will the foot contact the ground and generate a walking sound impact.
A footstep sound impact consists of several sub-impacts which are caused by different parts of one’s
foot, e.g., the calcaneus touching the ground, metatarso-phalangeal ground touching and the phalanges
touching the ground, etc. [18]. The different sub-impact forms indicate different human moving styles,
e.g., walking, running, etc. In this paper, we only discuss walking. Usually normal walking includes
two obvious sound sub-impacts: a heel-strike event and a toe-on event (Figure 2).
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Figure 2. (a) Acoustic impacts of footstep events; (b) Acoustic impact signals of a footstep in
a spectrogram.

Here we define the heel-strike event is the calcaneus area (heel) touching the ground and the
toe-on event is the metatarso-phalangeal (sole) area touching the ground. Therefore in this section,
we will mainly analyze and handle these two sound event signals that happen during walking,
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while other related noise sounds, which also happen at the same time during walking, such as the
wind noise caused by the foot swinging in the air, or friction sounds between clothes and the moving
body, etc., are considered insignificantly low relative to footstep sounds and these noises are not
discussed in this paper.

3.2. Estimation Algorithm

The flowchart of the gait temporal parameter estimation algorithm is shown in Figure 3.
The algorithm includes three stages: footstep detection, heel-strike event and toe-on event detection,
and gait temporal parameter calculation. In the following subsections, we will explain our estimation
algorithm step by step in the order it’s shown in Figure 3.
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3.2.1. Footstep Detection Algorithm

Model Training

We use a classification model to detect footstep from consecutive raw audio data obtained from the
system, so firstly model training is needed. All the training audio data are computed every 80 samples
(0.01 s at the sample rate 8 kHz), while a frame size of 200 samples is applied (every frame is 0.025 s at
the sample rate 8 kHz). Normally one touch event (from heel touching the ground to toe touching
the ground) takes about 0.1 s, and this data segment method guarantees that a sufficient number of
frames are included within one normal touch event. Some of the most frequently used audio features
in speech processing are extracted and in total 36 features are selected for our classification model after
a frame-level classification performance experiment where the accuracy was about 95% using 5-fold
cross validation. The 36 features are:

• Correlation coefficient
• Sub-band energy (0–4 kHz) (the number of sub-bands is 10 by average division)
• Zero crossing rate
• LPCC (12 dimension)
• MFCC (12 dimension)

SVM is selected as the classification model (SVM-related parameters are as follows: kernel is
the radial basis function, C = 2048, gamma = 0.5). Before model training, we need to select the
positive samples and negative samples. Considering the typical characteristics of walking footsteps
where heel-strike and toe-on are obvious events for generating footstep audio data, one reasonable
sample selection policy is: three frames at the two sides of the touch point of heel and toe,
respectively, as positive samples, and nine frames at the middle of two neighboring steps as negative
samples (Figure 4).
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Footstep Detection

After the pre-processing of audio gait data, it should be put into the SVM classification which
was obtained after training (Figure 3). According to the training method mentioned above, the SVM
classification is a frame-level probability model. This means that after SVM classification, it can
determine whether an audio frame corresponds to a footstep or not. In fact, our objective is to detect
which phase of the audio is a footstep in the consecutive walking audio data sequences. Before detecting
footsteps in audio data sequences, a smoothing process is needed. Here a low-pass-filter (LPF) is
designed (cut-off frequency is 0.1 Hz, number of coefficients is 101) for smoothing the probability
results after SVM:

y(n) =
100

∑
i=0

(wix(n)) (1)

where x(n) is the input signal after classification model (SVM) calculation and wi are the
LPF coefficients.

Figure 5a shows the result where the original footstep audio is indicated by a blue curve,
the probability curve after SVM is indicated by a green curve, and the red curve is the smoothing result
after LPF. It shows that there is an obvious peak (red curve) for each footstep, so we can detect these
peaks by a probability threshold value. If a peak is higher than the threshold value, it can be judged as
a footstep; otherwise, it’s not. At the same time, other information that can be seen in this figure is
that when a footstep happens both test nodes (left and right) can capture the audio of this footstep,
but the opposite side footstep’s peak is a little flatter than the current side footstep’s peak because the
opposite side footstep’s audio signal is relatively a little smaller than the actual side footstep’s audio
signal. This is due to the fact that the opposite side’s foot is farther away from the microphone than this
side’s foot. To a certain extent, this newly found information also proves that our smoothing process
for footstep detection is correct. However, according to this newly found information, we also find
that there will be missing footstep detection signal errors with only single foot signals. For example,
as shown in Figure 5a, the first red curve peak is detected as a footstep by the left foot signal, but it’s
not a footstep according to the right foot signal, so usually footstep detection by a single foot’s audio
signal cannot get good results.
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Based on the above discussion, we propose a footstep detection algorithm which fully uses
two-footstep-audio signal fusion: (1) during the training phase, footstep audio data of both feet will be
added into a training set; (2) for detection of footsteps, two-footstep-audio signals will be used to judge
whether the signal is a footstep or not. One reasonable solution is that the sum of the two (left and
right) footstep-audio probabilities, which should be smoothly processed by LPF in advance, can be
used as a judging condition. Here we set the threshold value as 0.8 instead of 1.0 because at the same
moment the signal obtained from the opposite side footstep’s audio signal is relatively a little smaller
than the current side footstep’s audio signal:{

Pleft
(i) + Pright

(i) ≥ 0.8, it′s a footstep
Pleft

(i) + Pright
(i) < 0.8, it′s not a footsetp

(2)

where Pleft
(i) and Pright

(i) is the footstep probability of the left foot and right foot’s sound signal
at position (i). However, for light footsteps (e.g., a light weight person wearing shoes with very
soft soles), this solution sometimes can’t get good results because the footstep-audio probability is
almost zero. Thus the sum of the two (left and right) footstep-audio probabilities will be less than the
threshold value, and if the threshold value is reduced more, then the detection errors will increase.
Another problem of this solution is that after a footstep is confirmed, it’s hard to recognize whether it
corresponds to a left footstep or a right footstep.

To address this problem, another solution is that after LPR smoothing, the bigger probability of
two footstep-audio signals (the signals were generated by one footstep, but captured by both feet’s test
nodes at the same time) can be used as the decision criterion:{

P(i) = Pleft
(i), if Pleft

(i) ≥ Pright
(i), it′s a left foot footstep

P(i) = Pright
(i), if Pleft

(i) < Pright
(i), it′s a right foot footstep

(3)

The essence of this solution is that at the same moment the signal obtained from this side footstep’s
audio signal is relatively bigger than the audio signal from the opposite side footstep (Figure 5a),
so this side’s footstep signal is used for the footstep detection.
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By this detection algorithm, we can get the smoothing result curve shown in Figure 5b with the
same audio signal of Figure 5a. From the result (shown by a red line), we can clearly and exactly find
the footsteps.

3.2.2. Heel-Strike & Toe-on Detection Algorithm

After footstep detection, we know which audio signal range includes the footsteps, and this range
is closely related to or includes the footstep’s heel and toe event. However, our objective is to find
out the time point of heel-strike and toe-on in this detected footstep range. Before detecting these
two events, a mean filter is implemented for smoothing of raw audio signal. In our work, the filter size
used is 5 frames.

Since the footstep sound is an impact sound between the shoe and the floor, in a footstep there is
a relatively high signal-noise ratio. In this case, short-time energy is a good choice for detecting the
heel-strike and toe-on event from the detected footstep range. The short-time energy of l position is
calculated by a Fourier transform:

X(n) =
N−1

∑
k=0

xkei 2π
N kn (4)

E(l) =
high f req

∑
n=low f req

(X(n).real)2 + (X(n).imag)2 (5)

where l = 0, . . . , L, L is the audio signal length, xk is the input signal and N is the frame size. As shown
in Figure 6, the detected footstep range is represented by a blue dotted line rectangle, and short-time
energy curve is indicated using the black curve. The beginning point of each detected footstep range is
the first cross point of the red low-pass-filter curve and the black threshold line, and the end point of
each detected footstep range is the second cross point of the red low-pass-filter curve and the black
threshold line.
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In fact, from the short-time energy curve we can see that there are still some noises aside from
the heel-strike and toe-on sound events within the detected footstep range. Thus, after calculating the
short-time energy, we use a biggest-energy-based method for finally detecting heel-strike points and
toe-on points within the detected footstep range. The diagram of the method is shown in Figure 7,
and the detailed flow is as follows:
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(1) Because our footstep detection algorithm proposed in the last section is based on a threshold
method, there is the possibility that some heel-strike points and toe-on points may be missed,
so to reduce this risk, we extend the footstep detection range. In our work, we extend the range
by 10 frames: five frames for the left border and five frames for the right border;

(2) Select the biggest short-time energy peak in the extended range;
(3) As we know, footstep impact sound signals range from low frequency to high frequency in the

frequency spectrum, but non-footstep-sound (noise) is only low frequency (Figure 4), so according
to this information, we can determine whether the selected biggest peak is a footstep-sound or
not. If it is not a footstep sound, then we can remove it and find out the next biggest short-time
energy peak in the same range. If it is footstep sound, then we retain it and find the next biggest
one. Finally in each detected footstep range, all the short-time energy peaks which are heel-strike
point and toe-on point candidates are found.

(4) Order all these short-time energy peaks from big to small, and only keep the biggest three if there
are more than three peaks; if there are only two peaks left, then this processing is finished; if there
is only one peak or no peak, then it is a detection error, and this processing run is finished.

(5) With three peaks, judge whether the distance between the 1st one and 2nd one is very small. If it’s
very small (in our work, the distance judging condition is six frames), it means that the distance
is smaller than a normal footstep’s distance between heel-strike and toe-on, then remove the
2nd one and keep 1st one and 3rd one. If it’s not very small, then remove the 3rd one, and keep
1st one and 2nd one.

(6) Finally, the remaining two peaks are the heel-strike point and toe-on point, respectively according
to the chronological order. This means that the 1st one peak is a heel-strike point, and the 2nd peak
a toe-on point. They are shown with red circular dots in Figure 6, and within one footstep, the left
red dot is a heel-strike point, and the right red dot is a toe-on point, respectively.

Therefore, we can get the two points from the detected footstep sound range: the heel-strike point
and toe-on point.Sensors 2016, 16, 2167 9 of 18 
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3.2.3. Gait Temporal Parameters Estimation

According to the abovementioned methods, we find out the heel-strike point and toe-on point
from each detected footstep. Then in this paper, nine related temporal parameters, which are important
for assessing the regularity, symmetry and mobility of gait, were estimated [3,22]:

Cadence (Steps/Min)

This is step number per minute. Let N be the number of steps taken over the time period t
(in second). Cadence can thus be expressed as:

C = 60
N
t

(6)

Normally a human’s cadence is 95–125 steps/min.

Gait Cycle (s)

This is the time period during walking from when one foot heel contacts the ground to when
that same foot heel contacts the ground again, so a gait cycle is divided into the left foot’s cycle and
the right foot’s cycle (GCle f t, GCright). Each foot’s gait cycle consists of two phases, namely the stance
phase and the swing phase. The stance phase can be further divided into load phase, foot-flat phase
and push phase [23]. In this work, we call the load phase the stance initial phase.

Single Step Time (s)

This is the time period during walking in which one foot heel contacts the ground to when the
other foot heel contacts the ground, so a single step time is divided into left foot’s and right foot’s
(SSTle f t, SSTright).

Stance Initial Phase Time (s)

This is the time period during walking from when one foot heel contacts the ground to when that
same foot toe contacts the ground:

SIPT = toeon− heelstrike (7)

Stance initial phase time is divided into left foot’s and right foot’s (SIPTle f t, SIPTright).

Stance Initial Phase Rate (%)

This corresponds to the proportion of stance initial phase in a whole gait cycle. It is defined by
the following formula:

SIPR =
SIPT
GC

× 100% (8)

Stance initial phase rate is also divided into left foot’s and right foot’s (SIPRle f t, SIPRright).
Regarding to the calculation method of these nine parameters which is mentioned above, it should

be pointed out that except for cadence, the calculation method of gait cycle is for one cycle, and the
other six parameters are measured for one footstep. The final calculation method of each parameter
for one subject is to take an average value.

4. Experiments

To show the effectiveness of our proposed system and algorithms, we conducted some experiments.
The experiments include two parts: experimental data and experimental results.
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4.1. Experimental Data

We establish an ICT_Gait database containing two feet audio data for each participating subject.
Meanwhile, the corresponding temporal data in the database are labeled with the ground-truth.

4.1.1. Data Collection Environment

For data collection, we set up a test lab at our research center, a room with the following
dimensions: height 2.85 m, width 3.85 m and length 6.45 m. In this room there is a rectangle test
ground of 5 × 0.8 square meters, as shown in Figure 8.

Sensors 2016, 16, 2167 10 of 18 

 

Stance Initial Phase Rate (%)  

This corresponds to the proportion of stance initial phase in a whole gait cycle. It is defined by 
the following formula:  ܴܵܲܫ = ܥܩܶܲܫܵ ൈ 100%  (8) 

Stance initial phase rate is also divided into left foot’s and right foot’s (ܴܵܲܫ௟௘௙௧,  .(௥௜௚௛௧ܴܲܫܵ
Regarding to the calculation method of these nine parameters which is mentioned above, it 

should be pointed out that except for cadence, the calculation method of gait cycle is for one cycle, 
and the other six parameters are measured for one footstep. The final calculation method of each 
parameter for one subject is to take an average value. 

4. Experiments  

To show the effectiveness of our proposed system and algorithms, we conducted some 
experiments. The experiments include two parts: experimental data and experimental results. 

4.1. Experimental Data 

We establish an ICT_Gait database containing two feet audio data for each participating subject. 
Meanwhile, the corresponding temporal data in the database are labeled with the ground-truth.  

4.1.1. Data Collection Environment 

For data collection, we set up a test lab at our research center, a room with the following 
dimensions: height 2.85 m, width 3.85 m and length 6.45 m. In this room there is a rectangle test 
ground of 5 × 0.8 square meters, as shown in Figure 8. 

 
Figure 8. Data collection environment (top down view). 

4.1.2. Participating Subjects 

In our work, 15 healthy subjects volunteered to participate in our research. Before the tests, all 
the subjects were requested to sign the test agreement document and each one received a small gift 
of roughly 8 USD in value. The details for the total 15 participating subjects are: nine (59%) were 
males and six (41%) females. The ages of the subjects ranged from 21 to 54 years old, with an average 
of 33.13 years old. Their heights ranged from 155 cm to 189 cm, with an average of 168.07 cm. As for 
the weight of the subjects, it ranged from 48 kg to 98 kg, with an average of 64.67 kg. 

4.1.3. Data Collection Strategy 

Participating subjects were asked to walk straight at a normal speed from the left (marked with 
A) to the right (marked with B), then turn around and come back. Considering that footstep sounds 
have a big relationship with the ground and shoe type, we added the following two variations: (1) 
shoe type: sneakers (soft sole), leather shoe (hard sole) and (2) ground type: cement, wood. 

Figure 8. Data collection environment (top down view).

4.1.2. Participating Subjects

In our work, 15 healthy subjects volunteered to participate in our research. Before the tests, all the
subjects were requested to sign the test agreement document and each one received a small gift of
roughly 8 USD in value. The details for the total 15 participating subjects are: nine (59%) were males
and six (41%) females. The ages of the subjects ranged from 21 to 54 years old, with an average of
33.13 years old. Their heights ranged from 155 cm to 189 cm, with an average of 168.07 cm. As for the
weight of the subjects, it ranged from 48 kg to 98 kg, with an average of 64.67 kg.

4.1.3. Data Collection Strategy

Participating subjects were asked to walk straight at a normal speed from the left (marked with A)
to the right (marked with B), then turn around and come back. Considering that footstep sounds have
a big relationship with the ground and shoe type, we added the following two variations: (1) shoe type:
sneakers (soft sole), leather shoe (hard sole) and (2) ground type: cement, wood.

In addition, we add another variation that asks the subjects to carry a 5 kg weight bag on the
back when walking to confirm whether overloading has any effect on their gait. In all, there are in
total three different data collection variables (shoe type, ground type, and 5 kg bag load) for each
subject, and each variant has two selections. Combined with the walking direction (walking from A to
B generates one data sequence, and walking from B to A generates another data sequence), we can get
in total 16 data sequences for each subject, so the whole database has 240 data sequences (15 × 16).

4.1.4. Data Collection Method

Each participating subject walks back and forth in the 5 m × 0.8 m rectangle test ground with
three different data collection strategies, and the method is same as the one described in Section 2.3.

4.1.5. Data Labeling Method and Content

For the labeling of gait temporal parameters, in this work we present a simple method to accurately
label data after walking. We directly use the audio data recorded by two foot-worn test nodes. In order
to guarantee the accuracy of the labeled data, our labelling process is divided into two steps:
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Firstly, experienced audio experts of our lab listen to each footstep’s audio data, and manually
record the time position of each footstep event (heel and toe touch ground).

Secondly, a temporal parameter label tool (ICT gait annotation) was developed by us to correct
and revise the first step’s mark result. A screenshot of this tool is shown in Figure 9. Normally it is not
easy if we only depend only on the audio signal amplitude information determined by experienced
audio experts, so the energy curve, frequency spectrum, and the bandwidths are computed and plotted
on the screen to assist the labeling process.
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According to this method, the label content is the time of heel-strike and toe-on, and the time is
represented as the audio sample number.

4.1.6. Experimental Data

Considering the stability of each gait data sequence, before the experiment, the first and
last footstep of each data sequence are removed, and our database is divided into a training set,
validation set and the test set for the experiments (Table 3).

Table 3. Data structure for the experiments.

Data Type
Audio Data

Total
Training Set Validation Set Test Set

Subjects 8 3 4 15
Number of data sequence 128 48 64 240

Number of footstep 736 267 369 1732

4.2. Experimental Results

To estimate gait temporal parameters, footstep detection is the first step. After footstep detection,
then heel-strike and toe-on can be detected accordingly. Only if both heel-strike and toe-on points
are detected, can the nine gait temporal parameters (cadence, gait cycle (left, right), single step time
(left, right), stance initial phase time (left, right), stance initial phase rate (left, right)) be calculated.
In the follow subsections, we give the experimental results after running our algorithms based on the
data shown in Table 3.
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4.2.1. Footstep Detection Performance

According to our proposed footstep detection algorithm, we can get a footstep sound range.
Our experiment is designed to compare detected footstep sound ranges with labeled footstep ranges.
Here we define an overlap-threshold-rate value which is the ratio of overlap of these two ranges to the
minimum of these two ranges as shown in Equation (9), and the relationship between these related
footstep ranges is shown in Figure 10.

Overlap− threshold− rate =
R3

minimum(R1, R2)
× 100% (9)
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We did experiments to determine the relationship between overlap-threshold-rate value and
footstep detection precision rate, recall rate and F1-measure. The results are shown in Figure 11.
From it we can see that as the overlap-threshold-rate increases, the footstep detection performance is
declining, and as overlap-threshold-rate decreases, the footstep detection performance is improving.
However, if the overlap-threshold-rate goes below 50%, the performance remains the same. This proves
that the detected footstep sound ranges and the labeled footstep ranges have good consistence
and as a whole there is about 50% overlap between these two ranges. Considering that our
objective is to calculate the gait temporal parameters and footstep detection is the first step in
accomplishing our objective, in theory the higher the footstep detection performance gets, the better the
calculation result of gait temporal parameters will be. This is because there are less missing footsteps.
Consequently, in this paper we use 50% as the overlap-threshold-rate value because of its higher
footstep detection performance.Sensors 2016, 16, 2167 13 of 18 
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Therefore, in the footstep detection experiments, if the real overlap rate is more than the
overlap-threshold-rate value, then it’s matched; otherwise, it’s not matched. The results are shown in
Table 4.
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Table 4. Footstep detection results.

Data Collection
Strategy

Correct
Detections

Detection
Errors

Missed
Detections Precision Recall F1-Measure

Sneaker shoe 179 12 3 93.72% 98.35% 0.960
Leather shoe 186 18 1 91.18% 99.47% 0.951
Wood ground 184 12 1 93.88% 99.46% 0.966

Cement ground 181 18 3 90.95% 98.37% 0.945
Load 5 Kg-Yes 184 12 1 93.88% 99.46% 0.966
Load 5 Kg-No 181 18 3 90.95% 98.37% 0.945

Average 365 30 4 92.41% 98.92% 0.955

From them we can see that the average high recall rate (98.92%) and high F1-measure (0.955)
prove that footstep sounds can directly provide the gait information and microphones are beneficial
for wearable sensor gait analysis. This result also can be proved from Figure 11, where even if the
overlap-threshold-rate value equals 90%, the F1-measure of footstep detection is also more than
0.85 (85%). From Table 4, we also see that average precision rate (92.41%) is not very high because
walking audio signal may be affected more or less by some noises such as the wind noise caused by
the foot swinging in the air, friction sounds between clothes and the subject’s moving body and other
environmental noises during forward walking. These noises cause some detection errors (Figure 4
shows some noises occurring during normal walking). In addition, regarding the test result for the
different data collection strategies (variations), the F1-measure shows that the performance is almost
same for each variant. This is because we used all the variation data for training, so our model will
adapt to different variations. On the other hand, this result also proves that our proposed footstep
detection algorithm has good robustness.

4.2.2. Heel-Strike and Toe-on Detection Performance

As shown in Figure 12, for each footstep, the detected heel-strike is indicated by a left red dot
and detected toe-on is indicated by a right red dot. The labeled point of heel-strike and toe-on of each
footstep are described by the left and right pink lines, respectively. In our work, we set three frames
for tolerance error, namely, if the deviation’s absolute value of the detected heel-strike time point from
its true value which was labeled in our database is less than three frames, we determine it’s matched;
if the deviation’s absolute value of the detected toe-on time point from its true value which was labeled
in our database is less than three frames, we determine it’s matched.Sensors 2016, 16, 2167 14 of 18 
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Based on the abovementioned conditions, the experimental results of the two event detection are
shown in Table 5:

Table 5. Heel-strike and toe-on detection result.

Data Collection
Strategy

Total
Footsteps

Heel-Strike Toe-on

Correct Error Accuracy Correct Error Accuracy

Sneaks shoe 179 165 14 92.18% 161 18 89.94%
Leather shoe 186 180 6 96.77% 183 3 98.39%
Wood ground 184 178 6 96.74% 178 6 96.74%

Cement ground 181 167 14 92.27% 166 15 91.71%
Load 5 Kg-Yes 184 174 10 94.57% 174 10 94.57%
Load 5 Kg-No 181 171 10 94.48% 170 11 93.92%

Average 365 345 20 94.52% 344 21 94.25%

From the results shown in Table 5, we can see that the method achieves an average 94.52% accuracy
rate for heel-strike detection and 94.25% accuracy rate for toe-on detection. Regarding the detection
of heel-strikes, the accuracy rate of leather shoes (96.77%), wood ground (96.74%), 5 Kg-load-yes
(94.57%) is a bit bigger than the accuracy rate of sneaker shoes (92.18%), cement ground (92.27%),
5 Kg-load-no (94.48%). Similarly, for the detection of toe-on, the accuracy rate of leather shoes (98.39%),
wood ground (96.74%), 5 Kg-load-yes (94.57%) is a bit bigger than the accuracy rate of sneaker shoes
(89.94%), cement ground (91.71%), 5 Kg-load-no (93.92%). This is because for normal walking the
footstep sound signals of leather shoes, wood ground and 5 Kg-load-yes is a little bigger or clearer
than the footstep sound signals of sneaker shoes, cement ground and 5 Kg-load-no.

4.2.3. Gait Temporal Parameter Estimation

Gait temporal parameters are calculated based on the detection results of heel-strike and toe-on.
The results are shown in Table 6. From the results, we can see that for each subject the left foot
parameters are almost as same as the right foot parameters, which shows the good symmetry between
left root and right root because all the test subjects are healthy. We also can see the average cadence
is 104.15 steps/min, average gait cycle is left 1.164 s and right 1.157 s, average single step time is left
0.574 s and right 0.585 s, average stance initial phase time is left 0.095 s and right 0.100 s, and average
stance initial phase rate is left 8.20% and right 8.64% for whole gait cycle, which is consistent with the
normal gait temporal parameters presented in [24]. This proves the effectiveness of our system and
estimation algorithms.

Table 6. Estimation results of gait temporal parameters.

Test
Subjects

Cadence
(Steps/min)

Left Foot Right Foot

Gait
Cycle (s)

Single Step
Time (s)

Stance
Initial
Phase

Time (s)

Stance
Initial
Phase

Rate (%)

Gait
Cycle (s)

Single Step
Time (s)

Stance
Initial
Phase

Time (s)

Stance
Initial
Phase

Rate (%)

Subject 1 98.64 1.225 0.604 0.097 7.90% 1.222 0.613 0.101 8.25%
Subject 2 101.99 1.197 0.584 0.116 9.70% 1.188 0.604 0.104 8.78%
Subject 3 103.54 1.165 0.572 0.093 8.02% 1.151 0.588 0.107 9.28%
Subject 4 112.46 1.065 0.533 0.075 7.08% 1.069 0.535 0.088 8.24%
Average 104.15 1.164 0.574 0.095 8.20% 1.157 0.585 0.100 8.64%

We also compared our temporal parameter estimation results with labeled data calculation results
(Table 7). From these two tables, we can see the estimation result of average cadence (104.15 steps/min),
average gait cycle (left 1.164 s/right 1.157 s), average single step time (left 0.574 s/right 0.585 s),
average stance initial phase time (left 0.095 s/right 0.100 s) and average stance initial phase rate
(left 8.20%/right 8.64%) are almost perfectly matched with their corresponding labeled data calculated
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results (103.67 min/steps, left 1.161 s/right 1.160 s, left 0.579 s/right 0.583 s, left 0.111 s/right 0.113 s,
left 9.52%/right 9.72%).

Table 7. Labeled data results of gait temporal parameters.

Test
Subjects

Cadence
(Steps/min)

Left Foot Right Foot

Gait
Cycle (s)

Single Step
Time (s)

Stance
Initial
Phase

Time (s)

Stance
Initial
Phase

Rate (%)

Gait
Cycle (s)

Single Step
Time (s)

Stance
Initial
Phase

Time (s)

Stance
Initial
Phase

Rate (%)

Subject 1 98.37 1.225 0.613 0.113 9.22% 1.226 0.606 0.119 9.71%
Subject 2 100.21 1.194 0.598 0.127 10.66% 1.190 0.600 0.121 10.19%
Subject 3 103.62 1.159 0.576 0.104 8.99% 1.153 0.584 0.112 9.69%
Subject 4 112.48 1.063 0.529 0.098 9.19% 1.072 0.542 0.099 9.23%
Average 103.67 1.161 0.579 0.111 9.52% 1.160 0.583 0.113 9.72%

5. Discussion

The main contribution of this study is to provide a new way of using wearable microphone sensors
for the study of gait analysis fields. Concretely, a novel, portable, wireless and wearable gait data
analysis system and a method for gait temporally-related parameter estimation was developed and
proposed in the study. The study results show that footsteps could be identified with high recall rate and
high F1-measure through footstep sound signals in normal walking gait, and two important gait cycle
events (heel-strike and toe-on) in one footstep could also be detected with high accuracy. Based on these
detected results, nine gait-related temporal parameters were calculated. These calculated parameters fit
well with their corresponding normal gait temporal parameters. In addition, the temporal parameters
calculated by our method and those obtained from labeled data calculation results were consistent
enough that our system and algorithm could have big potential for gait analysis. In general, based on
the contributions of this study, researchers in the gait analysis field can have one more choice for
selecting sensors when they measure gait temporal parameters.

In addition, the signals from the microphone sensors on the ankle showed some noises, and this
caused the footstep detection to have not very high precision rates (although it’s more than 90%,
which is still a good result). In this paper, we detected footsteps by using a classification-model-based
method and this can partially reduce the noise effects. Moreover, the system which was proposed in this
paper will be mainly used for flat floors, hard floors and indoor applications with low environmental
noise, so this result can be accepted. If some special application scenarios need very high precision
rates, another sensor (e.g., an inertial sensor) can be considered to form a multimodal-sensor-based
system. In fact, this solution has been considered for our next work.

The limitation of this study is that we only used a single sensor type (microphones) to estimate gait
parameters, and with only single sensor it is hard to measure and estimate more gait parameters such
as foot-flat phase, push phase, spatial parameters, etc. [17,23]. Especially for spatial parameters,
inertial sensors (accelerometers) can measure them by integral computation, but as we know,
inertial sensors have chipset drift problems and integral computation accumulated errors, and this
error is corrected by a zero velocity update. Current detection methods of zero velocity are mainly
determined by temporal parameters, therefore, the fusion of these two types of sensors has big
potential for gait analysis. In further study, we will consider the use of multimodal sensor fusion
for the measurement and estimation of more gait parameters. Despite this limitation, our low-cost,
wireless, portable and wearable system and estimation algorithm were proved to be effective and
valuable to calculate temporal gait parameters.

6. Conclusions

In this article we have proposed a two-foot-ankle worn system which uses microphone sensors
to capture human gait. To our knowledge, this is the first time that microphone sensors have been
used for wearable gait analysis. Based on the system, a study presenting an algorithm was made for
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gait temporal parameters estimation. The algorithm fully uses the footstep sound signal fusion of
both feet and includes three stages: footstep detection, heel-strike event and toe-on event detection,
and gait temporal parameter calculation. Finally, our experimental results show that with 15 healthy
subjects, a total of 240 data sequences and 1732 steps from three different gait data collection strategies,
we can achieve an average 0.955 F1-measure for footstep detection, an average 94.52% accuracy rate for
heel-strike detection and a 94.25% accuracy rate for toe-on detection. By using these detection results,
nine temporally-related gait parameters are calculated and these parameters are consistent enough with
their corresponding normal gait temporal parameters and labeled data calculation results. The results
verify the effectiveness of our proposed system and algorithm for gait temporal parameter estimation
and gait analysis. Thus it can be expected that our wearable system and gait temporal parameter
estimation method will be useful in daily life for health rehabilitation monitoring of abnormal gait
patients at home after leaving the hospital or rehabilitation center, physical exercise evaluation and as
a guide for sports fans, elder fall forecasting, human activity detection, etc.

In future work, we will augment the experiment’s database to include more subjects such as
patients with various problems (stroke, Parkinson’s disease, multiple sclerosis, etc.) for generalization
of our study. We also plan to implement multimodal sensors to reduce the noise effects of footstep
detection and estimation of more gait parameters.
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LPCC Linear Prediction Cepstrum Coefficients
MFCC Mel Frequency Cepstrum Coefficients
SVM Support Vector Machine
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