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Abstract: Sensor inquirers cannot understand comprehensive or accurate observation capability
information because current observation capability modeling does not consider the union of multiple
sensors nor the effect of geospatial environmental features on the observation capability of sensors.
These limitations result in a failure to discover credible sensors or plan for their collaboration
for environmental monitoring. The Geospatial Environmental Observation Capability (GEOC)
is proposed in this study and can be used as an information basis for the reliable discovery
and collaborative planning of multiple environmental sensors. A field-based GEOC (GEOCF)
information representation model is built. Quintuple GEOCF feature components and two GEOCF
operations are formulated based on the geospatial field conceptual framework. The proposed
GEOCF markup language is used to formalize the proposed GEOCF. A prototype system called
GEOCapabilityManager is developed, and a case study is conducted for flood observation in the
lower reaches of the Jinsha River Basin. The applicability of the GEOCF is verified through the
reliable discovery of flood monitoring sensors and planning for the collaboration of these sensors.

Keywords: environment monitoring; Sensor Web; observation capability representation; sensor
discovery and collaboration; flood

1. Introduction

1.1. Discovery of Earth Environmental Sensors under the Sensor Web Environment

The Sensor Web is an emerging paradigm for integrating multiple satellites, in situ sensors,
and data systems into a common infrastructure that enables the interoperable usage of sensor metadata,
data, and data products over the internet [1,2]. The functionality required from such infrastructure
includes sensor discovery, access, tasking, eventing, and alerting [3]. The Sensor Web Enablement
(SWE), developed by the Open Geospatial Consortium (OGC), defines a standard framework to
realize the Sensor Web notion [4]. The Global Earth Observation System of Systems (GEOSS) [5],
which combines the advantages of Sensor Web technology, aims to integrate heterogeneous sensors
and data systems across institutional and political boundaries to continuously monitor the state of the
Earth. Along with the development of geospatial web services [6], distributed geospatial environmental
sensors and their observations have been registered and stored in a geospatial sensor clearinghouse
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using standards-based web service interfaces. The interfaces include sensor observation services and
the Catalog Service for the Web (CSW), which enables the web-based discovery of environmental
sensors [7]. Specifically, when an emergency observation is requested, inquirers can openly and
standardly retrieve a list of environmental sensors through a web-based platform under the Sensor
Web environment.

The Sensor Web mechanism has been widely established across different fields, such as wildfire [8],
atmosphere [9], soil moisture [10], and tsunami [11] studies. Recently, extensive efforts have been
applied to the SWE and GEOSS platforms. For example, the European Sensors Anywhere (SANY) and
Open architecture for Smart and Interoperable networks in Risk management based on In-situ Sensors
(OSIRIS) projects [12,13] used the SWE standard service interface to manage air pollution monitoring by
associating in situ sensors with sensor networks. The Namibia Sensor Web project [14,15] successfully
integrated the National Aeronautics and Space Administration (NASA) Earth Observing-1 (EO-1)
satellite data and other satellite data sets to establish a flood early warning system. The NASA
Sensor Web 2.0 project [16] automatically combined NASA’s Terra, Aqua, and EO-1 satellites with an
Unmanned Aerial System in a wildfire detection scenario. The GEOSS Architecture Implementation
Pilot deployed the GEOSS Common Infrastructure provided core capabilities that enabled sensor web
resources (sensor systems, data, and products) to be registered, discovered, understood, and accessed
by users and decision-makers [17]. GEOSS enables the comprehensive, coordinated, and sustained
observations of the Earth and includes nine societal benefit areas: Agriculture, Biodiversity, Climate,
Disasters, Ecosystems, Energy, Health, Water, and Weather. The Sensor Web technology is a
widely-accepted means for Earth environmental monitoring [3,18,19]. Sensor discovery is the
core functionality of the Sensor Web [20], and the reliable and collaborative discovery of various
environmental sensors is the premise to ensure the authenticity of sensor-observed data and the
follow-up applications for environmental monitoring. However, most applications or projects have
focused on sensor data access, data processing, or product production and delivery after the given
sensors have been web-based tied together. The source of those sensors often did not undergo the
discovery process from the sensor clearinghouse. In most cases, the mode to select those sensors was
the “setting” mode provided by the project requirements, instead of the on-demand “discovery” mode
matched from the sensor clearinghouse. Liang et al. [21] noted that the sensor discovery on the Sensor
Web remains a challenge and stated that the full potential of the Sensor Web has not yet been realized.
In this context, this work focuses on the reliable and integrated discovery of environmental sensors.

1.2. Representation of Observation Capability Information

Considerable attention has been directed toward representing the observation capabilities of
environmental sensors. The quantitative representation of observation capability concentrates on
the following aspects: spatial coverage [22], revisit time [23], and a specific satellite observation
task [24]. However, studies on quantitative observation capability representation are typically attached
to different observation missions. Namely, one numerical observation capability value for a distinct
application usage cannot be transferred to other observation missions. In addition, a quantitative
observation capability value does not contain the rich observation information that is required
for decision-making when using a collaboration of multiple environmental sensors. Since 2007,
the representation of the observation capability from the information modeling viewpoint has been
regarded as the core research objective of the SWE [10,25–27]. The SWE defines a standard framework
that aims to enable the interoperable use of sensors [3]. The Sensor Model Language (SensorML) is part
of the SWE framework information model. Hu et al. [25] established a SensorML-based observation
capability metadata model for Earth observation sensor discovery. Fan et al. [10] further proposed a
sensor capability representation model for remote sensors that are used for soil moisture monitoring.
The above studies proposed capability representation models that adopted SensorML as the description
carrier and focused primarily on the static and inherent observation capability properties of a single
sensor. Although the static and inherent observation capability properties of a single sensor have been
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determined [25], a representation model that considers the integration of multiple sensor observation
capabilities is still lacking. This limitation has resulted in a failure to plan for the collaboration of these
sensors for environmental monitoring.

1.3. Representation Requirements of Geospatial Environmental Observation Capability Information

In addition to supplementing new observation equipment, fully utilizing existing sensors is
key to improving the observation of the global earth environment. Thus, a more integrated and
systematic understanding of the capabilities of earth observation sensors is essential [17,28]. Owing to
the diversity and complexity of environmental disasters, collaborative observations from multiple
sensors for environmental monitoring is necessary [29]. The capability of integrated observations
generated via the union of multiple sensors should be determined. After the union of two or more
sensors, the new compounded capability of observations should explicitly present the association of
the capabilities of the independent sensors.

Every sensor is deployed in a practical geospatial environment; thus, its observation efficiency
is affected by geospatial environmental features (e.g., illumination, cloud coverage, and terrain).
The current sensor observation information models do not consider the influence of geospatial
environmental features [25]. In ideal weather conditions, the Moderate Resolution Imaging
Spectroradiometer (MODIS) aboard the Terra satellite crosses the monitoring area at the specified
time and can theoretically complete the task of observing the target phenomenon. However, the local
environment can be covered by clouds when the satellite passes. In this case, the sensor (MODIS) is
unreliable for the specified observation task. Geospatial environmental features are essential factors
that can constrain the observation capability of satellite sensors.

In geographic information science, the geospatial environment is a large-scale space that may be
represented by different data models from different perspectives [30]. Under the conceptual framework
of a geospatial data model, identifiable objects, such as mountains and land parcels, can be represented
using an object model, whereas continuous and amorphous phenomena can be demonstrated using a
field model. Theoretically, a geospatial field can be viewed as a mapping between a locational reference
frame and an attribute domain [31,32]. A formal field model has been expressed by Goodchild [33] as
<x, z(x)>, where x is one point of a continuous location, and z(x) is the value of property Z at point x.
Numerous geospatial entities (e.g., points, lines, polygons, and grid cells) have been represented in
object-oriented models [34], but many geospatial environmental features, such as digital elevation
models [35], temperature [36], and wind [37], have also been modeled from the field perspective.
Compared with an object model, a field model is a more basic model representing geographical
phenomena that facilitates the objective cognition of geographical phenomena [31].

In this study, we propose a Field-based Geospatial Environmental Observation Capability
(GEOCF) information representation model that considers the observation capability information of the
environmental sensors to be the source and the features (e.g., cloud and topography) of a geographical
observation environment to be the constraints. The proposed GEOCF information representation
model is applied to determine the accurate discovery and efficient planning of flood sensors in the
Jinsha River Basin. The remainder of this paper is organized as follows: Section 2 elaborates on the
GEOCF information representation model. Section 3 presents the application and results. Section 4 lists
the characteristics of the GEOCF information representation model based on the discussion. Section 5
presents the conclusions and the directions for future work.

2. Representation Model of Geospatial Environmental Observation Capability Information

2.1. Space Abstraction in the Model

Observation capability information can be represented from two perspectives: a discrete sensor
object and a continuous spatial field. The observation capability of a discrete sensor object is confined
to a single sensor's static and inherent observation properties, whereas continuous spatial observation
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capability information provides the dynamic observation capability information from a combination
of multiple sensors.

Selecting the appropriate geospatial modeling perspective is important in understanding
geographical phenomena [32]. The geospatial field modeling concept originates from classical physics
and is used to represent continuous and amorphous phenomena whose magnitudes are dependent on
their spatial locations [38]. A continuous field must be partitioned into a finite number of discrete pieces
to accommodate the finite computing environment [34]. Three spatial tessellations (regular, irregular,
and hybrid) are the most common means for representing field-based models.

In the future, nearly every area on Earth’s surface will be observed by some physical or virtual
sensors [39–41]. Furthermore, every section of the Earth’s surface has a potential observation request
in response to a certain observation mission. Notably, the requested spatial units of an observation can
be any granularity of the abovementioned three spatial tessellations and can be composed of multiple
granularities of the three spatial tessellations (Figure 1). Figure 1a shows observation-requested
spatial units, consisting of a set of regular spatial tessellations. Figure 1b illustrates requested spatial
units, including a set of irregular spatial tessellations. The complex situation shown in Figure 1c
represents spatial units composed of five hybrid spatial tessellations, where A and B are irregular
tessellations and C, D, E, and F are regular tessellations. Thus, in this study, geospatial environment
observation capability information varies geographically in real time, and scalar-based observation
capability properties continuously surround all types of spatial units. This perspective coincides with
the geospatial field modeling concept that every location in a spatial framework is associated with a
set of attributes that are measured on a variety of scales.
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2.2. Framework of GEOCF

Our living geospatial environment will be composed of ubiquitous Sensor Webs in which trillions
of remote sensing and in situ sensors can be networked to create an integrated environmental
monitoring system [39,40]. Specifically, in any geospatial unit, two components exist, namely,
the sensors and geospatial environmental features. Based on geospatial field theory [41], the proposed
GEOCF consists of a series of subfields (Fi (0 < i < n)) that can be expressed as Equation (1):

GEOCF = {F1, ..., Fm, ..., Fj, ..., Fn} (1)

Figure 2 illustrates the framework of the GEOCF model in the Unified Modeling Language (UML),
which includes associations, compositions, and specializations. Each Fi instance encapsulates two
basic elements: field function and field operations.
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As shown in Equation (2), the GEOCF can be viewed as a mapping between a geospatial
framework and an observation capability domain. The formal GEOCF function can be expressed
as C = f(Lon, Lat, T), where (1) Lon and Lat are every location coordinate of the continuous spatial
framework; and (2) at time instant or time period T, every location in a spatial framework is associated
with a set of observation capability features measured by the sets C1 to Cn:

Fi: Geospatial Framework (Lon, Lat)→ Observation Capability Domain (C1, C2, . . . , Cn) (2)

Each sensor establishes its sensor observation capability information field (abbreviated as FS).
Due to the diversity and variety of environmental sensors [42], including numerous in situ sensors
(i.e., rain gauges, water level gauges, and barometers) and the more than one thousand remote sensing
sensors (i.e., Terra-MODIS, EO-1-ALI, and ENVISAT-SAR), the FS can be further represented as a
set, namely {FS1, FS2, . . . , FSi, . . . , FSn}. Each FSi can be viewed as the specialized subfield of Fi.
The feature components of FSi can be extracted from the SensorML observation capability information
representation model explained in our previous work [25], including the swath range, bandwidth
ranges, and the revisit time of the sensor. The geospatial environmental features that will affect the
efficiency of the sensor observation capability can form the geospatial environmental feature field
(abbreviated as FE). The abstract FE is assembled from a series of subfields, such as illumination,
cloudiness, and terrain fields. Namely, the FE can be represented as a set of geospatial environmental
feature subfields {FE1, FE2, . . . , FEi, . . . , FEn}.

In the proposed GEOCF, each Fi can be specialized into a field type (FS or FE). The field operations
include union (+) and composition (#). As shown in Equation (3), if the concrete Fi and Fj are two
different sensor observation capability information fields (FSi and FSj), then the supported operation
between FSi and FSj is a union:

FSi + FSj: (Lon, Lat)→ FSi (Lon, Lat) + FSj (Lon, Lat) (3)

If the concrete Fi belongs to FE, and the concrete Fj belongs to FS, the allowed operation between
one instantiated field of FS (FSi) and one instantiated field of FE (FEj) is a composition (Equation (4)),
which means that the practical geospatial environmental feature field FEj will affect the observation
capability radiated by a certain FSi (herein, FEj and FSi have the same geographical location):

FSi # FEj: (Lon, Lat)→ FSi (FEj (Lon, Lat)) (4)
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Notably, the composition operation between two geospatial environmental feature subfields
(FEi # FEj) has no meaning because the proposed GEOCF views FS as the original and necessary factor,
whereas all components of FE simply play a constraining role in the observation efficiency of FS.

2.3. Feature Components of GEOCF Information Representation Model

In actual situations, when an environmental disaster strikes in a specific geospatial unit,
the availability of a sensor for the observation of this disaster is determined by: (1) time-variant,
space-variant, and efficiency-variant dynamic observation capability features; and (2) sensor-inherent
static observation capability features. The proposed GEOCF information representation model
contains both types of observation capability features to fully meet the needs for sensor
discovery and collaboration. With regard to sensor-inherent static observation capability features,
our previous work [25] analyzed the observation capability metadata requirements for sharing Earth
observation sensors and defined the metadata sets as a five-tuple composition: {ObservationBreadth,
ObservationDepth, ObservationFrequency, ObservationQuality, ObservationData}. The GEOCF integrates
multiple environmental sensors and considers the actual geospatial environmental features in the
model. For every geospatial unit that requires observation, a real-time GEOCF is generated through
a union of observation capabilities (sensor with sensor) and composition (geospatial environmental
features to sensor) operations.

In this section, the feature components of the proposed GEOCF information representation model
are identified. Figure 3 shows a virtual reality scene of the GEOCF.
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Figure 3. GEOCF virtual scene for environmental sensor discovery and collaboration. In the given
grid cell-based geospatial observation unit (marked in red), the discovered sensors include GF1-WFV,
a hygrometer, and a rain gauge; the solar elevation angle is nearly vertical, and the cloud coverage
is high.

The included feature components can be interpreted as follows (Table 1).

(1) GEOCF_Temporal: This feature dimension identifies the period when a certain environmental
disaster occurs, and sensor observation planning decisions are needed. The features
regarded as GEOCF_Temporal features include EachValidObserveTime, RepeatObserveTime,
OverallRSObserveTime, and RSObserveTimePercent.

(2) GEOCF_Spatial: This feature dimension refers to the spaces where an environmental disaster occurs
and may include a valid, repeatedly observed, or blind observation location. Therefore, GEOCF_Spatial
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features include EachValidObserveLocations, BlindObservationLocation, RepeatObserveLocations,
SensorsObserveCoverageInterlinkedLocations, and ValidObserveLocationPercent.

(3) GEOCF_Thematic: This feature dimension presents the intended applications of the available
environmental sensors, including OverallObserveParameters, EachSensorObserveParameters,
ParametersInRepeatObservationLocations, and ParametersInInterlinkedObserveCoverageLocations.

(4) GEOCF_Quality: This feature dimension is used to quantitatively and qualitatively illustrate
the observation quality of the sensors, which may be affected by the geospatial
environmental features in a specific geospatial unit. The features of this dimension include
ObserveQualityByQuantitativeEstimation, ObserveQualityByQualitativeGrade, and ObserveQualityBy
QualitativeDescription.

(5) GEOCF_LinkingReference: In addition to the dynamic observation capability features, the features
of sensor-inherent static observation capabilities should be included, such as SwathRange,
BandsCategory, BandCharacteristics, and NadirResolution. These features are linked from our
previous representation model of Earth observation sensor static observation capability
information [11].

Table 1. Feature components of the GEOCF in different field modes.

The Entire GEOCF Features Info

Feature Components of GEOCF Information Representation Model GEOCF Modes

Feature Dimensions Basic GEOCF Feature Components Complementary Enhanced Single

Temporal

EachSensorValidObserveTime
√ √ √

RepeatObserveTime
√ √

×
OverallRSObserveTime

√ √ √

RSObserveTimePercent
√ √ √

Spatial

EachSensorValidObserveLocations
√ √ √

BlindObservationLocation
√ √ √

LocationsWithRepeatObservation
√ √

×
SensorsObserveCoverageInterlinkedLocations

√
× ×

OverallObserveLocations
√ √ √

ObserveLocationPercent
√ √ √

Thematic

OverallObserveParameters
√ √ √

EachSensorObserveParameters
√ √ √

ParametersInRepeatObservationLocations
√ √

×
ParametersInInterlinkedObserveCoverageLocations

√
× ×

Quality

SpecificObservationLocation
√ √ √ObserveQualityByQuantitativeEstimation

ObserveQualityByQualitativeGrade
ObserveQualityByQualitativeDescription

LinkingReference LinkToSensorInherentCap
√ √ √

The GEOCF is classified into three modes, namely, complementary, enhanced, and single,
because different observation efficiencies will be produced when multiple sensors are combined.
The efficiency of observation combination between the FSi and FSj can contain both complementary
and enhanced modes. The complementary mode means that the observation performance of each
FSi in spatial and thematic applications complements one another. The enhanced mode is used to
represent the scenario in which different sensors cover the same observation location and have the
same observation parameter during a certain observation period. Thus, the enhanced mode refers
to the FSi that enhances the observation efficiency of FSj in the same observation parameters in one
overlapped observation area. The single GEOCF mode means that only one sensor is available
for the environmental observation event in a specific geospatial location during the requested
observation period. As presented in Table 1, different GEOCF modes have different feature components.
The complementary GEOCF mode contains all the basic feature components. The enhanced
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GEOCF does not necessarily contain the exclusive features of the complementary GEOCF mode,
such as SensorObserveCoverageInterlinkedLocations and ParametersinInterlinkedObserveCoverageLocations.
Unlike the enhanced mode, the single GEOCF mode does not have the RepeatObserveTime,
LocationsWithRepeatObservation, and ParametersInRepeatObservation features.

The most common geospatial field types are scalar, vector, and tensor. The proposed GEOCF is a
scalar field, in which every location is assigned a scalar value from a property domain. The solution
offered in the current study for the involved scalar data type is to avoid recreating the bottom data
model wherever possible, but referring to the existing data models, such as Geography Markup
Language 3.2, SWE Common Data Model 2.0, and SensorML 2.0. Figure 4 shows the GEOCF
feature components and their data types, as well as the constraint conditions, as defined in UML.
The corresponding markup language schema used to represent the GEOCF is provided at reference [43].
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2.4. Operation Workflows of the GEOCF Information Representation Model

The workflow of the two operations (i.e., union and composition) is illustrated in this section.
The workflow is composed of the operation input, middle processes, and output. Figure 5 shows
the workflow of the union operation among different observation capability information fields (FSs)
from multiple sensors. The inputs of the operation are a series of environmental sensors encapsulated
in static sensor observation capability information representation model [44], to form a series of FSs.
In the execution of the FSi + FSj operation, the spatial observation coverage of the sensors should first
be determined before the cases are assessed as follows:

(1) If the spatial observation coverage of sensor i does not have any correlation with the observation
coverage of the other sensors during the given requested period, then sensor i will be classified
as the observation capability source in the single GEOCF mode.

(2) If the spatial observation coverage of sensor i bears a spatial relationship with the other sensor j,
such as the intersection or overlay, the value for the “Sensor_designed_applications” property of
sensor i and sensor j should be determined (which can be extracted from the SensorML-based
static sensor observation capability information representation model). If the sensors have the
same value set, Same_ObservP {Pk|Pk ∈ FSi, Pk ∈ FSj}, we deem that in their intersected or
overlapped observation areas, sensor i and sensor j can be combined for an enhanced GEOCF
mode in the observation parameters of Same_ObservP.

(3) For the different value set, Diff_ObservP {Pk,Ph|Pk ∈ FSi, Ph ∈ FSj }, sensor i and sensor j are
classified as a combination of a complementary GEOCF mode in the observation themes of
Diff_ObservP.
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(4) In a special case, in which the spatial observation coverage of sensor i is spatially adjacent to that
of sensor j, then sensor i and sensor j can be categorized into the complementary GEOCF mode.Sensors 2016, 16, 2144 9 of 24 
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In accordance with the workflows used to identify the different GEOCF modes and following the
observation capability feature components of the different GEOCF modes given in Table 1, we can
determine the corresponding feature component values of the entire GEOCF.

Compared with remote sensing satellite sensors that cannot be launched by an ordinary person or
requester, in situ sensors can be relatively easily deployed and flexibly configured by the individual
with the adjustment demand. Usually, deployers would not place in situ sensors in a geospatial
environment where their observation efficiency will be obviously constrained. From the microscopic
perspective, if a constraint exists, the deployer could configure additional in situ sensors on demand to
as much as possible compensate for the observation efficiency of a single in situ sensor constrained by
the local geospatial environment. Unlike in situ sensors, satellite sensors are used to observe an object
and obtain information from a great distance by detecting the radiant energy reflected or emitted by
the object. For passive satellite sensors, stereoscopic space, which consists of topography, cloudiness,
and the sun, affects the radiation transmitted from the ground to the sensor when observing the
Earth. Topography is the main factor that affects radiation for active satellite sensors. With the above
analysis, our current study focuses on the observation effect of remote sensing satellite sensors by the
geospatial environmental conditions. The concrete instantiations of FE are illumination, cloudiness,
and terrain fields. The FS sensor types are passive optical and active synthetic aperture radar (SAR)
satellite sensors.

Figure 6 demonstrates the workflow of the FSi # FEj operation. A specific location is first
selected, and the observation quality herein must be measured for the applicability estimation of
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the discovered sensor. Then, according to the FS sensory types, the observation efficiencies of
the optical satellite sensors are affected by the geospatial environmental features (e.g., cloudiness
grade, which can be read from the cloud field; solar elevation from the illumination field;
and hill shade from the terrain field); and the observation efficiencies of the SAR sensors
are affected by the slope and aspect, which can be read from the terrain field. The final
observation quality is represented by three features: ObserveQualityByQuantitativeEstimation,
ObserveQualityByQualitativeGrade, and ObserveQualityByQualitativeDescription. Equation (5) referenced
from the existing observation imagery affect model [45] exemplifies the calculation function of the
ObserveQualityByQuantitativeEstimation value of the passive optical satellite sensors:

Ir = (Id × dx + Is)(1 − CC/10)2 (5)

where Ir is the ObserveQualityByQuantitativeEstimation value; Id represents the theoretical energy
estimation that the ground has received from the direct solar radiation; Is represents the real
energy estimation that the ground has received from the solar diffuse radiation, which is affected
by the solar zenith angle and atmospheric transparency; dx is the terrain factor; and CC is
a cloud-level value ranging from 0 to 10. The ObserveQualityByQualitativeGrade is a qualitative
indicator used to describe the grade of observation quality affected by the geospatial environmental
factors, which will be divided according to the ObserveQualityByQuantitativeEstimation values.
The ObserveQualityByQualitativeDescription feature is used to illustrate the corresponding relationship
between the quantitative estimation value and the qualitative grade by a text description.
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3. Sensor Discovery and Planning Experiment of Flood Observation in the Jinsha River Basin

3.1. Flood Observation of the Jinsha River Basin

3.1.1. Flood Observation Requirement

The Jinsha River Basin is located in the upper reaches of the Yangtze River and has a total length
of 3464 km [46]. The annual precipitation in the basin exceeds 1600–2000 mm. The Jinsha River
Basin can be divided into upper, middle, and lower sections. As shown in Figure 7, the lower section
(latitude: 24◦59′26′ ′ N–29◦37′16′ ′ N, longitude: 99◦47′48′ ′ E–104◦33′42′ ′ E) begins in Panzhihua City
and ends in Yibin City. The basin has a length of 733.4 km and a watershed area of 135,473 km2.
The terrain is highly elevated in the west and low in the east, creating a ladder-level distribution.
The runoff from the Jinsha River Basin is flushed from north to south, and the lower section is the most
vulnerable to flooding because of heavy rainfall in the upper section. The flow of the basin is variable
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and exhibits a seasonal behavior. The flow is low during winter months, and the peak flow occurs in
May and October.Sensors 2016, 16, 2144 11 of 24 
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3.1.2. Existing Sensor Resources

As drawn from the Committee on Earth Observation Satellites (CEOS) system database [47],
137 satellite sensors are currently supporting flood observation. In the lower reaches of the Jinsha
River Basin, more than 100 in situ hydrology, meteorology, and soil monitoring sensors have been
deployed (Table 2). The current study has constructed the SensorML-based static observation capability
information representation models of more than 200 sensors based on our previous SensorML modeling
method [48]. Through the CSW interface, these sensors have been registered and published in the
flood sensor clearinghouse of the Jinsha River Basin to be the sensor library used in this case.

Table 2. List of the hydrometeorological stations in the lower reaches of the Jinsha River Basin used in
this study.

Station ID Station Name Longitude (◦ E) Latitude (◦ N) Observe Parameters Administrative Department

60405250 DeZe 103.598889 25.993333 Water Quality Yunnan Provincial Hydrology Bureau
60407110 HengJiangQiao 104.411585 28.613476 Evaporation South Central Survey and Design Institute
60426800 QingNian 103.015833 25.203889 Reservoir silt Yunnan Provincial Hydrology Bureau
60102525 WuDongDe 102.622822 26.299007 Flow, flow rate Changjiang Water Resources Commission
60224950 LiuDe 101.0063889 26.484444 Rainfall Yunnan Provincial Hydrology Bureau

. . . . . .

3.2. Realistic Problem before Using the GEOCF as the Information Foundation

The targeted monitoring space (Jinsha River Basin) is a wide area, and flood forecasting models
and observation themes often involve more than one observation parameter. In addition, the candidate
sensors in the area have been deployed and managed by different administrative departments.
Resultantly, one person cannot determine which sensors can collaboratively meet the observation
request. In the event of future flood observations, questions such as “how can we comprehensively
plan suitable sensors for this task?” and “can sensor A and sensor B enable an enhanced effect in the
observation of theme I?” must be answered. Because of the mutually independent SensorML-described
observation capability information, the sensor discovery and planning decision-makers face a tedious
and time-consuming process of exploring the associated observation capability properties from a
massive amount of SensorML-based observation information models to determine which sensor
combination is the most rational solution. That is, by using the previous SensorML observation
information model and OGC SWE-based sensor query systems, decision-makers will obtain a list of



Sensors 2016, 16, 2144 12 of 24

matched sensors in the specified observation mission. However, decision-makers cannot grasp the
correlated observation capability information. Thus, decision-makers will not know how to use those
sensors for collaboration effectively.

To select the sensors or combination of sensors that can most effectively meet the complex
flood observation request, decision-makers must acquire reliable and comprehensive observation
capability information. Therefore, the realistic significance of this work is that the proposed GEOCF
can help the sensor inquirer answer questions such as “how can we combine these sensors in their
suitable observation time and space to maximally meet the given observation mission?” “what is the
union observation efficiency between sensor A and sensor B?”, and “how much of the observation
influence of the MODIS sensor equipped on the AURA satellite is affected by the local geospatial
environment features?”

3.3. Flood Sensor Discovery and Planning in GEOCapabilityManager

From a software developing perspective, performance engineering [49] is a discipline
that attempts to integrate concerns about the feasibility, availability, and security of software
applications and their satisfaction degree into user requirements of the real application. A prototype
system, GEOCapabilityManager, is designed to implement the related observation experiment.
The performance metrics used to measure the efficiency of the proposed GEOCapabilityManager
are important. The GEOCapabilityManager of the current stage supports the modeling of the
integrated and dynamic observation capability information and planning the matched multiple sensors
for monitoring because our study focuses on representing the GEOCF features. Some important
quantitative performance metrics, such as the responsiveness of the GEOCapabilityManager, the
accuracy of the GEOCF application and the satisfaction degree of the planning decision, will be
considered in the later stage of the GEOCapabilityManager development.

The procedure for flood sensor discovery and planning in the GEOCapabilityManager system
is shown in Figure 8, which includes two phases: preliminary sensor discovery and further
sensor selection.
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In Phase 1, the sensor inquirer should first identify the basic observation query criteria, including
the sensor discovery-required time, space, and thematic factors for the actual flood observation task.
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Then, the targeted sensors will be preliminarily matched from the flood sensor clearinghouse according
to the given observation query requirements. The sensor list from this phase is composed of multiple
sensors that are not correlated to one another. Phase 2 involves executing the core functions of our
developed GEOCapabilityManager system, including (1) the union operation among the matched
sensors; and (2) the composition operation between the geospatial environmental feature and the sensor.
The composition operation will be triggered if the sensor inquirer determines whether or to what extent
the sensor observation quality is affected by the local geospatial environmental features. After these
two operations, the value of the GEOCF feature components can be identified. In the last visualization
stage, the GEOCF information, including the correlated observation capability information of these
matched sensors and the observation quality information affected by the geospatial environmental
features, will be explicitly represented in GEOCFML description language. Sensor inquirers can
map the real dynamic query constraints criteria to the GEOCFML-described information model,
and generate the sensor observation planning program marked as “Observation solution 2” in which
we can obtain the associated sensor relationship and sensor observation quality information, more so
than the “Observation solution 1” (marked in Figure 8), which only returns a list of available sensors.

3.3.1. Basic Flood Observation Query

Flood monitoring is a complex process comprising several stages [46]. Every stage has a set of
diverse and complex flood forecasting models. Regardless of how complex the observation scenario is,
it can be decomposed into sub-observation segments; regardless of how integrated the flood forecasting
model is, it can be assigned to some specific observation parameters. The observation query entrance
of our developed GEOCapabilityManager system applies the Pareto principle (also known as the
80:20 rule) and aims to describe most observation requirements with the least complexity. Intentionally,
it does not support every detail of an observation requirement but concentrates on the common
features shared by a wide range of sensor inquirers. That is, although different decision-makers
have different observation query requirements, we only use the basic input of the observation
task as the observation query requirements, including the sensor discovery-required time, space,
and thematic factors. Therefore, in this actual flood observation application, we set the query
mission where the observation time, space, and thematic requirements are as follows (Figure 9):
start time is 2015-05-19T14:00:00; end time is 2015-05-19T14:40:00; spatial unit (the lower reaches of
the Jinsha River Basin) is between 24.938◦ N and 29.617◦ N and between 99.783◦ E and 105.55◦ E;
and required observation parameters are water level, rainfall, silt, water surface, water storage capacity,
and multipurpose imagery (land).
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Figure 10 shows the result of the search request. From the current sensor library,
six qualified environmental sensors, namely, MODIS-AURA, AEISS-KOMPSAT 3A, Rainfall-JiuZihai,
WaterLev-DaHuiZhuang, Rainfall-LiuDe, and Rainfall & Silt-HuangGeShu, are targeted. These sensors
are tagged with serial numbers.Sensors 2016, 16, 2144 14 of 24 
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3.3.2. Considering Multi-Sensors’ Union

The “sensor↔ sensor union” and “geospatial environmental features→ sensor composition”
operations should be executed to construct the proposed GEOCF. Following the workflow of
the union operation described in Section 2.4, two satellite sensors, namely, MODIS-AURA and
AEISS-KOMPSAT 3A, are selected to verify the GEOCF modeling in the temporal, spatial, and thematic
dimensions. In this union experiment (Figure 11), the existing SensorML-based sensor static
observation capability information representation models serve as bases to formulate a series of
FSs from where the feature components (e.g., inherent satellite sensor ID, sensor associated platform,
sensor measure type, and field of view) can be extracted to calculate the dynamic satellite orbit and
observation coverage of the satellite sensors. Then, the intersection of the sensors’ observation
coverages can be determined. Whether two sensors have the same observation parameters in
the intersection observation location should be determined by further extracting the value of
“Sensor_designed_applications” from the FSs. As shown in Figure 11, the regional GEOCF results
from the union operation between MODIS-AURA and AIESS-KOMPSAT 3A exhibit some dynamic
observation capability information, such as: the overlapping observation coverage (filled in red)
between MODIS-AURA and AIESS-KOMPSAT 3A is 10.974% of the observation-requested spatial
extent, and three observation parameters can be completed in the overlapping observation coverage.
The two sensors, AURA_MODIS in time period (2015-05-19T14:28:16Z, 2015-05-19T14:29:16Z) and
KOMPSAT-3A_AEISS in time period (15-05-19T14:02:30Z, 2015-05-19T14:03:15Z), have the same
observation parameter in “Water storage capacity” in the overlapping observation coverage which
is surrounded by eight observation points (105.55◦ E, 29.617◦ N), (105.55◦ E, 24.983◦ N), (105.35857◦

E, 24.983◦ N), (105.23668◦ E, 25.47171◦ N), (104.99878◦ E, 26.41133◦ N), (104.75719◦ E, 27.35069◦ N),
(104.51174◦ E, 28.28979◦ N) and (104.15718◦ E, 29.617◦ N). The two sensors can formulate an enhanced
observation efficiency of “Water storage capacity” and a complementary efficiency in “Water Surface”
and “Multi-purpose imagery (land)”, which clearly shows the associated observation efficiency
of two independent sensors. The inherent observation capability information of the two sensors
can also be viewed via the hyperlinks in the SensorML-based observation capability information
representation model.
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observation coverage (filled in red) between MODIS-AURA and AIESS-KOMPSAT 3A.

3.3.3. Considering the Effect of Geospatial Environmental Feature Factors

In the composition operation experiment, an observation area should be first selected where the
sensor observation quality will be evaluated. As shown in Figure 12, a specified observation area
(marked in yellow) is selected from the overlapping observation coverage of two satellite sensors. Then,
the environmental feature factors are manually input. The first environmental feature is the terrain
factor, which can be solved using the hill shade analysis function of the ArcGIS tool. The second feature
is cloud coverage grade, which can be read from the Open Weather Map website [50]. The third feature
is atmospheric transparency, which is obtained using an on-site atmospheric transmission instrument.
The fourth feature is the solar elevation angle, which is the angle between a line from the sun to the
imaging point of the Earth’s surface and the local horizontal plane. The corresponding values of the
four environmental features are presented in Figure 12. The two discovered satellite sensors are optical
sensors; thus, we comply with the workflow to solve the effect of geospatial environmental features
on the observation efficiency of the two optical satellite sensors. The quantitative observation quality
estimation result is shown in Figure 12.
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3.3.4. Entire GEOCF Represented in a Uniform Information Model

The visualization module of the GEOCapabilityManager can facilitate (1) the browsing of the
regional GEOCF feature components generated after the union of certain sensors (Figure 11) and the
composition effect of the geospatial environmental features on the sensors (Figure 12); and (2) the
viewing of the entire GEOCF feature components (Figure 13), which comprehensively consider all
the retrieved environmental sensors and the environment feature factors. For example, Figure 13
shows the relationships of observation capabilities of multiple sensors with the use of a table,
from which the following can be identified: (1) In the observation area (ID_RepeatObservIDL1),
the union of sensor i (ID_LiuDe_RainfallWaterLevSen) and sensor j (ID_AURA_MODIS) allows for
a complementary observation of parameters such as “Rainfall”, “Water Level”, “Water Surface”,
“Multi-purpose Imagery (land)”, and “Water storage capacity”; (2) In the overlapping observation
spatial area (ID_RepeatObservIDL2), the union of sensor i (ID_AURA_MODIS) and sensor j
(ID_KOMPSAT-3A_AEISS) allows for an enhanced observation of the “water storage capacity”
parameter; (3) In the selected observation location (ID_ObservQualityL1), the composition of the
two satellite sensors and the geospatial environmental features demonstrate that the geospatial
environmental features influence the observation efficiency of the satellite sensors at a quantitative
observation quality estimation value of 0.3650119465091204. This value indicates that the effect
grade of the specified region affected by geographical factors is II. (There are three grades overall;
the higher the grade is, the greater the effect of the geospatial environment is on the specified sensor
observation capability).

We use the GEOCF markup language to formalize the GEOCF. Figure 14 shows a segment of the
solved GEOCF information representation model instance. The complete record of the instance can be
viewed at reference [51]. In conclusion, the integrated observation capability information of all the
sensors in a specific observation-needed geospatial environment can be obtained from the constructed
GEOCF information representation model.
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4. Discussion

4.1. Comparison to the SWE Sensor Observation Capability Information Model

Past SWE SensorML-based observation capability information representation starts from the
perspective of a sensor or sensor system object. The observation capability properties of each object
are formalized into an information representation model. Specifically, 100 sensor systems have
100 sensor observation capability information representation models. No description of the association
of observation capability among those sensors is available. The proposed GEOCF is regarded as a
mapping between geospatial locations and observation capability features. It links the sensors located
in a specific observation space and considers the influence of real-time geospatial environmental
features on sensor observation capability. Our GEOCF can be formalized by the GEOCF markup
language (GEOCFML); the GEOCFML-based observation capability information can be easily read and
archived by an inquirer on demand. Unlike the previous SensorML-based information representation
model, which only records single-sensor static observation capability information and disregards the
constraints from geospatial environmental features, the GEOCFML-based information representation
model records the associated observation capabilities of multiple sensors and the dynamic observation
quality impacted by the local geospatial environmental conditions.

Using six qualified sensors displayed in Figure 10 as examples, before executing the proposed
field operations (union and composition) illustrated in Sections 3.3.2 and 3.3.3, those sensors are only
discrete objects, and the correlation among them is unknown. The planning process of environmental
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sensor collaboration requires integrated and dynamic observation capability information in different
dimensions including temporal, spatial, thematic, and observation quality, all of which have
been covered in our proposed GEOCF. As seen from the given instance [51], we can obtain the
observation association from different sensors and the quantitative observation quality estimation of
AURA_MODIS affected by the geospatial environmental conditions.

Every section of the Earth’s surface is a potential geospatial unit that requires observation,
which can be any granularity of the spatial tessellations described in Figure 1. From the observation
capability cognitive perspective, the GEOCF provides an important index for comprehensively
understanding the objective, dynamic, and real-time associated observation capability information of
any space requiring observation in the geospatial environment. By contrast, SensorML-based sensor
observation capability information provides an understanding of the inherent and static observational
nature of one sensor.

In conclusion, the GEOCF information representation model is an extension of the SWE
SensorML-based sensor observation capability information model. This model is a logical and
integrated observation capability information model that can record the associated observation
capability information among multiple sensors and estimate sensor observation quality affected
by geospatial environmental factors. It can play a major role in observation capability sharing and
assist in the integrated management of the available flood observation sensors.

4.2. Comparison with Existing Sensor Discovery and Planning Systems

Although various systems or tools can be used for sensor discovery or planning, they are
characterized by low reliability and fails to support environmental sensor collaboration. Table 3
shows the characteristics of our proposed GEOCapabilityManager in comparison with eight sensor
management tools or systems from different aspects. The NASA Global Change Master Directory
retrieval portal [52] and other public search engine sites (such as Google and Yahoo) are used to search
for sensors. The ambiguous mode of entering “free text” and “filter list” as query criteria is adopted.
The Remote Sensing Planning Tool [53] provides a simulation of the dynamic trajectories of satellite
sensors but can only be used for the planning of satellite sensors. The CEOS database [54] and the
World Meteorological Organization observing systems capability analysis and review tool [55] provide
statistics on in-orbit satellite sensors and demonstrate their static capability to assist sensor inquirers.
Geosensor [56] is a Web-based sensor system that relies on the 52◦ North open source package [57] to
facilitate environmental observation planning and access. The Sensor Instance Registry [58] is a Web
service interface for managing the metadata and status information of sensors, allowing for a sensor
inquirer to search for sensor instances based on static observation capability metadata. These systems
establish the general information or static observation capability information representation model
from an object of a single sensor. Different systems have different representation models. Furthermore,
sensor schedule reliability cannot be guaranteed because the existing sensor information representation
models do not consider geospatial environmental features as influencing factors of sensor observation
capability. However, our GEOCapabilityManager can support the evaluation of observation quality
influenced by geospatial environment features (Figure 12).
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Table 3. Comparison between existing sensor management systems and GEOCapabilityManager.

Aspects
Tools or Systems for Sensor Planning and Discovering Management

GCMD Google/Yahoo RESPT WMO/CEOS Geosensor SIR GEOCapability
Manager

Sensor object Remote sensing &
in-situ sensors

All types of
sensors

Remote sensing
satellite sensors

Remote
sensing sensors

Remote sensing &
in-situ sensors

In-situ
sensors

Remote sensing &
in-situ sensors

Main usage Sensor searching Sensor researching Sensor planning Sensor
capability review

Sensor observation
discovery & service

Sensor
discovery

Sensor discovery &
planning

Sensor Modeling mode Single &
Static sensor

Single &
Static sensor

Single &
dynamic sensor

Single &
Static sensor

Single &
Static sensor

Single &
Static sensor

Multiple &
Dynamic sensors

Representing format Html text N/A N/A text SensorML SensorML GEOCFML

Supporting Multi-sensors
collaboration NO NO NO NO NO NO YES

Considering the geospatial
environment features NO NO NO NO NO NO YES
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4.3. Extension to Other Environmental Observation Applications

All environmental disaster events require integrated and dynamic observations to monitor the
different environmental phenomena in the developmental stages of a disaster. For example, in landslide
monitoring, variables such as rainfall, soil moisture, surface deformation, slope, aspect, and land cover
type must be measured. To observe these variables, some decision-makers may require complementary
observations in the same period over a continuous space, whereas others may require enhanced
observation in the same location at specific time intervals. In the initial stages of landslide incubation,
rainfall, soil moisture, and land cover of the potential landslide surface should be extensively monitored.
These variables can be complementarily observed with a rain gauge, a hygrometer, and satellite sensors.
However, during the imminent triggering of a landslide, an enhanced observation of the soil moisture of
a specific location at one time (e.g., time instant 1 by LANDSAT-MSS and time instant 2 by SPOT5-CCD)
is needed. Thus, a landslide forecast can be considered an observation scenario that requires dynamic
observation capabilities described in an integrated model framework, rather than static observation
capabilities described by a single sensor. Currently, owing to the underutilization of environmental
sensors, decision tools for discovering credible environmental sensors and planning the collaboration
of these sensors in an actual observation application are not yet available. The proposed GEOCF is
capable of: (1) dynamically organizing the observation capabilities of two or more environmental
sensors previously deemed independent of one another; (2) accurately evaluating the credibility of
available sensors; and (3) rationally scheduling the various environmental sensors to satisfy observation
requirements. Thereby, it can assist in answering the question “Which sensor combination can be
selected to measure the required variables in the given observation time and space?” and be extended
to other environmental observation applications.

5. Conclusions and Outlook

This study introduces a Field-based Geospatial Environmental Observation Capability (GEOCF)
information representation model that comprises field function, field feature components, and field
operations. The effectiveness of the proposed GEOCF information representation model is verified by
applying it to sensor discovery and collaboration for flood observation of the lower reaches of the Jinsha
River Basin. Results confirm that our proposed model can perform as: (1) an integrated descriptor
for comprehensively understanding geospatial environmental observation capability information;
(2) an information foundation that promotes the reliable utilization of environmental sensors and
scheduling of environmental sensor collaboration for flood observation; and (3) a feasible source to be
extended to other environmental observation applications.

Our proposed GEOCF mainly considers the geospatial environmental factors that will affect the
sensor observation quality. Therefore, other environmental dynamics, such as the dynamic monitoring
object and the surface feature distribution, should be considered in our next study to construct a
more accurate GEOCF information representation model. In addition, the functions of autonomous
accessing the extracting the geospatial environmental factors will be integrated into our prototype to
form an intelligent system. The theory of performance engineering should be reflected in the follow-up
design and implementation of GEOCF information representation model.
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