ﬂ SCNSors m\py

Article
Performance Prediction of a MongoDB-Based
Traceability System in Smart Factory Supply Chains

Yong-Shin Kang !, II-Ha Park 2 and Sekyoung Youm 3*

1 Department of Systems Management Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu,

Suwon, Gyeonggi-do 16419, Korea; yskang7867@skku.edu

Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology,
Cheonan, Chungcheongnam-do 31056, Korea; ihpark0521@kitech.re kr

Department of Industrial and Systems Engineering, Dongguk University, 3ga, Pil-dong, Jung-gu,
Seoul 04620, Korea

* Correspondence: sekyoungyoum@gmail.com; Tel.: +82-2-2260-8660

Academic Editor: Yike Guo
Received: 28 September 2016; Accepted: 12 December 2016; Published: 14 December 2016

Abstract: In the future, with the advent of the smart factory era, manufacturing and logistics processes
will become more complex, and the complexity and criticality of traceability will further increase.
This research aims at developing a performance assessment method to verify scalability when
implementing traceability systems based on key technologies for smart factories, such as Internet
of Things (IoT) and BigData. To this end, based on existing research, we analyzed traceability
requirements and an event schema for storing traceability data in MongoDB, a document-based Not
Only SQL (NoSQL) database. Next, we analyzed the algorithm of the most representative traceability
query and defined a query-level performance model, which is composed of response times for the
components of the traceability query algorithm. Next, this performance model was solidified as a
linear regression model because the response times increase linearly by a benchmark test. Finally,
for a case analysis, we applied the performance model to a virtual automobile parts logistics. As a
result of the case study, we verified the scalability of a MongoDB-based traceability system and
predicted the point when data node servers should be expanded in this case. The traceability system
performance assessment method proposed in this research can be used as a decision-making tool
for hardware capacity planning during the initial stage of construction of traceability systems and
during their operational phase.

Keywords: traceability; NoSQL; IoT; smart factory; performance

1. Introduction

In order to maintain competitiveness in the future and respond to intensifying competition in
the manufacturing industry, advanced manufacturing countries such as the USA and Germany have
formed industry—academic cooperatives such as “Advanced Manufacturing Partnership 2.0” [1] and
“Industrie 4.0” [2] in an effort to promote the development and application of smart-factory technology.
Smart factories are based on information and communication technologies (ICT) and, more specifically,
the Internet of Things (IoT), BigData, artificial intelligence (AI), cyber-physical systems (CPS), and
cloud computing [3,4]. In the future, smart factories will evolve into self-adaptive factories where
all things will be interconnected, exchanging information, recognizing and assessing situations, and
organically fusing the physical world with the cyber world [5-7]. It is expected that when future
self-adaptive manufacturing environments are realized, manufacturing processes will become flexible,
reconfigurable, and adaptable. Therefore, process variations will increase, causing manufacturing and
logistics traceability management to become more difficult and complex [8,9].

Sensors 2016, 16, 2126; d0i:10.3390/s16122126 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 2126 2of 14

Traceability is the ability to reconstruct the movement of objects and their environment. It supports
process optimization, quality assurance, spill prevention, error proofing, product safety, better pool
management, and improved customer service [10,11]. In the past, manufacturing-related traceability
sometimes referred to work-in-process (WIP) tracking inside factories. However, the traceability of
future connected smart factories will extend beyond the factory and will include the tracking and
tracing of raw materials, WIP, and finished products in all stages of the supply chain (receiving,
production, processing, warehousing, distribution, selling, etc.). It also includes the tracing of process
parameters and temperature/humidity control data collected through smart sensors.

To collect/store/analyze the aforementioned traceability factors in real time, IoT technologies
(such as Radio Frequency Identification (RFID), sensors, and GPS) and BigData (including distributed
databases and distributed parallel processing frameworks) are essential. Even though BigData research
for the manufacturing industry is still in its early stages, applying BigData to production and logistics
has become absolutely necessary as RFID and sensor technologies are being increasingly adopted in
the manufacturing sector. The reason for this is that manufacturing data collection using IoT sensors
produces large volumes of highly complex data. Therefore, BigData is the most appropriate solution to
analyze loT data completely [12].

In recent years, Not Only SQL (NoSQL) databases have been developed and distributed as
a replacement for existing relational databases in order to store/process/analyze unstructured
high-volume data such as Social Network Services (SNS) and IoT. In handling unstructured
high-volume data, NoSQL databases have distinct advantages over relational databases [12,13]. First,
NoSQL databases use scale-out architecture that adds low-end resources. This architecture is less
expensive than the scale-up methods of relational databases, which replace existing resources with
more high-end resources. Second, NoSQL databases ensure consistent scalability even when the
amount of data increases owing to the distributed processing of data and computations. Third, because
NoSQL data is schema-free and can handle various data sources and formats, it is more flexible
than relational databases. For these reasons, NoSQL databases are more appropriate than relational
databases for storing a large volume of traceability data collected from different sources. In addition,
RFID and sensor data have a low correlation with other data and do not require a high degree of
integrity; therefore, they can be stored in NoSQL databases that do not support ACID (atomicity,
consistency, isolation, and durability).

Several studies have been conducted on storing IoT data in NoSQL databases. These studies were
focused on performance comparison [14], performance improvement [15], and optimal design to an
application [13,16,17]. However, no practical research has been reported regarding the achievement of
functional requirements and stable operation in real-world business environments using traceability.

Therefore, our research aims to verify the scalability of NoSQL-based traceability systems and
proposes a model-based performance evaluation method for stable capacity expansion. To this end,
we use MongoDB, a document type NoSQL, as a traceability system database. First, we analyze a
traceability data model of MongoDB and a traceability algorithm based on existing research. Secondly,
based on the traceability algorithm, we abstractly model the traceability performance for response
time at query level. Thirdly, we carry out a benchmark test on the components of the traceability
performance model and then specify the model through a regression analysis. Lastly, the traceability
performance and scalability are predicted by applying the traceability performance model to an
automobile parts supply chain.

2. Background and Related Work

2.1. NoSQL

Most NoSQL-related research is aimed at performance evaluation and performance comparison
with conventional relational database management systems (RDBMSs). In this subsection, studies on
NoSQL database performance and NoSQL databases as IoT repositories are introduced.

Sensors 2016, 16, 2126 3of 14

Nyati et al. [18] tested MongoDB’s performance based on service call numbers and thread numbers
when processing massive amounts of data and showed that MongoDB features faster processing times
than MySQL from the perspective of read and write. Dede et al. [19] compared the performance of
MongoDB’s MapReduce, Hadoop-HDFS’s MapReduce, and Hadoop-MongoDB’s MapReduce (fused
with Hadoop as MapReduce and MongoDB as storage). The performance of Hadoop-MongoDB’s
MapReduce was shown to be better than that of MongoDB’s MapReduce.

In addition to database performance comparative research, some research was conducted to
study the improvement of design and performance. Liu et al. [20] proposed a new data distribution
algorithm to solve issues that occur when using MongoDB’s auto-sharding when the data distribution
between shards is not even. Kanade et al. [21] compared the performance between embedded design
and linking design when normalized data and denormalized data are stored in MongoDB. It was
shown through inquiry experiments that 2nd normal form and 3rd normal form data models provide
better performance than an un-normal form and the 1st normal form, and that embedded design has
better performance than linking design.

Several studies have been conducted on the use of NoSQL to store IoT data. Kang et al. [13]
proposed an optimal design of data models and data distribution criteria to store IoT data in MongoDB.
Their proposed design utilizes MongoDB to ensure uniform data distribution and better query speed
than relational databases. Veen et al. [14] compared the performance of PostgreSQL (an RDBMS),
Cassandra (a NoSQL database), and MongoDB as a sensor data repository. It was shown that the
usage effectiveness of each product is different depending on data size, data criticality, and read /write
performance criticality. Li et al. [15] proposed a massive IoT data management architecture called
“IOTMDB.” This architecture constituted not only a method for effectively storing massive IoT data,
but also a method for sharing data between different IoT applications based on an ontology. In addition,
it defined query syntax for IoT data preprocessing mechanisms, data expressions, and different IoT
queries. Le et al. [16] proposed using Cassandra, a column-family type NoSQL database, as a repository
for Electronic Product Cord Information Services (EPCIS), which is a GS1 EPCglobal standard for RFID
data storing and sharing [22]. Through an experiment, it was shown that, in terms of response time,
throughput, and flexibility, the proposed database provides better performance than MySQL-based
EPCIS. Li et al. [17] used HBase as GS1 EPCglobal’s Discovery Services (DS) to store external traceability
data. This was also shown to have better efficiency and concurrency than relational databases.

2.2. Traceability in Manufacturing

There have been several studies on the application of RFID-based traceability in supply chains.
Specifically, traceability studies in the manufacturing sector can be classified into data modeling,
manufacturing control/algorithms, and RFID-based traceability system development.

In the data modeling area, Jansen-Vullers et al. [23] examined traceability requirements and
then defined traceability functions and reference data models that satisfy those requirements.
Khabbazi et al. [24] proposed a data modeling method for lot-based traceability systems in
make-to-order production environments. They suggested an integrated traceability model including
quality lot, quality lot relation, operation lot relation, and order lot by performing conceptual modeling
and physical modeling. Ouertani et al. [25] developed a traceability data model and tool to manage
distributed product information during the design and manufacturing phases.

Traceability is important for inventory control, WIP management, and scheduling in the
manufacturing control/algorithm sector. Chongwatpol and Sharda [26] designed RFID-based real-time
scheduling rules applicable to any shop floor. Through simulation tests based on real manufacturing
process data, these rules were shown to be better than First In First Out (FIFO) and Earliest Due Date
(EDD) methods. Zhong et al. [27] proposed an RFID-based real-time Manufacturing Execution System
(MES) framework and applied it to Mass-Customization Production (MCP) shop floors. Moreover, a
scheduling algorithm using real-time job pools and rules was developed and shown to allow real-time
data WIP control at a certain level. Huang et al. [28] proposed a Petri net-based traceability model and

Sensors 2016, 16, 2126 4 of 14

algorithm for manufacturing processes, and developed a prototype information system based on this
algorithm. The functionality of this system was confirmed by applying it to the quality control system
of China’s honeybee products.

In the system development sector, Huang et al. [29] conducted an initial study on manufacturing
traceability using RFID. The authors used RFID technologies in manufacturing reengineering to
develop an information system capable of managing the functionality of job shops that fabricate
diverse and numerous parts. Sdnchez et al. [30] proposed a CPS-based traceability framework for small
companies, and designed a traceability system based on cybernetic gloves and cybernetic tables. This
traceability system was shown to be better than conventional tag-based traceability systems. Moreover,
several studies have been conducted on the development of traceability systems specific to the purpose
of each domain [31-33].

3. Defining Performance Model for a Traceability System

In this section, the data schema and query of MongoDB-based traceability systems are analyzed,
and a traceability performance model is defined at query level. Because this research is aimed at
evaluating the performance of MongoDB-based traceability systems, we use the data schema and
query algorithm of MongoDB-based traceability systems from existing research results.

3.1. Traceability Event Schema in MongoDB

Traceability data in production and logistics processes must be able to respond to four queries:
what, when, where, and why. Figure 1 describes all four dimensions that must be included in a single
traceability event based on EPCIS version 1.1 (GS1 EPCglobal) [22]. As proposed in [24], traceability
data can include ordering, purchasing, and quality data. However, in this research, the traceability
data range is restricted to data that can be collected from IoT, such as RFID, barcodes, sensors, and GPS.

Identification Number
What clectronic product code When

- barcode

- sensor D

Manufacturing Number
- lot
- batch

Transactional Number
- purchase order (PO)
- invoice

- ASM

Timestamp
- event time
- recorded time

Location Mumber Business Process Step
- read point - receiving
- business location - shipping
- GPS - other steps
Product State
- active
- in-fransit
- saleable
- other states
Current Condition
Where - temperature Why
- humidity

- other sensor values

Figure 1. Four dimensions of traceability data.

In the “What” dimension, each number can be physically or logically combined with other
numbers. As shown in Figure 2, ObjectID1 can be packed and moved inside ObjectID2, and they can be
connected logically with a business number such as a lot number. In this way, traceability events must
include aggregation/disaggregation relationships between components and business numbers of the
“What” dimension. In addition, when objects are being processed or are in transit, traceability events
can include process parameters and environmental data that can be collected, such as temperature.

Sensors 2016, 16, 2126 5o0f 14

Process &
Environmental
Condition

(lot number)

ObjectiD2
(box)

ObjectiD
(itern)

Location

Process ™ oo .

parameters 7 Observation/ aggregation

Timestamp = Vizible movement
= = Invisible movement

L1: production, L2: packaging, L3: shipping

Figure 2. Traceability data (extended from [10]).

Considering the work mentioned above in [13], traceability events were modeled as shown in
Figure 3. The shard key (data distribution criteria) was selected as (readPoint, eventTime). In this
research, the corresponding schema and shard key are used for the MongoDB-based traceability
system design.

Properties Data Type Description
eventType String <Object, Aggregation, |The types of events
Transaction, Transformation,
Quantity=
eventTime Timestamp The date andtime at which event occurred.
recordTime Timestamp The date andtime of the event were recordedby a
repository.
epcList ArrayCfString A listof observed of EPCs namingthe physical
objects.
childEPCs ArrayOfString A listof the EPCs of the contained objects.
parentlD String The identifier of the parent of the association.
epcClass String The identifier specifying the object classto which the
event pertains
action String <ADD, OBSERVE, How an event relates to the lifecycle of the entity
DELETE= being described.
quantity MumberLong The number of objects withinthe class described by
this event.
readPaint String The read point at whichthe event took place.
bizLocation String The business location where the objects may be
found.
bizStep String The business step ofwhich the event was a part.
disposition String The business condition ofthe objects.
bizTransactionList Sub-document A listof businesstransactionsthat define the context
of the event.
Type String Business transaction type, for instance, PO, INV, LOT
value String Specific business transaction number
extensions This identifies the addition of new data members such
Slimitiran as sensor, GPS, process parameters.
fieldMame String IoT or process parameter name
prefix String Prefix for namespace
values ArrayOfString |IoT or process parameter values

Figure 3. Traceability event data model and example (summarized from [13]).

Sensors 2016, 16, 2126 6 of 14

3.2. Traceability Algorithm and Query-Level Performance Model

Although the functional requirements for traceability systems vary based on industry and
application, Kang and Lee [10] listed commonly required traceability functions. Among them, we
defined a performance model for the pedigree query, the most fundamental traceability function. Then,
we considered performance criterion such as response time.

The input parameter of the pedigree query is the object identification (ID). All data regarding one
object ID cannot be searched simply by inquiring all events of that object ID. As shown in Figure 4,
if the part moves invisibly after being assembled in the module, the part movement data is not stored
in the database until the disaggregation phase or shipping phase. In other words, if only the tag
ID attached to the module is recognized by the reader, the part ID inside the module will no longer
be recognized.

O :pat {_):end product
(O :module 3 : hidden object

: tai .
aggregation level Supplier OEM [: container —*: movement

container

read point

Figure 4. Typical object flow in the supply chain.

Therefore, if the total life cycle of a particular object (part) has to be queried, the object ID
(part ID) must be key-tracked first. Then, if that object combines as a child with another parent
module, the parent ID must be key-tracked from the aggregation moment until the disaggregation
or shipping point of the supplier. In Original Equipment Manufacturer (OEM), if the disaggregation
data is all that exists, the parent ID must be key-tracked from the parent module receiving moment
until the disaggregation moment. If the parent module combines with other grandparent containers
or end products, the grandparent ID must be key-tracked in the same way. Thus, pedigree queries
can be classified into two categories: traceQuery (queries all events related to the object ID with input
parameters) and aggregationQuery (queries the aggregation relationship of the object ID with another
object ID). As shown in Figure 5, if the query algorithm uses recursive methods, it is not affected by
the aggregation level.

input /1D =target ID

Query all events
related to input /D

more than 1 input 10 =

Query parent D
AggregatincEvents
containing input 1D

u-fﬂ.ggregaﬁonEuen?\j\'\, more than 1
0
r
| End |

Figure 5. Pedigree algorithm for a site.

Sensors 2016, 16, 2126 7 of 14

Thus, RpedigreeQuery (pedigree query response time) is composed of RyrgceQuery (traceQuery
response time) and R gereqationQuery (aggregationQuery response time), and the number of executions
of traceQuery and aggregationQuery is determined based on the number of aggregation relationships
for one site. RypedigreeQuery 15 the summation of the response times after executing RiraceQuery and
RaggregationQuery by all sites that participate in a supply chain. If this is modeled, the following
Equation (1) is obtained:

RpedigreeQuery = Zﬁ:l (an x RtraceQuery +(an+1) x RaggregationQuery)/ 1)

where n is the participants in supply chain,n=1... k; and an is the number of aggregations at each
site n.

4. Specifying Performance Model with Regression

To specify the query-level performance model defined in the previous section, RyysceQuery and
RaggregationQuery Must be determined. In this section, each query response time is generalized according
to the number of data server nodes, data volume stored, and the number of concurrent access clients;
all of these factors have the highest impact on service response time.

4.1. Benchmark Test

To perform the benchmark test, we prepared a MongoDB cluster composed of six servers with
the same specifications. Five of the servers are data-storing servers, and the sixth server was set up
as a MongoS and configuration server. The data-querying client program exists in the same network
as MongoS, and it was tested in a wired-connection environment. Table 1 indicates the specifications
of the servers that form the cluster, and Figure 6 shows the target process used for data generation
(the conventional manufacturing process). We assumed that four parts are packed in one case, and
cases are loaded into one container.

Table 1. Specification of servers.

CPU RAM HDD (O]

2.53 GHz x 8 16 GB 500 GB Ubuntu Server 12.04
CPU: Central Processing Unit, RAM: Random Access Memory, HDD: Hard Disk Drive, OS: Operating System.

0 object event
A aggregation event

(032 F»{0 }»{ 2 {0 }»{ 7]
malding assembly painting pack part load case product
into cazge to container shipped

Figure 6. Target process for the benchmark test.

As mentioned previously, an experiment was performed to measure the response time according
to the increasing number of data nodes, number of stored events, and number of concurrent access
clients. Figure 7 briefly illustrates the experiment. In this case, the number of data nodes for the initial
MongoDB cluster is 1. The steps of the experiment are as follows:

1. Events are generated in accordance with the target process progress and stored in the
MongoDB cluster.

2. The client executes traceQuery and aggregationQuery when stored events reach a certain amount
(40 million, 80 million, 120 million, 160 million, and 200 million). At this point, the number of
concurrent query clients is extended to 1, 5, 10, 15, and 20. Each is queried 30 times, and the
response time is recorded.

Sensors 2016, 16, 2126

8 of 14

3. The number of data nodes is increased and repeated from #1 (the maximum number of data

nodes is 5).

concurrent query:

increase events:

A0 million—20 millicn—120 million—160 millicn

—+ 200 million

- 1-5-10—15—30 . ~ | r

client

.
I &, record response time
e |

Lh
mc:»na oS/

configuration
SErver

Figure 7. Test scenario.

ot
~—

>

Sh .=

|

— e

data server nodes

Figure 8 shows the result of plotting the mean response time of each query. When the number
of data nodes is fixed, the response time increases linearly as the number of stored events increases.
In addition, the response time increases constantly as the number of access clients increases. It can be
inferred from these results that the increment in the number of data nodes and access clients has a
constant impact on increasing response time. Furthermore, the gradient of curves steadily decreases as
the number of data nodes increases. It means that the increment in the number of data nodes has a
constant impact on reducing response time. Consequently, it can be assumed that all three factors have

a linear impact on response time.

¥ 10‘ 1 node ® 1|3‘ 3 nodes
14 e
—8— 1 client —— 1 client
12| —5— 5 clients 12| —3— & olients
o g —— 10 clients W 10 —x— 10 client=s
s ——+— 15 clierts b e ——+— 15 clients
L 5| —e— 20 clients E B —%— cliens
o ™
B g B og
2 =1
2 4 h & o4
2 2
0] ==
o4 08 12 1E 2 o4 08 12 1B 2
of objects 108 # of objects 5 103
(a) traceQuery
” 10‘ 1 node w 10‘ 3 nodes
14 14
—&— 1 client —— 1 client
12 —H— 7 clients 12 —B— 2 clients
o 10 —+— 3 clients o 10 —+— 3 clients
E —— 4 clierts E —— 4 clierts
E 8| —&— 5 clierts E g | —G— & clierts
o s
g 8 2 B
2 T2
e i -
2 1] 2
i K i
04 03 12 16 2 o4 08 12 1E 2
of ohjects » 103 # of ohjects » 103
(b) aggregationQuery

Figure 8. Test results.

responze time (ms)

response time (ms)

¥ 10‘ 2 nodes

14

—&— 1 cliert
—F— 5 clierts
—#— 10 client=
—F— 15 client=s
g | —&— 20 dlierts

12
10

1]
04 08 12

of objects

” 10‘ 5 nodes

-
=

16

2
3

x10

—&— 1 client

—H— 2 clients
—#— 3 clients
—— 4 clients
8| —G— & clients

-
[}

-
o}

0
04 08 12

of ohjects

16

10

i
2

-]

Sensors 2016, 16, 2126 9of 14

4.2. Linear Regression

The benchmark test revealed that the number of data nodes, number of stored events, and number
of concurrent query clients in the MongoDB cluster have a linear effect on query response times.
To derive a linear model, a multiple regression analysis is performed where the number of data nodes,
number of stored events, and number of clients are set as independent variables, and response time is
set as a dependent variable. The regression equation is as follows:

R = ,BO + ,lenode + ,BZXvolume + ,83Xclientr (2)

where X,,,4, = number of data nodes; X,yj,me = Number of stored events; and X j;,,,; = number of clients.

Table 2 summarizes the coefficients derived through the multiple regression analysis. All p-values
are lower than 0.05. This shows that the number of data nodes, data volume stored, and number
of clients constantly affect the response time of traceQuery and aggregationQuery, and indicates a
significant linear relationship.

Table 2. Regression results.

. Regression Coefficient Correlation Coefficient
Coefficient
fig fiy fip fiz Standard Error T Statistics p-Value

X 991.65 —5.71516 0.0000002390428

traceQuery 0.72 —13634.1 —5667.45 0.000248 2181.88 X 0.000028 8.66 0.000000000001
X3 238.35 9.15 0.0000000000001
X 526.36 —3.67517 0.000458002579347691

aggregationQuery 0.77 —15303.2 —1934.45 0.000178 1310.29 X» 0.000015 11.69 0.000000000000000003
X3 126.51 10.36 0.000000000000000772

In conclusion, when the server used in the experiment is installed in a conventional manufacturing
process, RiraceQuery a0d RygoregationQuery can be defined as shown in Equations (3) and (4) and can be
used as a prediction model:

RiraceQuery = —13634.1 — 5667.45X 04 + 0.000248 X yoryme + 2181.88X ctiont,)
RaggregationQuery = —15303.2 — 1934.45X 040 + 0.000178 X popume + 1310.29 X cjjens- @)

5. Case Analysis with Simulation

In this section, we describe how the proposed performance model can be applied to a smart
factory supply chain through a simulation-based case analysis. We selected automobile parts
manufacturing and the logistics business because it is a representative supply chain of the level
of multiple aggregations increasing along the supply chain process. We predict the performance
change tendency of the pedigree queries according to logistics continuance, and predict the scale-out
(server-expand) time and period in which the server can be operated without maintenance procedures,
such as server data backup and compression.

5.1. Simulation Design

To perform a simulation-based case analysis, the automobile parts production and delivery supply
chain designed in [13] (shown in Figure 9) was used. The entire supply chain is composed of a total of
13 workplaces: nine part manufacturers, three module manufacturers, and one OEM.

Sensors 2016, 16, 2126 10 of 14

chassis
power
steering

SUSPENSID - :
E ventilation radiator
i assembly

Figure 9. Overall supply chain.

head lamp

The internal process of each participant is assumed to contribute one manufacturing type (among
molding type, assembly type, module plant, and OEM plant), as shown in Figure 10. The molding
type, assembly type, module plant, and OEM plant were designed so that two, three, two, and three
aggregations occur, respectively.

process type process steps process type process steps
moldin e . module plant return commission
9 typ commissin receive ¥ container unit
case container product : product
Brake put away * Chassis put away
instrument module
panel * Cockpit
cowl cross bar | part pack partto case/ Ipad case or part product shipped module "]
. product dizaggregate pat module product shipped|
beam-front production product put away Into container + frontend i
bumper module received tcc;ﬁtaﬂsi:;nd assembly
assembly type product disaggregate part OEM plant
received to case cummis_siun feed chagssis feed cockpit feed frontend
suspension container, + final assembly
power steering
* ventilation
radiator i i i
assembly frame production partassembly load part product shipped body-in chassis cockpit front end body-out
head ramp Into container

Figure 10. Internal processes according to manufacturing type.

The simulation parameters (production rate, processing time, and traveling time) of products
were equally simplified; details are listed in Table 3. Additionally, temperature data was assumed
to be generated every 10 s in all processes, and the transportation stage was set for GPS data to be
generated every 10 s. Based on the process model defined here, using these parameters, approximately
100 million events accumulated over two months. When the data was converted into MongoDB,
the size of the database grew to approximately 250 GB.

Table 3. Simulation variables. (unit: min).

Production Rate Movement Time Work Time
part 1/min part N(1,0.2) part packaging N (1,0.2)
case (1/3)/min case/container N(5,0.2) case loading N (1,0.2)
container (1/15)/min container waiting N(1,0.2) container loading 3/min

N: Normal Distribution.

5.2. Simulation Results

We assumed that each participant in the supply chain has their own cluster, and their specifications
are the same as the cluster that was used for the benchmark test in Section 4. A simulator executed
the logistics process (modeled in Section 5.1) and called the performance model of pedigree query
(modeled in Section 4.2) for every 1 million events generated. Each query was executed 50 times, and
the number of accessing clients was randomly determined according to the uniform distribution U

Sensors 2016, 16, 2126 11 of 14

(1,20). Figure 11 shows the average response time according to the number of data nodes regarding
pedigree queries based on process continuance.

<100 1 node w10t 2 nodes w10t 3 nodes
9 T T 9 9
I a : I
’g? ’g? ’g? 1 1
=il = B ~ B
E 5 E 5 E &5
% 4 — % 4 @ 4
S gt Ime Qut 5 3. =Pt e B time: out
i, £ 7 52
1 1 1
012345678910 012345678910 0123466788910
of ohject= }{1|:|? # of ohject= }{1|:|? # of ohjects }{1|:|?
10" 4 nodes «10% B nodes
9 9
a a
’g? ’uE??
wah u 3B
£ 5 E5
@4 _ ﬁfl _
S g bmeout M S g tmeout
52 £ 2
1 1]ﬂ
I:I N N L .I|. N L L I:I N 1
012345678910 0123458678910
of ohjects 7 # of ohject= 7
%10 % 10

Figure 11. Response time for each cluster.

Assuming that the user can tolerate up to 30 s of response time after executing a pedigree query
(i.e., setting the timeout to 30 s), limits on the amount of data for each cluster are generated. These
limits are listed in Table 4. For example, clusters composed of 1,2, and 3 data nodes can store up to
60,000,000, 220,000,000, and 360,000,000 objects, respectively.

Table 4. Maximum amount of data stored within the timeout.

of Nodes 1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes
of objects 60,000,000 220,000,000 360,000,000 610,000,000 750,000,000
subtraction 160,000,000 140,000,000 150,000,000 140,000,000

Moreover, all subtractions between (n) nodes and (n + 1) nodes are around 150,000,000. The data
nodes are linearly required as the number of stored events increases. It means that MongoDB-based
traceability system is highly scalable. In conclusion, after first expansion, it is safe to expand the data
server node every 150,000,000 increments. Note that if participants use more high-end computing
power, response times will be shorter and extension periods will increase. However, it is expected that
the tendency of scalability will not be affected by the computing power of a cluster.

6. Conclusions

In the near future, smart factories will become a reality. The internal processes of companies
participating in supply chains, as well as external processes between companies, will function

Sensors 2016, 16, 2126 12 of 14

autonomously and organically as one large system. Traceability data management and stable operation
in complex-process environments are becoming key factors that will enable smart factories to achieve
a competitive edge in diverse areas such as optimization, product quality, and error proofing.

In this research, a performance prediction model of a traceability system using BigData and IoT,
which are key smart factory technologies, was designed to promote the operation of stable and scalable
traceability systems. First, traceability requirements and data models of MongoDB-based traceability
systems were studied based on existing research. Second, a query algorithm that satisfies a pedigree
query (the most common traceability requirement) was analyzed, and a traceability performance
model was derived mathematically in terms of response time. Third, a benchmark test was performed
considering the number of data nodes, number of stored events, and number of accessing users.
Through this test, the traceability performance model was solidified as a linear regression model.
Finally, a simulation test was performed to evaluate the traceability performance in automobile parts
supply chains. Through the simulation test, we verified that our approach is able to verify the scalability
of a MongoDB-based traceability system and to predict a server scale-out point. The difference from
previous research [13] reporting a general performance analysis of MongoDB is that a traceability
performance is determined by multiple factors that are combined with specific purposed queries such
as a location finding and a parent finding.

As a preliminary study, this research contributes to defining methods for stable traceability
operations, one of the primary business requirements in the manufacturing sector, where BigData and
IoT technologies are starting to be applied. The MongoDB-based traceability system performance
prediction method proposed in this research will serve as a decision-making tool for predicting the
required number of servers during the initial construction of traceability systems, and the point when
servers should be added. In addition, by showing that existing traceability algorithms can evolve in
better computing environments, it will become a useful resource for researchers trying to carry out
similar studies.

In the future, further research will be required on performance models for pedigree queries, as
well as on traceability functions that are commonly used in the manufacturing industry, such as lot
tracking and Bill of Material (BoM) exploring. Furthermore, in terms of scalability, this research used
only the response time as a performance indicator to build the model. However, it will be important to
conduct further research on performance models that consider other perspectives such as availability,
reliability, and accessibility, as well as other indicators such as latency, throughput, transaction time,
and execution time.

Acknowledgments: This work was supported by the Dongguk University Research Fund of 2016 and the Basic
Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education (NRF-2016R1A6A3A11930205).

Author Contributions: Yong-Shin Kang designed the overall research structure and designed the performance
model; II-Ha Park specified the traceability data model and the query algorithm; Sekyoung Youm performed the
experiments of regression analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Report to the DPresident Accelerating U.S. Advanced Manufacturing. Available online:
https:/ /www.whitehouse.gov/sites/default/files/microsites/ostp /PCAST/amp20_report_final.pdf
(accessed on 11 September 2016).

2. Recommendations for Implementing the Strategic Initiative Industrie 4.0. Final Report. Available
online: http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/
de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf (accessed on
11 September 2016).

3. Kang, H.S; Lee, J.Y,; Choi, S.; Kim, H.; Park,].H.; Son, J.Y.; Noh, S.D. Smart manufacturing: Past research,
present findings, and future directions. Int. J. Precis. Eng. Manuf. Green Technol. 2016, 3, 111-128. [CrossRef]

https://www.whitehouse.gov/sites/default/files/microsites/ostp/PCAST/amp20_report_final.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://dx.doi.org/10.1007/s40684-016-0015-5

Sensors 2016, 16, 2126 13 of 14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Wang, L.; Torngren, M.; Onori, M. Current status and advancement of cyber-physical systems in
manufacturing. . Manuf. Syst. 2015, 37, 517-527. [CrossRef]

Lee,].; Bagheri, B.; Kao, H.A. A cyber-physical systems architecture for industry 4.0-based manufacturing
systems. Manuf. Lett. 2015, 3, 18-23. [CrossRef]

Wang, S.; Wan, |.; Li, D.; Zhang, C. Implementing smart factory of industrie 4.0: An outlook. Int. J. Distrib.
Sens. Netw. 2016, 2016, 7. [CrossRef]

Radziwon, A.; Bilberg, A.; Bogers, M.; Madsen, E.S. The smart factory: Exploring adaptive and flexible
manufacturing solutions. Procedia Eng. 2014, 69, 1184-1190. [CrossRef]

McClatchey, R.; Branson, A.; Shamdasani, J.; Kovacs, Z. Designing traceability into big data systems. In
Proceedings of the 5th Annual International Conference on ICT: Big Data, Cloud and Security (ICT: BDCS
2015), Singapore, 27-28 July 2015.

Lucke, D.; Constantinescu, C.; Westkamper, E. Smart factory—A step towards the next generation of
manufacturing. In Manufacturing Systems and Technologies for the New Frontier; Springer: London, UK, 2008;
pp. 115-118.

Kang, Y.S.; Lee, Y.H. Development of generic RFID traceability services. Comput. Ind. 2013, 64, 609-623.
[CrossRef]

Zhong, R.Y,; Huang, G.Q.; Lan, S.; Dai, Q.Y.; Chen, X.; Zhang, T. A big data approach for logistics trajectory
discovery from RFID-enabled production data. Int. J. Prod. Econ. 2015, 165, 260-272. [CrossRef]

Cattell, R. Scalable SQL and NoSQL data stores. Sigmod Rec. 2011, 39, 12-27. [CrossRef]

Kang, Y.S.; Park, LH.; Rhee,]J.; Lee, Y.H. MongoDB-based repository design for IoT-generated RFID/sensor
big data. IEEE Sens.]. 2015, 16, 485-497. [CrossRef]

Van der Veen,].S.; Van der Waaij, B.; Meijer, R.]J. Sensor data storage performance: SQL or NoSQL, physical
or virtual. In Proceedings of the 2012 IEEE 5th International Conference on Cloud Computing (CLOUD),
Honolulu, HI, USA, 24-29 June 2012; pp. 431-438.

Li, T; Liu, Y,; Tian, Y,; Shen, S.; Mao, W. A storage solution for massive IoT data based on NoSQL.
In Proceedings of the 2012 IEEE International Conference on Green Computing and Communications
(GreenCom), Besancon, France, 20-23 November 2012; pp. 50-57.

Le, T.D.; Kim, S.H.; Nguyen, M.H.; Kim, D.; Shin, S.Y.; Lee, K.E.; da Rosa Righi, R. EPC information services
with No-SQL data store for the Internet of Things. In Proceedings of 2014 IEEE International Conference on
RFID (IEEE RFID), San Diego, CA, USA, 8-10 April 2014; pp. 47-54.

Li, M.; Zhu, Z.; Chen, G. A scalable and high-efficiency discovery service using a new storage. In Proceedings
of the 37th Annual International Computer Software and Applications Conference (COMPSAC), Kyoto,
Japan, 22-26 July 2013; pp. 754-759.

Nyati, S.S.; Pawar, S.; Ingle, R. Performance evaluation of unstructured NoSQL data over distributed
framework. In Proceedings of the IEEE International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Mysore, India, 22-25 August 2013; pp. 1623-1627.

Dede, E.; Govindaraju, M.; Gunter, D.; Canon, R.S.; Ramakrishnan, L. Performance evaluation of a MongoDB
and hadoop platform for scientific data analysis. In Proceedings of the 4th ACM Workshop on Scientific
Cloud Computing, New York, NY, USA, 17-21 June 2013; pp. 13-20.

Liu, Y.; Wang, Y.; Jin, Y. Research on the improvement of MongoDB Auto-Sharding in cloud environment.
In Proceedings of 7th International Conference on Computer Science & Education (ICCSE), Melbourne,
Australia, 14-17 July 2012; pp. 851-854.

Kanade, A.; Gopal, A.; Kanade, S. A study of normalization and embedding in MongoDB. In Proceedings
of the 2014 IEEE International Conference on Advance Computing Conference (IACC), Gurgaon, India,
21-22 February 2014; pp. 416—421.

EPC Information Services (EPCIS) Version 1.1, EPCglobal Ratified Specification. Available online:
http:/ /www.gsl.org/sites/default/files/docs/epc/epcis_1_1-standard-20140520.pdf (accessed on
11 September 2016).

Jansen-Vullers, M.H.; van Dorp, C.A.; Beulens, A.]. Managing traceability information in manufacture. Int. J.
Inform. Manag. 2003, 23, 395-413. [CrossRef]

Khabbazi, M.R.; Ismail, M.; Ismail, N.; Mousavi, S.A. Modeling of traceability information system for
material flow control data. Aust. J. Basic Appl. Sci. 2010, 4, 208-216.

http://dx.doi.org/10.1016/j.jmsy.2015.04.008
http://dx.doi.org/10.1016/j.mfglet.2014.12.001
http://dx.doi.org/10.1155/2016/3159805
http://dx.doi.org/10.1016/j.proeng.2014.03.108
http://dx.doi.org/10.1016/j.compind.2013.03.004
http://dx.doi.org/10.1016/j.ijpe.2015.02.014
http://dx.doi.org/10.1145/1978915.1978919
http://dx.doi.org/10.1109/JSEN.2015.2483499
http://www.gs1.org/sites/default/files/docs/epc/epcis_1_1-standard-20140520.pdf
http://dx.doi.org/10.1016/S0268-4012(03)00066-5

Sensors 2016, 16, 2126 14 of 14

25.

26.

27.

28.

29.

30.

31.

32.

33.

Ouertani, M.Z.; Baina, S.; Gzara, L.; Morel, G. Traceability and management of dispersed product knowledge
during design and manufacturing. Comput. Aided Des. 2011, 43, 546-562. [CrossRef]

Chongwatpol, J.; Sharda, R. RFID-enabled track and traceability in job-shop scheduling environment. Eur. J.
Oper. Res. 2013, 227, 453-463. [CrossRef]

Zhong, R.Y.; Dai, Q.Y,; Qu, T,; Hu, G.J.; Huang, G.Q. RFID-enabled real-time manufacturing execution
system for mass-customization production. Robot. Comput. Integr. Manuf. 2013, 29, 283-292. [CrossRef]
Huang, J.; Zhu, Y.; Cheng, B.; Lin, C.; Chen,]J. A PetriNet-based approach for supporting traceability in
cyber-physical manufacturing systems. Sensors 2016, 16, 382. [CrossRef] [PubMed]

Huang, G.Q.; Zhang, Y.F; Jiang, P.Y. RFID-based wireless manufacturing for real-time management of job
shop WIP inventories. Int.]. Adv. Manuf. Technol. 2008, 36, 752-764. [CrossRef]

Sanchez, B.B.; Alcarria, R.; Martin, D.; Robles, T. TF4SM: A framework for developing traceability solutions
in small manufacturing companies. Sensors 2015, 15, 29478-29510. [CrossRef] [PubMed]

Chen, R.S.; Tu, M.A. Development of an agent-based system for manufacturing control and coordination
with ontology and RFID technology. Expert Syst. Appl. 2009, 36, 7581-7593. [CrossRef]

Huang, G.Q.; Qu, T; Fang, M.]J.; Bramley, A.N. RFID-enabled gateway product service system for
collaborative manufacturing alliances. CIRP Ann. Manuf. Technol. 2011, 60, 465-468. [CrossRef]

Wang, K.S. Intelligent and integrated RFID (II-RFID) system for improving traceability in manufacturing.
Adv. Manuf. 2014, 2, 106-120. [CrossRef]

@ © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cad.2010.03.006
http://dx.doi.org/10.1016/j.ejor.2013.01.009
http://dx.doi.org/10.1016/j.rcim.2012.08.001
http://dx.doi.org/10.3390/s16030382
http://www.ncbi.nlm.nih.gov/pubmed/26999141
http://dx.doi.org/10.1007/s00170-006-0897-4
http://dx.doi.org/10.3390/s151129478
http://www.ncbi.nlm.nih.gov/pubmed/26610509
http://dx.doi.org/10.1016/j.eswa.2008.09.068
http://dx.doi.org/10.1016/j.cirp.2011.03.040
http://dx.doi.org/10.1007/s40436-014-0053-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	NoSQL
	Traceability in Manufacturing

	Defining Performance Model for a Traceability System
	Traceability Event Schema in MongoDB
	Traceability Algorithm and Query-Level Performance Model

	Specifying Performance Model with Regression
	Benchmark Test
	Linear Regression

	Case Analysis with Simulation
	Simulation Design
	Simulation Results

	Conclusions

