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Abstract: Strong demands for accurate non-cooperative target measurement have been arising
recently for the tasks of assembling and capturing. Spherical objects are one of the most common
targets in these applications. However, the performance of the traditional vision-based reconstruction
method was limited for practical use when handling poorly-textured targets. In this paper, we propose
a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative
spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents
a complete framework of estimating the geometric parameters of textureless spherical targets:
(1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and
(2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the
refined results via an optimized scheme. The experiment results show that our proposed calibration
method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based
methods, and our calibrated system can estimate the geometric parameters with high accuracy in
real time.

Keywords: non-cooperative target; pose estimation; sensor fusion; laser-camera system calibration;
textureless target

1. Introduction

Measurement for non-cooperative targets is the precondition of assembling and capturing
tasks, which has received attention in various areas, such as autonomous robotics [1,2], marine
transportation [3–5] and aerospace [6,7]. Non-cooperative targets refer to those objects that cannot
provide effective cooperation information; their structure, size and motion information are completely
or partly unknown [8].

In the measuring and capturing of a non-cooperative target, computer vision is exclusively
used as the primary feedback sensor to acquire the pose information of the target. According to
the number of cameras, vision measurement methods for non-cooperative targets can be classified
into three types: monocular vision based, multi-vision based and multi-sensor fusion based. For the
methods using monocular vision, Zhang et al. [8] proposed a robust algorithm based on Random
Sample Consensus (RANSAC) to acquire the relative pose of a spacecraft. Fang et al. [9] presented
a novel two-level scheme for adaptive active visual servoing to determine relative pose between
a camera and a target. For the methods using multi-vision, Xu et al. [10] reconstructed the 3D
model of non-cooperative spacecrafts and calculated the pose of the spacecraft based on stereo vision.
In [11], Segal et al. employed a stereoscopic vision system for determining the relative pose of the
non-cooperative spacecraft by tracking feature points on it. The camera-only methods always rely on
the texture information of the target, which do not perform well with poorly-textured targets.
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With the rapid development of multi-sensor fusion technology, camera-only based methods
are gradually being replaced by multi-sensor fusion methods in the study of non-cooperative object
measurement. To enhance the accuracy of pose estimation, a camera is combined with 2D or 3D laser
scanners in [12,13], which can resolve the inaccuracy of depth in stereo-vision systems by directly
measuring the depth of correspondence points. Myung et al. [14,15] proposed a structured light
system that illuminates patterns of light to calculate the plane-to-plane relative position. This system
is composed of two screen planes at both the system and target side, each having one or two laser
pointers and a camera installed on the screen. The laser triangulation system (LTS) is another solution
to accurate reconstruction for non-cooperative targets. Santolaria et al. [16] designed metrology
equipment, which integrates a commercial LTS with an articulated arm coordinate measuring machine
(AACMM) to extend the measurement range of LTS. However, it cannot be integrated with handheld
devices and mobile robotic platforms due to the existence of AACMM.

Recently, many systems and applications that combine cameras and laser range finders (LRF)
for non-cooperative target estimation and reconstruction have been widely applied in city model
acquisition [17], object mapping [18–20], object tracking [21–23], augmented reality [24] and mobile
robotics [18–23]. Atman et al. [25] developed a camera-LRF hybrid sensor, which can estimate the
ego-motion of the micro air vehicles (MAVs) for the MAV’s navigation systems. Oh et al. [26] proposed
a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a
monocular camera in the framework of a graph structure-based SLAM. Representatively, a non-contact
six-DOF pose sensor system with three 1D laser sensors and a camera was developed to track the
dynamic motions of a cargo ship [3–5]. This system can accurately measure a six-DOF pose from a
distance by tracking feature points of the object.

The existing multi-sensor fusion methods need either expensive laser range finders [27] or delicate
scanning laser triangulation systems [16]. They may be also limited with respect to portability because
the screen-camera unit needs to be attached to the surface of the target [14,15]. Therefore, focusing
on the application of industrial quality detection and object capturing tasks, we propose a much
less expensive and fully-portable system for handheld devices and lightweight robotic platforms to
measure the geometric parameters of textureless non-cooperative spheres at a near distance (<2 m).
Furthermore, the aim of this study is to mitigate the limitations of the existing systems and to provide
an inexpensive embedded solution for engineering applications.

Inspired by multi-sensor fusion methods, the proposed system is composed of four simple lasers
and a vision camera, which can directly measure the position and radius of a textureless sphere
accurately without any extra sensors on the target. Unlike camera-LRF and camera-LTS methods, we
replace the widely-used laser range finder and laser triangulation system with four simple lasers to
make our system more affordable and lightweight. A simple laser here means the simplest laser diode
that can only project one point to the target without any direct depth information.

The reconstruction methods based on this camera-laser setup always require getting the relative
pose between the camera and the laser in advance. Therefore, the calibration of such setups has
attracted increasing attention from researchers. Whether requiring a pre-defined calibration object
or not, these approaches can be roughly grouped into two categories: offline calibration and online
calibration. The offline extrinsic calibration process of camera-LRF fusion systems has been discussed
in published works [27–31]. The most well-known one is proposed by Zhang and Pless in [28].
They calibrated the extrinsic parameters with a planar calibration pattern, which can be viewed
simultaneously by the camera-LRF system. Soon, Unnikrishnan and Hebert developed an easy-to-use
software to calibrate the relative pose of 3D LRF [29]. The work in [31] proposed a self-calibration
method used in the rotation platform. In [30], a minimal solution for extrinsic calibration is proposed by
Vasconcelos and Barreto, which requires at least five planes. Most recently, Nguyen and Reitmayr [27]
proposed two methods to calibrate a camera-LRF fusion system. As for the extrinsic calibration of the
camera-LTS fusion system, Santolaria et al. [16] developed a one-step calibration method to obtain
both the intrinsic—laser plane, CCD sensor and camera geometry—and extrinsic parameters of the LTS
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related to an articulated arm coordinate measuring machine (AACMM). Besides these offline extrinsic
calibration methods, researchers also proposed many online extrinsic calibration methods [32–35] that
can update the extrinsic parameters over time. The work in [32] provided an efficient and practical
camera online calibration method that utilizes the lane markings for the tilt and pan angle calibration
based on a zero roll angle assumption. The work in [33] exploited the line edges/features of handy
objects to calibrate both the intrinsic and extrinsic parameters of the camera online, which provide
a large degree of stability to illumination and viewpoint changes and offer some resilience to hash
imaging conditions, such as noise and blur. However, benefiting from our all-in-one design in which
the relative variation between the camera and simple lasers can be ignored, we choose the offline
calibration method for better accuracy.

Obviously, all of the existing offline methods cannot be directly applied to calibrate the simple laser
system. Thus, we propose an efficient method to calibrate the extrinsic parameters between a camera
and a simple laser. While we share with [16] the same concept of the ray triangulation principle [36],
our extrinsic calibration method differs in the following ways. In contrast to the one-step calibration
methods whose intrinsic and extrinsic parameters between the camera and the laser come entirely
from one calibration image, ours intrinsic parameters of the camera come from an optimized method
that is more accurate. Moreover, our method is designed to determine the general equation of four
laser beams instead of the laser plane, because of the simplicity of our laser system. Our experiments
show that our method performs better than Nguyen and Reitmayr’s calibration result in [27] when
using synthetic data.

By using the calibrated lasers and the camera projection model, our method can achieve a
highly accurate result with three steps: (1) utilize the optical line constraint to reconstruct the 3D
positions of laser spots; (2) obtain the initial guess of the geometric parameters via sphere fitting;
(3) add a geometric constraint term to the final cost function, and optimize it to refine the initial
guess. We conclude by giving both simulations and experimental results showing the success of the
techniques presented. Comparing with existing frameworks, our scheme shows several advantages,
including no requirement of the target texture information, no use of any depth sensor and no aid
of other complicated equipment, such as LRF, LTS or articulated arm systems. Another feature of
the proposed system is portability. All of the units are integrated as one sensor on the end-effector,
without installing any sensor unit on the target. The performance of the proposed system has been
validated in an embedded system with field experiments.

This paper is organized as follows: Section 2 describes our proposed calibration method. Section 3
shows how to reconstruct the laser spots with a calibrated laser-camera system and obtain the refined
geometric parameters with an initial guess. We evaluate the calibration results and reconstruction
solutions with simulation and field experiment in Section 4. Finally, some conclusions are drawn
in Section 5.

2. Extrinsic Calibration

2.1. System Description

As shown in Figure 1, the designed measurement system is composed of two parts: four calibrated
lasers and a vision camera. Four lasers are placed on the front panel of the camera in a square
configuration with a width of about 40 mm. The reason why we have chosen the configuration with
four lasers will be discussed in the experiment section. The lens of the vision camera is installed in the
center of the four lasers. The camera-laser system has the fundamental image preprocessing function,
laser-detection algorithm and the measurement module embedded, which are necessary for calculating
the geometric parameters of the target. Notice that our calibration method assumes that the accurate
intrinsic matrix of the camera is obtained by Zhang’s algorithm [37], and the geometric parameters
of each laser beam with respect to (w.r.t.) the camera coordinate frame are the unknown extrinsic
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parameters. The details of the extrinsic calibration will be discussed in Sections 2.2 and 2.3. All the
important symbols used in the following sections are listed in Table 1.

40mm

Camera Lens

Calibrated Laser

Camera & Integrated Processor

Front Panel

Figure 1. 3D model of the measurement system.

Table 1. List of symbols.

{W} World coordinate frame
{C} Camera coordinate frame
{Im} Image coordinate frame

Mcamera Camera projection matrix
cLi Installation position of laser i w.r.t. {C}
cDi Direction vector of laser beam i w.r.t. {C}
Do Direction vector of the optical line
r Radius of the sphere

cPi Position of laser spot i w.r.t. {C}
π Projection function of the vision camera

imPi Reprojection coordinate of laser spot i
imPo Reprojection coordinate of the center of the projected circle

p̃i Image coordinate of the detected laser spot i
p̃o Image coordinate of the detected center of the projected circle

2.2. Description of the Calibration Coordinate Frame

Our goal in this section is to develop a way to determine the extrinsic parameters cL and cD,
which define the installation positions and direction vectors of all simple lasers w.r.t. camera coordinate
frame {C}. During the calibration process, we only need a checkerboard plane, which will be moved
several times to get an accurate calibration result. As shown in Figure 2a, several checkerboard settings
are captured in our proposed method, and at each pose, the laser should fall on the checkerboard plane
and form a spot.

The calibration system has three different coordinate frames: the world coordinate frame with its
origin at the upper-left corner of the checkerboard; the camera coordinate frame with its origin at the
optical center of the camera; the image coordinate frame with its origin at the top left corner of the
image plane. A diagram of the coordinate frames is shown in Figure 2b.

2.3. Extrinsic Calibration Algorithm

This section shows our proposed calibration method for the extrinsic calibration of a camera and
a simple laser. We assume that the intrinsic matrix of camera Mcamera is known and that the radial
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distortion has already been wrapped. The laser beam’s extrinsic parameters can be represented as the
function of the laser beam with respect to the camera coordinate system:x

y
z

 = cDiti +
cLi, (1)

where ti is an arbitrary scale factor, cLi = [cxio, cyio, czio]
T is the intersection point of laser beam i and

image plane and cDi = [mi, ni, pi]
T is the direction vector of laser beam i with respect to frame {C}.

Laser

Camera

Checkboard Plane

Image

(a)

Zc

Yc

OIm

V

ZW

XW

YW

OW

U

V

OIm

(b)

Figure 2. Illustration of the proposed calibration method: (a) design of the proposed calibration method;
(b) diagram of the calibration reference coordinate frames.

We place the checkerboard at different poses. At each pose, the laser falls on the checkerboard
plane and forms a spot. This laser spot’s coordinate is represented as cPi = [c pix, c piy, c piz]

T , i =

{a, b, c, d} in the camera coordinate system. The function of the laser beam can be calculated if we get
all of these laser spots’ coordinates. In order to get the coordinate of each laser spot, we utilize these
two constraints at each different checkerboard pose:

• The laser spot is on the line that goes through the camera optical center and the laser spot. We call
this the optical line for convenience.

• The laser spot is on the plane of the checkerboard.

Considering the first constraint, the optical line can be calculated as follows. We approximate the
camera model by a pinhole model, then a projection from laser spot cPi = [c pix, c piy, c piz]

T to 2D image
coordinates imPi = [im pix, im piy]

T can be given by:

imPi = π(cPi) = Mcamera
cPi, (2)

where Mcamera is the intrinsic matrix of the camera and imPi should be equal to the detected coordinate
p̃i in the image. Then, the direction vector of the optical line that goes through cPi can be represented as:

Doi = M−1
camera

ñ
p̃i
1

ô
. (3)
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Then, the optical line’s function can be given by:x
y
z

 = kiDoi, (4)

where ki is a scale factor and Doi is the direction vector of the optical line.
By substituting Equation (3) into Equation (4), we can derive:

cPi = ki M−1
camera

ñ
p̃i
1

ô
. (5)

Considering the second constraint, the checkerboard plane’s function can be calculated as follows.
The transformation matrix [wc R w

c T], which relates the world coordinate system to the camera coordinate
system, can be calculated by Zhang’s method [10]. Then, the normal vector of this plane can be
represented as:

N = −R3(RT
3 T), (6)

where R3 is the third column of w
c R. Therefore, the function of this plane is:î

NT ‖N‖2

ó ñcPi
1

ô
= 0. (7)

By substituting Equation (6) into Equation (7), the checkerboard plane’s function can be
represented as: î

−RT
3 (R3TT)

∥∥−R3(RT
3 T)

∥∥
2

ó ñcPi
1

ô
= 0. (8)

Utilizing the two constraints mentioned above, we can get the coordinate of cPi by combining
Equations (5) and (8). Since we move the checkerboard plane several times, a series of 3D coordinates
of laser spots c̃Pi = {cPi1, cPi2, · · · , cPin} can be acquired. Assuming that the lasers are fixed, these
spots should be on the same line. Then, the function of the laser beam can be determined using these
points. In order to get the optimal parameters of the laser beam, we use PCA to minimize the projection
error of all of these spots:

• First, calculate the center point of all of the laser spots cPi =
sum(‹cPi)

n .

• Second, normalize all of the laser spots ĉPi =
‹cPi−cPi

max(‹cPi)
.

• Third, compute the covariance matrix Σ =
“cPi

T“cPi
n , and compute the eigenvectors of the covariance

matrix [U S V] = svd(Σ).
• Then, the direction vector of laser beam i can be cDi = U(:, 1).

Therefore, laser beam i’s function is:x
y
z

 = cDiti + cPi. (9)

However, the parameters of this function are not unique. In order to disambiguate, we transform

this function to another equivalence form. The direction vector cDi will be replaced by cDi =
cDi
‖cDi‖ ,
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and point cPi will be replaced by cLi = [clix cliy 0]T , which is the intersection point of the laser beam
and the image plane. Thus, the final result is:x

y
z

 =
cDi∥∥cDi
∥∥ ti +

clix
cliy
0

 . (10)

3. Measurement Algorithm Description

Once all of the extrinsic parameters of simple lasers are calibrated, our system can achieve a
highly accurate measurement of the spherical target with three steps: (1) reconstruct the 3D positions
of laser spots; (2) obtain the initial guess of the solution via sphere fitting; (3) refine the initial guess by
nonlinear optimization. An illustration of the proposed measurement method is shown in Figure 3a.

Laser a

Laser b

Laser c

Laser d
Camera

Pa

Pd

Pc
Pb

Po

Object

Image Plane

Image

Laser 
spot a

cO (cox , coy , coz)
r

(a)

Zc

Yc

Xc

Oc

imPa

imPb

imPc

imPd

imPo

Image 
frame
{Im}

Camera 
frame
{C}

{Im}

XIm

YIm

OIm XIm

YIm

Laser a
Mcamera

(b)

Figure 3. Illustration of the measurement method: (a) design of the measurement method; (b) diagram
of the measurement reference coordinate frames.

3.1. Description of the Reconstruction Coordinate Frame

The measurement system has two different coordinate frames: {C} is the camera coordinate
frame with its origin at the center of the camera aperture. {Im} is the image coordinate frame with its
origin at the top left corner of the image plane. The relationship between the camera coordinate frame
and the image coordinate frame can be described by a pinhole model. All of these coordinate frames
are orthogonal. The principle of measuring an unknown spherical target is solving for the geometric
parameters: cO = [cox, coy, coz]T , the 3D position of the sphere center with respect to frame {C}, and r,
the radius of the sphere. A diagram of the coordinate frames is shown in Figure 3b.

3.2. Initial Guess of Geometric Parameters

In order to calculate the parameters of an unknown sphere, at least four non-coplanar points on
the surface of the sphere are needed. As shown in Figure 3a, the laser spot should satisfy the following
two constraints:

• The laser spot is on the optical line.
• The laser spot is on the laser beam that has been calibrated in the prior section.
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Considering the first constraint, we firstly detect the laser spot i’s pixel coordinate p̃i = [u v]T in
the image. Then, the function of the optical line can be calculated by the approach described in the last
section. We represent this line as: x

y
z

 = ki1Doi, (11)

where Doi is determined by Equation (3).
Considering the second constraint, the function of the laser beam i can be represented as:x

y
z

 = ki2
cDi +

cLi, (12)

where cDi and cLi can be determined by our proposed calibration method.
Then, we can reconstruct laser spot i’s coordinate by utilizing these two constraints: laser spot i

should be the intersection of these two lines. Combining Equations (11) and (12), laser spot i’s 3D
position can be recovered using the least square method. It is equivalent to minimizing:

‖ki1Doi − (ki2
cDi +

cLi)‖2 , (13)

where k1, k2 can be given by: ñ
ki1
ki2

ô
= −(

ñ
DT

oi
cDT

i

ô î
Doi

cDi

ó
)−1
ñ

DT
oi

cDT
i

ô
cLi. (14)

Therefore, the reconstruction result of laser spot i can be given by:

cPi =
1
2
(ki1Doi + ki2

cDi +
cLi). (15)

With four constructed laser spots, the geometric parameters [cO0, r0] of the target can be
determined by sphere fitting. However, because every four non-coplanar points will determine
a sphere, the accuracy of sphere fitting will be greatly affected by the reconstruction error of laser
spots. Therefore, we should use the solution from four reconstruction points as the initial guess and
refine it with nonlinear optimization by adding the projection point of the center of the sphere as a
geometric constraints.

3.3. Nonlinear Optimization

To achieve a more accurate solution, we will utilize an optimized scheme for each frame by
minimizing the combination of reprojection errors of laser spots and the center of the sphere as follows:

minimize
cO, r

∑
i

‖π(Φi(
cO, r, Di, Li))− p̃i‖2 + λ ‖π(cO)− p̃o‖2 , (16)

where λ is a tuning parameter and p̃i, p̃o are the image coordinates of the detected laser spot i and the
center of the projected circle as shown in Figure 3a.

The first term in the cost function Equation (16) is meant for penalizing the reprojection error
of four laser spots, in which the function π() is the projection function and Φi(

cO, r, Di, Li) is the
reconstruction function for each laser spot. As mentioned before, the reconstruction error of laser spots
will lead to an inaccurate solution. To improve the robustness of the measurement system, we add
a geometric prior term, which enforces the projection point of the optimized cO coinciding with the
detected center of projected circle p̃o. We minimize Equation (16) as a nonlinear optimization problem
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by using the Levenberg–Marquardt method [18,20,21]. This requires an initial guess of cO0 and r0,
which is obtained by using the method described in Section 3.2. In the following part of this section,
the derivation of Φi(

cO, r, Di, Li) and π() will be given in detail.

3.3.1. Formulation of the Reconstruction Function

Unlike the deduction process in Section 3.2, the Φi(
cO, r, Di, Li) is determined by another

two constraints:

• The laser spot is on the surface of the target sphere.
• The laser spot is on the laser beam that has been calibrated in the prior section.

Assuming cPi = [c pix, c piy, c piz]
T , i = {a, b, c, d} is the 3D position of laser spot i on the target

surface, its coordinate should satisfy the following formula of the sphere:

(c pix − cox)
2 + (c piy − coy)

2 + (c piz − coz)
2 = r2. (17)

Meanwhile, laser spot i is also restricted by the linear equation of laser beam i. The linear
constraint can be given as follows: c pix

c piy
c piz

 = cDiti +
cLi, (18)

where ti is an arbitrary scale factor. In this equation, cLi = [cxio, cyio, czio]
T and cDi = [mi, ni, pi]

T are
calibrated by using the proposed method in Section 2.

Combining Equations (17) and (18), a quadratic equation of ti can be given as follows:

Qsphere

 t2
i

2ti
1

 = 0, (19)

where:
Qsphere =

î
q11, q12, q13

ó
= m2

i + n2
i + p2

i
mi(

cxio − cox)− ni(
cyio − coy) + pi(

czio − cox)

(cxio − cox)2 + (cyio − coy)2 + (czio − cox)2 − r2


T

.

Considering that the laser spot cannot be located on the the far side of the sphere, the only
reasonable solution of ti can be easily solved from Equation (19):

ti =
−q12 −

»
q2

12 − q11q13

q12
. (20)

Finally, by substituting Equation (20) into Equation (18), the reconstructed 3D coordinate of laser
spot i with respect to frame {C} can be represented as follows:

cPi = Φi(
cO, r, Di, Li) =



cxio −
mi(q12 +

»
q2

12 − q11q13)

q12

cyio +
ni(q12 +

»
q2

12 − q11q13)

q12

czio −
pi(q12 +

»
q2

12 − q11q13)

q12


. (21)
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Since the installation position cLi and the direction vector cDi of the laser sensor are determined
by Equation (10), the 3D position of each laser spot only depends on the geometric parameters of the
sphere [cox, coy, coz, r]T .

3.3.2. Formulation of the Reprojection Point

In order to solve the geometric parameters of sphere, the perspective projection relationship is
used to describe the relationship between the 3D position of laser spot i and its pixel coordinate.

With camera projection matrix Mcamera, the 3D position of laser spot i with respect to frame
{C} can be warped into the pixel coordinate of frame {Im}, imPi = [im pix, im piy]

T . The reprojection
coordinate of laser spot i can be expressed as follows:

π(Φi(
cO, r, Di, Li)) =

im pix
im piy

1

 = Mcamera


c pix

/c piz
c piy
¿

c piz
c piz

/c piz
1
/c piz

 , (22)

where:

Mcamera =

 fx 0 cx 0
0 fy cy 0
0 0 1 0

 , (23)

and c piz is the depth of laser spot i in the frame {C}.
By substituting c piz in Equation (21) into Equation (22), the complete formulation of

π(Φi(
cO, r, Di, Li)) in the first term is determined. Obviously, the projected point imPi = [im pix, im piy]

T

should coincide with detected coordinate p̃i in the image, thus formulating the first term in
Equation (16). According to the derived cPi in Equation (21), the only unknown values in this function
are the geometric parameters cO and r, which can be optimized with no less than four detected spots.

Furthermore, in order to restrain the effect of the reconstruction error, the reprojection coordinate
of the center of the sphere is also applied:

π(cO) =

im pox
im poy

1

 = Mcamera


cox
/coz

coy
/coz

coz
/coz

1
/coz

 . (24)

In the pinhole model, the reprojection point imPo = [im pox, im poy]T should coincide with the center
of its projected circle p̃o in the image. Thus, the geometric term in Equation (16) is built.

By substituting Equations (22) and (24) into Equation (16), a more precise and robust solution of
geometric parameters can be calculated by optimization.

It is obvious that our method can be easily extended to measure targets of different shapes,
such as planes [3–5], spheroids and paraboloids, just by replacing the geometric function of the target
Equation (17).

3.4. Algorithm Summary

The complete algorithm in this paper can be concluded as the following steps:

1. Use the checkerboard, and place it in front of the camera-laser system in different orientations to
calibrate the intrinsic and extrinsic parameters of the system.

2. Take an image with the target, and detect the laser spots and the center of the projected circle.
3. Estimate the geometric parameters cO0 and r0 using the method described in Section 3.2.
4. Build the cost function Equation (16) with the derivation in Section 3.3, and optimize cO and r by

using the Levenberg–Marquardt method.
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4. Experimental Results

According to the proposed framework, the experiment will be divided into three parts:
the simulation of extrinsic calibration, the simulation of target measurement and the field experiment.
First, we evaluate the robustness of our calibration algorithm by adding detection noise and more
calibration poses. Then, we evaluate the accuracy of our geometric measurement method by taking
the calibration errors of the laser beam into consideration. Finally, field experiments are conducted to
evaluate the performance of the proposed system with the embedded platform.

4.1. Simulation of Extrinsic Calibration

In this section, we design a series of simulation experiments to validate the performance of our
proposed calibration method. In order to represent a realistic measuring environment, the extrinsic
parameters of the simulating laser i are defined as:

cDi = [−5,−5, 100]
cLi = [40 mm , 40 mm, 0]

w
c Tz ∈ [200 mm, 1200 mm]

, (25)

where w
c Tz is the depth of the checkerboard in the frame {C}. The camera’s intrinsic matrix is generated

according to a real camera with resolution 1024× 1024, and the radial distortion is set to zero.
The ground truth is generated with the following rules. The checkerboard plane is defined as

12× 12 square grids, and the length of every square is 20 mm. It is placed at a limited distance from
200 mm to 1200 mm. At each distance, we randomize the angle of the checkerboard in the range of
[−20◦, 20◦] and the translation in the range of [−20 mm, 20 mm]. Then, we calculate the intersection
point of the laser beam and the checkerboard plane at each place. Finally, we calculate the reprojection
point of the checkerboard grid and the laser spot according to the generated angle and translation.

To check the robustness of our proposed calibration method, Gaussian noise, with a mean of zero
and a standard deviation of one pixel, is added to each reprojection of the checkerboard corner and
laser spot. For different magnitudes of noises validation, we scale the default standard deviations by a
factor in the range of [0.25, 3.0].

The calibration result is calculated by the method we proposed. We compare the result with the
ground truth. The direction error is measured by the absolute angle error between our result and the
ground truth in degrees. The intersection point error is measured by the Euclidean distance between
our result and the ground truth. We evaluate the proposed method in two different conditions:

• Different magnitudes reprojection noises with the same amount of poses.
• Different numbers of poses with the same magnitude of reprojection noise.

We run 100 trials for every different magnitude noise and every different number of poses.
First, we evaluate the effect of different reprojection noise with three poses. The standard deviation of
Gaussian noise is one pixel, and it is scaled by a factor in the range of [0.25, 3.0] in our simulations.
The result is shown in Figure 4. Then, our method is evaluated under the second condition, and the
number of poses is in the range of [2, 20]. The result is shown in Figure 5.

Figure 4 shows that the errors grow respectively with the noise magnitude, as expected. Compared
to Nguyen and Reitmayr’s result in [27], our proposed method outperforms the baseline method by a
more accurate result in terms of direction and position. Figure 5 shows that the error decreases along
with the increasing number of planes. Nguyen and Reitmayr’s method reaches an acceptable level
(below 10−2 m in position and around 10−1 in angle) with more than 10 planes. Our method provides
a much better result in position (below 3 mm) and a comparable result in direction.
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Figure 4. Error distribution under noise levels in the range of [0.25, 3.0]: (a) angular error of direction;
(b) position error.
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Figure 5. Error distribution under different numbers of poses in the range of [2, 20]: (a) angular error
of direction; (b) position error.

4.2. Simulation of Target Measurement

In this section, we design a series of simulations to validate the performance of our measurement
system. In order to represent a realistic measuring environment, the measurement scenario is designed
as follows: 

r ∈ [30 mm, 100 mm]
wOz ∈ [200 mm, 1200 mm]

wOx, wOy ∈ [−20 mm,−20 mm]

. (26)

Four lasers are installed in a square configuration with a width of about 60 mm, and four laser
beams converge to the center of the square with an angle of 1◦. In order to simulate a realistic measuring
environment, random noises are added to the extrinsic parameters in the simulation: random variation
of the [−0.1◦, 0.1◦] angle error to converge to an angle and [−1 mm, 1 mm] position error to cLi.
According to the repeated trials, the λ in the cost function Equation (16) is set to 60, which gives the
minimum average error of all of the trials.

In reality, the detection of laser spots can be influenced by the inappropriate exposure parameter
and image noise, which will introduce random noises in the calculation. To ascertain the effects of
noise on the proposed system, two different levels of random noises are added in imPi, respectively:
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random variation of the [−0.5, 0.5] pixel error and the [−1, 1] pixel error. After taking noises into
account, the geometric parameters are calculated for the simulated spheres with a radius of around
60 mm. We randomly place the simulated sphere at 2000 different positions over a distance of 500 mm.
The results for all of the noise levels are shown with the boxplot. As shown in Figure 6, the maximum
absolute errors of position and radius in the noise simulation are less than 3.4 mm and 3 mm, for an
added noise of 0.5 pixels. The errors increase to 6.3 mm and 4.3 mm at higher pixel noises.

It is known that the accuracy of pose estimation for the cooperative target has a strong relationship
with the distance. However, our target is non-cooperative, which means the accuracy is influenced by
the distance and the size of the target simultaneously. Thus, the pixel of the diameter of the target is
used to represent the effective measuring range of our system. We repeat the simulation 2000 times,
which randomizes the radius and positions of the simulated sphere within the designed scenario and
calculates its geometric parameters with noises added. The statistics of the maximum absolute errors
under different pixels of the diameter are shown in Figure 7.

The results in Figure 7 show that: (1) the performance of our system slightly decreases as the pixel
of the diameter decreases at first and drops dramatically when the diameter is lower than 300 pixels;
(2) the maximum absolute errors of our system are less than 5 mm if the diameter is larger than
200 pixels for an added noise of 0.5 pixels; the lower bound of the diameter increases to 300 pixels for a
higher noise of one pixel; (3) a better performance may be achieved by implementing the more robust
laser spot detection method and a high quality camera with a higher resolution.
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Figure 6. Simulation of the pose errors over a 500-mm distance with random noise levels of:
(a) 0.5 pixels; and (b) one pixel.
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Figure 7. Simulation of the pose errors with different pixels of the diameter: (a) result with 0.5 pixels of
noise; (b) result with one pixel of noise.
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Finally, in order to validate the improvement of applying geometric prior term, optimizations
without the geometric prior term are simulated to compare with the proposed method. In this
comparison simulation, we successively use four laser spots, five laser spots, four laser spots with
the geometric prior term and five laser spots with the geometric prior term to optimize the geometric
parameters at 1000 different positions. The statistics of the average errors and maximum absolute
errors are shown in Figure 8.

The results show that the optimizations with geometric prior term perform much better than the
other two groups in both average errors and maximum absolute errors. The gradual improvement
from the first boxplot to the third boxplot proves that the more reconstruction points are used in
optimization, the more accuracy can be expected, while introducing the constraint of the coincidence
between π(cOo) and p̃o, which can significantly improve the performance (more than a ten-fold
improvement) of the measurement system. This improvement validates the advantage of applying the
geometric prior term. Moreover, the minor improvement between the third boxplot and the fourth
boxplot shows that the number of reconstruction points is no longer the dominant factor of accuracy
improvement when the geometric prior is already considered. That is the reason why the four-laser
configuration is chosen as our final design (Figure 1), which retains the simplicity of the design while
offering one-laser redundancy to ensure the robustness of the system.
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Figure 8. Pose error using different numbers of reconstruction points: (a) angular error of direction;
(b) position error.

4.3. Field Experiment

The performance of the proposed system is evaluated by conducting field experiments in which
targets are placed at different positions from 200mm to 2000 mm in indoor environments. The tested
system is implemented with an industry camera and four low-powered simple lasers and is fixed to
a flat platform. The four lasers are set in a square configuration with a width of about 40 mm and a
1◦ converge angle. The targets are a series of textureless white spheres with different radii (50 mm to
200 mm), as shown in Figure 9.

Before the test, the intrinsic and extrinsic parameters of the laser-camera system are calibrated
by using Zhang’s algorithm [37] and the method proposed in Section 2 with 10 checkerboard poses.
The image processing, spot detection and other numerical calculations can be done in real time with a
XC4VSX55 FPGA and a TMS320C6701 DSP integrated in the camera. The acquired images are used
to detect the laser spots and the center of the circle for the geometric parameters’ optimization in
Equation (16). To obtain the ground truth of the target, we establish a precision measurement system
with two Leica TM6100A theodolites. First, a calibration board is used as an intermediate coordinate
to acquire the relative position between the theodolite coordinate frame and frame {C}. Then, at each
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trial, we acquire the position of six points on the target surface w.r.t. the theodolite coordinate frame
via two theodolites. Finally, the ground truth of the geometric parameters w.r.t. {C} is calculated with
data processing software.

Detected center 

Detected 
laser 
spots

Figure 9. The image of the target sphere (left) and detected laser spots and the center point (right).

After running 200 trials, the overall performance is evaluated. The maximum absolute errors of
position and radius are 4 mm and 3.8 mm, respectively, which validate the accuracies of our proposed
calibration method and the measurement framework. Furthermore, our measurement system also
shows good performance in estimating the position of the spherical-like target, such as a polyhedron:
The overall accuracy for the polyhedron with 26 facets in the same field experiment is 8 mm, which
shows the generality and flexibility of our system. The experiment results show that the performance
of the proposed system is comparable to other state-of-the-art multi-sensor methods. A detailed
comparison of multi-DOF sensors for measurement applications is summarized in Table 2.

Table 2. Comparison of multi-DOF sensors for measurement applications.

Method Accuracy Remark

Proposed System <4 mm based on simple lasers and camera
Three-Beam Detector [3] <3 mm installation of a camera on the target

Portable Three-Beam Detector [5] <4 mm based on 1D LRFs and camera
Handheld Camera-Laser System [13] ∼20 mm based on 2D laser scanners and Camera

Laser 2D Scanner [12] ∼60 mm sub-cm accuracy
Single-point 1D Laser Sensor [38] ∼12 mm based on single-point LRFs

Laser Tracker [39] ∼15 µm high cost

5. Conclusions

In this paper, a novel vision measurement system with four simple lasers is proposed to accurately
calculate the geometric parameters of textureless non-cooperative spherical targets. With the efficient
extrinsic calibration method of the laser-camera system proposed in this paper, our system can achieve
an accurate solution of geometric parameters via an optimized scheme in real time. Compared to other
systems, the proposed system requires neither the geometry information nor the texture information
of the target in advance and is suitable for a variety of engineering occasions because of its simplicity,
portability and low-power consumption.

Our simulation shows that our calibration method can provide an accurate result, which
is comparable to the state-of-the-art LRF-based methods and can ensure 3.4-mm accuracy when
recovering the geometric parameters of a spherical target with 0.5 pixels of detection noise added.
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The simulation results also prove that the proposed geometric prior term largely improves the accuracy
of reconstruction.

Field experiments conducted within the designed scenario demonstrate that the overall
performance of the system corresponds to accuracies of 4 mm and 3.8 mm for the position and
radius and still ensures 8-mm accuracy when the target switches to a polyhedron with 26 facets.

Another advantage of this method is that it can be easily extended to targets with different shapes,
just by replacing the target geometric function Equation (17) and installing more lasers to meet the
minimal requirement of reconstruction points if necessary.

In future work, a new algorithm should be developed to measure the geometric parameters of
the target with an unknown curved surface and shape, and we are also intent to seek for more joint
applications in the SLAM and AR fields.
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