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Abstract: Glucose, as an essential substance directly involved in metabolic processes, is closely related
to the occurrence of various diseases such as glucose metabolism disorders and islet cell carcinoma.
Therefore, it is crucial to develop sensitive, accurate, rapid, and cost effective methods for frequent
and convenient detections of glucose. Microfluidic Paper-based Analytical Devices (µPADs) not only
satisfying the above requirements but also occupying the advantages of portability and minimal
sample consumption, have exhibited great potential in the field of glucose detection. This article
reviews and summarizes the most recent improvements in glucose detection in two aspects of
colorimetric and electrochemical µPADs. The progressive techniques for fabricating channels on
µPADs are also emphasized in this article. With the growth of diabetes and other glucose indication
diseases in the underdeveloped and developing countries, low-cost and reliably commercial µPADs
for glucose detection will be in unprecedentedly demand.

Keywords: microfluidic paper-based analytical devices (µPAD); glucose; colorimetric detection;
electrochemical detection

1. Introduction

Glucose, one of the essential metabolic intermediates, is an important medical analyte which is
the indicator of various diseases, such as glucose metabolism disorders and islet cell carcinoma [1–4].
Normally, the concentration of glucose in human blood stream is in the range of 3.8–6.9 mM. A level
below 2.8 mM after no-eating or following exercise is considered to be hypoglycemia [5]. For diabetics,
the blood glucose concentration should be strictly controlled below 10 mM according to the American
Diabetes Association [6]. Frequent and convenient monitor of the blood glucose concentration is a key
endeavor for medical diagnosis [7,8] and of critical importance to the diabetics for the hyperglycemia
complications prevention [9–12].

A terminology “ASSURED” representing the words “affordable, sensitive, specific, user-friendly,
rapid and robust, equipment-free and delivered to those in need”, is summarized by the World
Health Organization (WHO) as the guidelines for the diagnostic point-of-care tests (POCTs) [13].
These diagnostic tests are emerging for applications in the underdeveloped and developing world,
where cost-effect and simplicity are of major concerns [14–17]. As the most abundant biopolymer on
the Earth, cellulose is mostly used to produce paper for industrial use. Being composed of a network
of hydrophilic cellulose fibers [18], paper has a natural porous microstructure, which is amenable to
lateral flow via capillary action, realizing on-site analysis without the requirement for external forces
such as pumps [14,19].

Microfluidic paper-based analytical devices (µPADs) as a promising and powerful platform
have shown great potential in the development of POCTs [20–24]. This concept was first proposed
by the Whitesides group in 2007 [14] and the photoresist-patterned paper was used to fabricate
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the microfluidic devices that the liquid could transport through capillary force in the lack of
external equipment. Since then, µPADs have been popular in a variety of applications, such as
clinical diagnostics [13,14,25–30], food safety [31,32], environmental monitoring [33–35] and
bioterrorism [36–40] due to the advantages of portability, simplicity, economic affordability and
minimal sample consumption.

Paper substrate is hydrophilic by nature. Therefore, to fabricate the µPADs, hydrophobic barriers
are usually created to confine the fluid flow within a desired location or direct the fluidics follow
desired trails. A number of techniques, including photolithography [14,41–46], wax printing [47–50],
screen-printing [51,52], plasma treating [53,54], flexography [55–57] and laser treating [58] have been
developed for the manufacture of hydrophobic barriers. In the photolithography process, photoresists,
e.g., octadecyltrichlorosilane (OTS), poly(o-nitrobenzylmethacrylate) (PoNBMA) and SU-8 used to
fabricate µPADs are costly and the expensive photolithography equipment is also required. Patterning
paper with wax printing technology could offer relative high speed, facile process and high resolution
for fabricating µPADs, while the commercial wax printers of high running costs and the wax of
low melting point restrict the use in batch production. Screen-printing method exhibits slightly
higher resolutions than wax printing, but it is limited by the requirements of accordingly various
printing screens when patterns are changed. Although plasma treating produces patterns without
affecting their flexibility or surface topography, this method suffers from the limitation of mass
production. Flexographic printing is considered as a proper technique for mass production. However,
its requirements locate at the two prints of polystyrene and different printing plates. High resolution
could be achieved when fabricating µPADs using laser treating method, but it is of difficulties to fold
or store the laser-treated devices [59,60]. Though each fabrication method has its own advantages and
limits, the economic benefit of µPAD mass production is the principal issue in concerned, especially for
the widespread utilization in glucose detection. Balancing the interests between cost and performance
may rely on the development of unique process technology and new materials.

With the development of µPADs, multiple conventional detection techniques, such as
colorimetric detection [59,61–64], electrochemical detection [65–68], chemiluminescence (CL) [69–73],
fluorescence [74–77], mass spectrum (MS) [78,79] and surface-enhanced Raman spectroscopy
(SERS) [80,81] have been applied to paper-based devices for rapid diagnostics.

In this article, colorimetric and electrochemical µPADs for glucose detection in the past five
years are summarized and reviewed. With the development of microfabrication and nanomaterial,
glucose detection µPADs with high sensitivity and stability will be commercially accessible in the
near future.

2. Colorimetric Detection of Glucose

2.1. Fabrication Process of Colorimetric Glucose µPADs

Colorimetric detection has been the most widely employed technique for paper-based
analytical devices due to the advantages of visual readout, straightforward operation and superior
stability [82–85]. Glucose oxidase (GOx) and horseradish peroxidase (HRP) are the commonly
used bienzyme system to catalyze the reaction between glucose and the color indicator in µPADs.
The catalytic reaction of glucose by glucose oxidase results in hydrogen peroxide (H2O2) and gluconic
acid. Peroxidase then catalyzes the reaction of H2O2 with color indicator and generates a visual color
change. Identifying an appropriate color indicator is one of the crucial steps in the advancement
of µPADs for the glucose concentrations determination. Potassium iodide (i.e., KI) was one of the
commonly used color indicators. HRP catalyzes the oxidation of iodide to iodine by hydrogen peroxide,
leading to a change from colorless to a visual brown color [59,60,62,86–91]. Garcia et al. [62] proposed
a production method of µPAD using a handheld metal stamp (Figure 1). The channel and barrier
widths of the fabricated µPAD were 2.6 ± 0.1 and 1.4 ± 0.1 mm, respectively. The improvement
in the color uniformity was created by the covalent coupling of enzymes on the surface of paper.
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The linear response was in the range from 0 to 12 mM. Cai et al. [59] developed a µPAD fabricated
free of metal masks or expensive equipment. A mask immobilized with trimethoxyoctadecylsilane
(TMOS) was used to silanize the cellulose paper substrate by heating the paper, which was located
between the mask and glass slides. TMOS adsorbed on the mask would evaporate and penetrate
into the cellulose paper aligning onto the mask, while other parts remained hydrophilic due to the
lack of reaction between cellulose OH groups and TMOS (Figure 2). Li et al. [60,86] developed a
piezoelectric ceramic transducer (PZT) drop-on-demand wax droplet generating system for µPADs.
Wax was jetted as droplet and shaped to form the hydrophobic fluid pattern on a piece of filter paper
with a PZT actuator. Mohammadi et al. [88] proposed a screen-printing method to fabricate µPAD
through patterning polydimethylsiloxane (PDMS) instead of wax onto paper to construct hydrophilic
channels. The glucose diagnostic device could be developed by drawing with a silane/hexane ink
without further requirement of complex equipment. Oyola-Reynoso et al. [92] used a ball-point pen in
the fullness of a solution of trichloro perfluoroalkyl silane in hexanes to draw hydrophobic regions of
paper. To investigate the glucose concentration in blood plasma, Yang et al. [91] developed a µPAD
with agglutinating antibodies immobilized for separating blood plasma from red blood cells in whole
blood (Figure 3). Furthermore, laser-induced photo-polymerisation [93] and blade coating [64] were
also used for creation of µPADs depending on GOx/HRP bienzyme reaction.
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Figure 1. Scheme of the typical stamping process for microfluidic paper-based analytical devices
(µPADs) fabrication: (a) a native paper (n-paper) is covered by a paraffinized paper (p-paper);
(b) after heated at 150 ◦C, the metal stamp is pressed against the layered paper pieces; (c) a typical
µPAD fabricated by the stamping process and its optical micrograph (d). With the permission from [62];
Copyright 2014, The Royal Society of Chemistry.
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a native filter paper (a), and was immersed in TMOS solution (c). The TMOS-adsorbed mask and a 
native filter paper were packed between two glass slides (d). TMOS molecules were assembled on the 
native filter paper by heating (e); and the fabricated μPAD with hydrophilic-hydrophobic contrast (f) 
and its photograph (g) obtained by spraying water on it. With the permission from [59]; Copyright 
2014, The Royal Society of Chemistry. 

 

Figure 3. Fabrication scheme of the μPAD designed in [91]. The central plasma separation zone (a) 
and the four test readout zones (b) were patterned on chromatography paper by a wax printer (c). (d) 
Agglutinating antibodies were immobilized at the central part while the reagents for the colorimetric 
assay at the periphery zones. (e) To perform a diagnostic test with the developed μPAD, the whole 
blood sample was dropped onto the plasma separation zone. (f) The red blood cells were agglutinated 
in the central zone, while the separated plasma wicked into the test readout zones and reacted with 
the reagents of the colorimetric assay. With the permission from [91]; Copyright 2012, The Royal 
Society of Chemistry. 

2.2. Alternative Color Indicators for Glucose μPADs 

Due to the weaker color signal produced by potassium iodide, some organics and nanoparticles 
were used as color indicators in glucose μPADs. 2,4,6-tribromo-3-hydroxy benzoic acid (TBHBA) and 
4-aminoantipyrine (4-APP) were used as substrates catalyzed by HRP to generate color signal for 
glucose detection due to superior water solubility of TBHBA and positive charges of TBHBA/4-APP 
which can be attached firmly onto paper substrate with negative charges [94,95]. Chen et al. [4] 

Figure 2. Scheme of the µPAD fabrication in [59]: A filter paper mask (b) was obtained by cutting on
a native filter paper (a), and was immersed in TMOS solution (c); The TMOS-adsorbed mask and a
native filter paper were packed between two glass slides (d); TMOS molecules were assembled on
the native filter paper by heating (e); and the fabricated µPAD with hydrophilic-hydrophobic contrast
(f) and its photograph (g) obtained by spraying water on it. With the permission from [59]; Copyright
2014, The Royal Society of Chemistry.
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Figure 3. Fabrication scheme of the µPAD designed in [91]. The central plasma separation zone
(a) and the four test readout zones (b) were patterned on chromatography paper by a wax printer (c);
(d) Agglutinating antibodies were immobilized at the central part while the reagents for the colorimetric
assay at the periphery zones; (e) To perform a diagnostic test with the developed µPAD, the whole
blood sample was dropped onto the plasma separation zone; (f) The red blood cells were agglutinated
in the central zone, while the separated plasma wicked into the test readout zones and reacted with the
reagents of the colorimetric assay. With the permission from [91]; Copyright 2012, The Royal Society
of Chemistry.

2.2. Alternative Color Indicators for Glucose µPADs

Due to the weaker color signal produced by potassium iodide, some organics and nanoparticles
were used as color indicators in glucose µPADs. 2,4,6-tribromo-3-hydroxy benzoic acid (TBHBA) and
4-aminoantipyrine (4-APP) were used as substrates catalyzed by HRP to generate color signal for
glucose detection due to superior water solubility of TBHBA and positive charges of TBHBA/4-APP
which can be attached firmly onto paper substrate with negative charges [94,95]. Chen et al. [4] replaced



Sensors 2016, 16, 2086 5 of 17

TBHBA with N-ethyl-N (3-sulfopropyl)-3-methyl-aniline sodium salt (TOPS) and used TOPS/4-APP
in µPAD for glucose detection, which showed a limit of detection (LOD) of 38.1 µM. Gabriel et al. [96]
used 4-AAP and sodium 3,5-dichloro-2-hydroxy-benzenesulfonate (DHBS) as the chromogenic solution.
Chitosan was involved to improve the sensing performance of glucose in tear samples and the detection
limit was 0.023 mM. Zhou et al. [61] used cross-linked siloxane 3-aminopropyltriethoxysilane (APTMS)
as probe for colorimetric µPAD. Only glucose oxidase needs to be immobilized on the µPAD due to
a visual color change when APTMS/glutaraldehyde (GA) complex reacted with H2O2. The µPAD
exhibited good linearity for the concentration in the range from 0.5 to 30 mM, covering the clinical
range for normal blood glucose level [6]. Similarly, Soni et al. [97] used co-immobilized color pH
indicator for direct determination of salivary glucose with no need for peroxidase. While most
conventional intensity-based colorimetric µPAD were still constrained to the requirement of camera
for quantitative detection, Cate et al. [35] and Wei et al. [63] utilized visual distance-based methods
for µPADs through the distance of color development as a detection value. GOx and colorless
3,3′-diaminobenzidine (DAB) were immobilized in a hydrophilic channel as the substrate on the
µPADs. H2O2 were generated by GOx when sample solution travelled along the channel by capillary
action, and then further reacted with DAB to form a visible brown, insoluble product (poly(DAB)) in
the presence of peroxidase (Figure 4). The length of the brown precipitate was positively correlated to
the concentration of glucoses.
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Figure 4. Scheme of the µPAD fabrication in [35] (a) Poly(DAB) as a brown precipitate was generated
in the present of peroxidase when DAB reacted with H2O2 which came from the oxidation of glucose
under the existing of glucose oxidase. By the capillary effect, the brown distance along the channels
was related to the concentration of glucose involved in the reactions; (b) The standard calibration
curves (closed blue squares) of the color development distance with the standard glucose solutions.
The real (complex) serum samples (opened squares) contained 100 nM glucose according to the color
development distance. With the permission from [35]; Copyright 2013, The Royal Society of Chemistry.
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Nanoparticles have been used in lateral flow assays associated with colorimetric detection to
improve the analytical performance and minimize washing effects [98–100]. Figueredo et al. [99]
applied three different types of nanomaterials, namely Fe3O4 nanoparticles (MNPs), multiwalled
carbon nanotubes (MWCNT), and graphene oxide (GO) in paper-based analytical devices to improve
the homogeneity on color measurements. Instead of constructing hydrophobic barriers on paper
surface as described above, a layer of hydrophilic paper channels was directly built up on the surface
of a hydrophobic substrate. With the assistance of glucose oxidase and HRP, the LOD of the µPADs
treated with MNPs, MWCNT and GO were 43, 62, and 18 µM, respectively. Evans et al. [100]
also aimed at improving color intensity and uniformity by using silica nanoparticles (Figure 5).
The PAD added with silica nanoparticles can prevent the color gradients in the colorimetric detection
caused by the washing away effect and the LOD was 0.5 mM. According to the ability of glucose
oxidase to reduce Au3+ ions to Au0 in the presence of glucose [101,102], Palazzo et al. [98] used gold
nanoparticles (AuNPs) as colorimetric reporters to detect glucose. This µPAD only used glucose
oxidase instead of conventional bienzymatic (GOx/peroxidase) device and it avoided bleaching of the
final color, with a LOD of 5 µM. Some nanoparticles like graphene oxide (GO) and cerium oxide (CeO2)
possessed high intrinsic peroxidase-like catalytic activity [103,104]. Deng et al. [105] synthesized
GO@SiO2@CeO2 hybrid nanosheets (GSCs) as an alternative to the commonly employed peroxidase.
2,2′-azinobis(3-ethylbenzothiozoline)-6-sulfonic acid (ABTS) used as the electron donor dye substrate
was converted from a colorless reduced form to a blue-green oxidized form by GSCs instead of
HRP [106] with a LOD of 9 nM.
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2.3. 3D-µPADs

Three-dimensional microfluidic paper-based analytical devices (3D-µPADs) represent an
emerging platform development tendency due to the advantages of high throughput, complex fluid
manipulation, multiplexed analytical tests, and parallel sample distribution [107]. Compared to
the 2D µPADs, 3D-µPADs showed the advantage of highly homogeneous coloration that covering
all the surface of the paper reaction zones. Fluid can move freely in both the horizontal and
vertical directions in a 3D-µPAD. Yoon groups [108,109], Costa et al. [110] and Lewis et al. [111]
fabricated 3D-µPADs by stacking alternating layers of patterned paper and double-sided adhesive
tape with holes. In the presence of H2O2 generated by GOx, the HRP converts 4-AAP and
N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethylaniline sodium salt monohydrate (MAOS) from
colorless compounds to a blue form, which can be visualized in the detection zone. Digital camera
from a smartphone was utilized to read the signal and the dynamic detection ranges from 0.3 to
0.8 mM [109]. Li et al. [112] integrated a minimally invasive microneedle with 3D-µPAD to create the
one-touch-activated blood diagnostic system, which shows great potential in clinical application.
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3D-µPADs could also be converted from 2D structures by origami [113–115]. Choi et al. [114]
separated the 3D-µPADs into two layers. Reservoirs on the top layer were preloaded with reagent
for glucose detection and the test solutions were loaded to each injection zone in the bottom layer.
The device was used by tip-pinch manipulation with the thumb and index fingers to operate the
chemical reaction of the preloaded reagent and test solutions. Sechi et al. [115] used 3D origami
technique to fold the 3D-µPAD and the sample flows from the x, y, and z directions toward the
detection points along the hydrophobic channels created by the wax printing technique (Figure 6).
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Figure 6. The paper-based 3D-µPADs designed in [115]. (a) The yellow rectangles of the unfolded
µPADs marked out the protein detection region while the orange rectangles for glucose; (b) Flow pattern
of the developed 3D-µPADs. Sample flow was introduced from the corner at the top left and spread
into the middle square at the bottom layer. With the permission from [115]; Copyright 2013, American
Chemical Society.

Traditional fabrication techniques of 3D-µPAD involve stacking layers of patterned paper and
origami-clamping, which are complicated and low efficiency. Li et al. [107] and Jeong et al. [116]
proposed a method to fabricate a 3D-µPAD in a single layer of paper by doubled-sided printing and
lamination (Figure 7). Through adjusting the density of printed wax and the heating time, penetration
depth of melted wax could be controlled. This method eliminates major technical hurdles related to
the complicated and interminable stacking, alignment, bonding and punching process.

The LODs achieved versus the colorimetric specific indicators through enzymatic reactions and
the kinds of barriers explored were summarized in Table 1.

Table 1. Summary of the colorimetric µPADs for glucose detection in representative references.
TMB: 3,3′,5,5′-tetramethylbenzidine.

Reference Indicator Barrier Limits of Detection

Garcia et al. (2014) [62] KI Paraffin 0.1 mM
Cai et al. (2014) [59] KI TMOS Not mentioned
Li et al. (2016) [86] KI Wax Not mentioned
Mohammadi et al. (2015) [88] KI PDMS 5 mM
Oyola-Reynoso et al. (2015) [92] KI Trichloro silane 5.5 mM
Chen et al. (2012) [4] 4-AAP/TOPS Paper pieces 0.21 mM
Zhu et al. (2014) [94] 4-AAP/TBHBA Paper pieces 0.3 mM
Zhou et al. (2014) [61] APTMS/GA Paper pieces 0.25 mM
Soni et al. (2015) [97] Methyl red Paper pieces 1.23 mM
Cate et al. (2013) [35] DAB Paper pieces 1.11 mM

Figueredo et al. (2016) [99] TMB Paper pieces 0.043, 0.062 and 0.018 mM
(with different nanomaterials)

Palazzo et al. (2012) [98] AuNPs Paper pieces 0.1 mM
Deng et al. (2014) [105] ABTS Paper pieces 9 nM
Im et al. (2016) [109] 4-AAP/MAOS Wax 0.3 mM
Gabriel et al. (2016) [96] 4-AAP/DHBS Paraffin 0.023 mM
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Figure 7. Scheme of the 3D-µPAD formation on a single sheet of paper in [116]. Before (a) and after
(b) loading the red dye solution, the front, backside and cross section images of each parts indicated
that the red dye solution had smoothly flowed from the inlet to the outlet via the alternative lower and
upper channels. With the permission from [116]; Copyright 2015, The Royal Society of Chemistry.

3. Electrochemical Detection of Glucose

3.1. Advanced Fabrications of Electrochemical Glucose µPADs

Electrochemical detection integrated with a paper-based analytical device plays an important role
in glucose detection due to the advantage of low cost, high sensitivity and selectivity, minimal sample
preparation and short time of response.

Screen-printed electrode (SPE) has been used for glucose detection in many paper-based analytical
devices due to the advantage of flexible design and easy modification with chemicals. The research
group of Swee Ngin Tan developed a paper-based amperometric glucose biosensor by placing a
paper disk immobilized with glucose oxidase (GOx) on top of the SPE and used Fc-COOH or
Prussian Blue (PB) as mediator [117,118]. The linear response range was 1–5 mM with a correlation
coefficient of 0.971. The PAD showed a LOD of 0.18 mM. Yang et al. [65] modified the SPE with
platinum nanoparticles (PtNPs) and used the enzymeless PtNPs-SPE to detect glucose oxidase reaction
product H2O2. The detection limit was dropped to 9.3 µM. Noiphung et al. [119] added a plasma
isolation part and used the PAD to detect glucose from whole blood. A polyvinyl alcohol-bound
glass fiber was used to separate whole blood and the linear calibration range was from 0 up to
33.1 mM with a correlation coefficient of 0.987. Dias et al. [120] developed a paper-based enzymatic
device to detect glucose in the 3D batch injection analysis (BIA) cell coupled with SPEs. The LOD
was 0.11 mM and linear range was 1–10 mM. Miki et al. [121] replaced screen-printed electrode
with complementary metal–oxide–semiconductor (CMOS) chips for electrochemical paper-based
glucose detection. Electrodes were fabricated on CMOS chips, the working electrode (WE) and
counter electrode (CE) were dropped with carbon ink, and the reference electrode (RE) was formed
using Ag/AgCl ink. Glucose oxidase and electron mediator K3[Fe(CN)6] were immobilized on
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chromatography paper. Anodic currents given by electrodes were proportional to the glucose
concentrations and linearity is up to 10 mM, which is sufficient for clinical applications [6].

3.2. Electrochemical Glucose µPADs with Printed Electrodes

An electrochemical sensor is composed of substrate and electrode so that it is important to
fabricate electrodes on paper using an easy and versatile method. Some scientists directly printed
electrodes on paper substrate instead of using commercial screen-printed electrodes [66–68,122–124].
Rungsawang et al. [122] used 4-aminophenylboronic acid (4-APBA) as redox mediator to improve
the selectivity of the homemade screen-printed carbon electrode due to the low detection potential
and the detection limit was 0.86 mM. Määttänen et al. [67] used an inkjet-printing paper-based device,
whose working and counter electrodes were printed gold-stripes and a silver-stripe was printed onto
an AgCl layer to form the reference electrode. Several modifications were carried to demonstrate the
inkjet-printing paper-based device showed no difference with conventional electrodes. Li et al. [123]
proposed a direct writing method using a pressure-assisted accessory ball pen to fabricate electrodes
on paper (Figure 8). The electrodes fabricated on paper were demonstrated with great electrical
conductivity and electrochemical performance, and the electrode could be used in the artificial urine
samples, which exhibited the potential in practical application. Li et al. [66] developed a three-electrode
system prepared on paper directly by drawing with graphite pencils. The µPAD was designed with
a sandwich-type structure that mediator and glucose oxidase were immobilized on separated zones.
This origami µPAD showed acceptable reproducibility and high selectivity against interferents in
physiological fluids. The linear calibration range was from 1 up to 12 mM and the LOD was 0.05 mM.
Santhiago et al. [125] developed a dual-electrode system to replace the conventional three electrode
systems. Graphite pencil was directly used as the working electrode instead of drawing on the paper.
4-aminophenylboronic acid was added as redox mediator to reach low limits glucose detection with a
LOD of 0.38 µM.
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The LODs achieved versus the electrochemical specific mediators through enzymatic reactions
and the kinds of electrodes explored were summarized in Table 2.
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Table 2. Summary of the electrochemical µPADs for glucose detection in representative references.
FcA: Ferrocenecarboxylic acid.

Reference Mediator Electrode Limits of Detection

Lawrence et al. (2014) [118] Fc-COOH Commercial SPE 0.18 mM
Sekar et al. (2014) [117] PB Commercial SPE 0.01 mM
Yang et al. (2014) [65] PtNPs Commercial SPE 0.0093 mM
Miki et al. (2014) [121] K3[Fe(CN)6] CMOS 1 mM
Rungsawang et al. (2016) [122] 4-APBA Wax-printing electrode 0.86 mM
Li et al. (2015) [123] K3[Fe(CN)6] Writing electrode 2 mM
Li et al. (2016) [66] FcA Graphite drawing electrode 0.05 mM
Santhiago et al. (2013) [125] 4-APBA Graphite dual-electrode 0.38 µM

4. Other Glucose Detection Platforms

Except for the conventional colorimetric and electrochemical techniques for glucose detection,
there are some other techniques, such as luminescence [126], fluorescence [127], calorimetric [128],
mass spectrum (MS) [129] and surface-enhanced Raman spectroscopy (SERS) [130] applied to µPADs
for rapid glucose diagnostics. Chen et al. [126] developed a turn-on paper-based phosphorescence
device using Ir-Zne, a kind of luminescence sensing material, composited with GOx with layer-by-layer
technique. Once glucose existed, the oxygen content was depleted and the phosphorescence of Ir-Zne

increased concomitantly. The linear calibration range was from 0.05 to 8.0 mM with a correlation
coefficient of 0.9956 and the LOD was 0.05 mM. Durán et al. [127] utilized colloidal CdSe/ZnS
quantum dots (Q-dots) to produce an optical paper-based device for glucose detection. Paper loaded
with Q-dots would display strong fluorescence under a UV lamp. H2O2 generated by GOx could cause
fluorescence intensity to be quenched after a 20 min exposure. Calorimetric detection is demonstrated
as an extension of current detection mechanisms of colorimetric and electrochemical µPADs.
Davaji et al. [128] developed a calorimetric µPAD based on binding temperature of glucose/GOx
for glucose detection through change in heat. Colletes et al. [129] presented a new insert sample
method based on paper with paraffin barriers (PS-PB) and it was employed to glucose detection with a
LOD of 2.77 mM. A paper membrane-based SERS platform was developed by Torul et al. [130] for
glucose determination in blood using a nitrocellulose membrane and wax-printing microfluidic channel.
Gold nanoparticles modified with 4-mercaptophenylboronic acid (4-MBA) and 1-decanethiol (1-DT)
molecules were used as probe for µPADs. Glucose molecules were moved through the channel toward
the measuring area constructed by dropping AuNPs on the membrane. The glucose concentration was
6.17 ± 0.11 mM and the device may provide a wide range of applications in daily life.

5. Conclusions

Rapid and convenient tests for glucose have become essential in underdeveloped and developing
countries, as glucose is an important indicator of metabolic activity. Since microfluidic paper-based
analytical device was proposed by the Harvard group in 2007, it has attracted extensive attention in
a wide range of applications. Numerous methods have been developed to fabricate the µPADs
and multiple detection techniques have been applied to glucose diagnostics. Colorimetric and
electrochemical detection are doubtlessly the most important techniques. Colorimetric detection is
more widely used than electrochemical detection while the sensitivity is lower than the latter. With the
development of point-of-care diagnostic (POCT), it is expected that the carry-on paper-based analytical
devices will be generated. The devices tend to be miniaturization and the spectrometric functions
or electronic measurements could be integrated in the smartphones [131]. Alternative materials
like toner [132,133] have also been investigated for clinical glucose diagnostics without the part of
cumbersome fabrication process. Besides, the exploration of biocompatibility and toxicity of papers
give a potential for developing minimally invasive or non-invasive µPADs for real-time glucose



Sensors 2016, 16, 2086 11 of 17

detection. Improvements of stability and accuracy of glucose detection will bring the devices to be
commercially available in the future.
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