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Abstract: The goal of this paper is to present a novel VLSI architecture for spike sorting with high
classification accuracy, low area costs and low power consumption. A novel feature extraction
algorithm with low computational complexities is proposed for the design of the architecture. In the
feature extraction algorithm, a spike is separated into two portions based on its peak value. The area of
each portion is then used as a feature. The algorithm is simple to implement and less susceptible to
noise interference. Based on the algorithm, a novel architecture capable of identifying peak values
and computing spike areas concurrently is proposed. To further accelerate the computation, a spike
can be divided into a number of segments for the local feature computation. The local features
are subsequently merged with the global ones by a simple hardware circuit. The architecture
can also be easily operated in conjunction with the circuits for commonly-used spike detection
algorithms, such as the Non-linear Energy Operator (NEO). The architecture has been implemented
by an Application-Specific Integrated Circuit (ASIC) with 90-nm technology. Comparisons to the
existing works show that the proposed architecture is well suited for real-time multi-channel spike
detection and feature extraction requiring low hardware area costs, low power consumption and
high classification accuracy.
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1. Introduction

There is an increasing demand in data-acquisition systems for neurophysiology to record
simultaneously from many channels over long time periods [1]. These experiments accumulate large
amounts of data, which would be processed by spike sorting systems for analyzing the activities of
neurons. A typical spike sorting system [2,3] usually involves complicated feature extraction and
spike classification operations for separating spikes from background noise and clustering the detected
spikes. A large amount of spike trains would impose heavy computational load for a software spike
sorting system, resulting in a long processing time.

One approach to reduce the computation time is to implement a spike sorting system by hardware.
Hardware systems offering dedicated circuits substantially outperform their software counterparts in
terms of computational performance. Hardware solutions are beneficial for neurophysiological signal
recordings and analysis where real-time computing is crucial. There are two hardware approaches:
Field Programmable Gate Array (FPGA) [4] and Application-Specific Integrated Circuit (ASIC) [5].
Some FPGA circuits [6,7] possess high area complexities and/or power consumption, which may be
suited only for offline processing. On the contrary, ASIC architectures may have lower area costs and
power dissipation. Many ASIC-based spike sorting implementations are then proposed for in vivo
applications, where area- and power-efficient design is desired.

Sensors 2016, 16, 2084; doi:10.3390/s16122084 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 2084 2 of 21

Many ASIC architectures based on Principal Component Analysis (PCA) [8–10] have been
proposed for hardware spike sorting. Although they are effective for feature extraction, the inherent
complexities for the computations of the covariance matrix and eigenvalue decomposition in the
PCA algorithm may impose high hardware and power costs. The PCA variants, such as the Generalized
Hebbian Algorithm (GHA) [11], are able to reduce the hardware costs by lifting the requirements for
covariance matrix computation. In the GHA, the principal components are updated incrementally
based on a set of training data. Nevertheless, its iterative training procedure may still be a bottleneck
for online applications.

Alternatives to PCA and GHA include techniques such as discrete derivatives [12,13],
integral transform [14] and zero-crossing [15] for feature extraction. The techniques feature low
computational costs without additional training procedures. Nevertheless, some algorithms may be
prone to noises due to the simple feature extraction procedure without taking noise into consideration.
In addition, some of the algorithms have not been implemented by hardware. The effectiveness of the
algorithms for ASIC implementation as compared with other techniques may still need to be evaluated.

The objective of this paper is to present a novel ASIC implementation for spike sorting featuring
high classification accuracy, low area costs and low power consumption. The architecture is based on
a novel feature extraction algorithm with low computational complexities. In the feature extraction
algorithm, the location of the global minimum (or maximum) of a spike is first identified. Based on
the location, the spike is then separated into two portions. The area of each portion is then used
as a feature. Similar to the algorithms in [12–15], the proposed algorithm is simple to implement.
In addition, it may be less susceptible to noise interference. Observe that the variations in the location
of the global minimum (or maximum) of a spike due to noises may be small provided that the other
local minimal (or maximal) values are significantly larger (or smaller) than the global one. This may
be the case for some spike waveforms. The algorithm may then provide high immunity to noise
corruption. Furthermore, the area of each position may be divided by the distance between the global
maximum and minimum to enhance the classification accuracy.

A novel VLSI architecture is also presented for the novel feature extraction algorithm. In the
architecture, the search for the global minimum and the computation of the area of portions separated
by the minimum value are carried out concurrently. This is beneficial for pipelining operation for
enhancing the throughput of the feature extraction. To further expedite the process, the local peak
search and area computation over smaller segments of the spike can be carried out first. The local
peak values and areas are subsequently merged with the global ones by a simple hardware circuit.
In addition, due to its simplicity, the architecture can be operated in conjunction with other spike
detection circuits. In this work, the circuit based on the Non-linear Energy Operator (NEO) [16] is
employed for the multi-channel spike detection. To minimize the power consumption and area costs of
the circuits, all of the channels share the same core for spike detection and feature extraction operations.
A Clock Gating (CG) technique [17] is also employed to supply the system clock only to the active
components of the circuit. A number of ASIC implementations are presented to demonstrate the
effectiveness of the proposed architecture. Experimental results reveal that the proposed architecture
is an effective alternative for in vivo multi-channel spike sorting with high classification accuracy,
low power dissipation and low hardware area costs.

The remaining parts of this paper are organized as follows. The proposed feature extraction
algorithm and the corresponding VLSI architecture are presented in Section 2. The architecture of the
multi-channel spike sorting system supporting both the NEO and the proposed algorithm is presented
in Section 3. Section 4 then evaluates the performance of the spike sorting system. Finally, Section 5
includes some concluding remarks.
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2. The Proposed Feature Extraction Algorithm and Architecture

2.1. The Algorithm

2.1.1. The Proposed Algorithm for the Feature Extraction of Spikes

This section presents a novel algorithm for the feature extraction of spikes. Consider a spike x
with length N, where xi, i = 1, ..., N, is the i-th sample of x. Let imin and imax be the index of the global
minimum and maximum of x, respectively. That is,

imin = argmin
1≤i≤N

xi, imax = argmax
1≤i≤N

xi. (1)

The index imin (or imax) is used to separate the sample indices of spike x into two intervals [1, imin]

and [imin + 1, N]. Let a1 and a2 be the two features based on imin. They are computed by:

a1 =
imin

∑
i=1

(xi − ximin), (2)

a2 =
N

∑
i=imin+1

(xi − ximin). (3)

The a1 and a2 can then be viewed as the area of the spike in the two intervals with ximin as the
reference level. Alternatively, ximax can be used as the reference level. In this case, the separation of x is
based on imax, and the corresponding features, denoted by b1 and b2, are given by:

b1 =
imax

∑
i=1

(ximax − xi), (4)

b2 =
N

∑
i=imax+1

(ximax − xi). (5)

In addition to the areas, the difference between imin and imax could be a feature beneficial for
spike sorting. One way to incorporate the feature is based on the division as shown below.

fi =

{
ai/(imin − imax) when ximin is the reference,
bi/(imin − imax) when ximax is the reference,

(6)

where fi, i = 1, 2, are the final features produced by the proposed algorithm.
An advantage of the proposed algorithm is that the feature vectors extracted by the algorithm

may not be susceptible to noise interference. A contributing factor to the noise robustness is that the
variations of the locations of peaks (i.e., imin or imax) may not be high even for large background
noises. For example, Figure 1 shows the locations and values of peaks of spikes corrupted by
background noises with different SNR levels. Each spike contains 64 samples (i.e., N = 64). The spike
data for the figure is obtained from the simulator developed in [18]. It can be observed from Figure 1
that the location variations are small for all of the SNR levels considered in the figure. In particular,
when SNR = 1 dB, the location of the minimum value is 41, as shown in Figure 1d. From Figure 1a,
we see that the true location of the minimum value is 38. Because the length of spikes is 64, the variation
is only 4.68%. This may be beneficial for maintaining low variations of fi in Equation (6) in the presence
of noise.

The variations of the locations of peaks may also be small when a spike is overlapped by another
one. Examples of spikes with different degrees of overlapping are revealed in Figures 2–4. To facilitate
the observation, there is no background noise corruption in the spikes. In the examples, the location
imin of a spike is used to split the indices of spike samples into two intervals [1, imin] and [imin + 1, N].
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For the sake of simplicity, we let J1 = [1, imin] and J2 = [imin + 1, N]. In addition to the locations
and values of peaks, the J1 and J2 are marked for each spike in the figures. This is beneficial for the
observance of the impact on the extraction of feature vectors due to spike overlapping.
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Figure 1. The locations and values of peaks of spikes corrupted by background noises with different
SNR levels, where the black square and circle markers represent the maximum and minimum of spikes,
respectively. (a) The original spike; (b) SNR = 8 dB; (c) SNR = 4 dB; (d) SNR = 1 dB.

We first consider the example without spike overlapping, as shown in Figure 2. There are
two spikes in the example. The first and the second spike, denoted by Spike 1 and Spike 2, are located in
the first 64 samples and final 64 samples in Figure 2a,b, respectively. Therefore, after the combination,
the waveform of each individual waveform remains unaltered, as revealed in Figure 2c. That is,
the peak locations stay the same, and the J2 of Spike 1 is not overlapped with the J1 of Spike 2.
The feature vectors extracted from these two spikes will not be changed after the combination.

In the next example, Spike 2 is shifted leftward by 16 samples. Because the length of each spike
is 64 samples, the Spike 1 and Spike 2 are overlapping by 25%, as shown in Figure 3. In this case,
the combination of these two spikes introduces a slight distortion to each individual spike, as revealed
in Figure 3c. Nevertheless, it can be observed that the variations in peak locations are small for each
spike. Therefore, J1 and J2 can still be identified accurately for each spike. We can also see from
Figure 3c that the J2 of Spike 1 is overlapped with the J1 of Spike 2. That is, one of the two areas
separated by the imin of Spike 1 also belongs to Spike 2, and vice versa. The a2 of Spike 1 and a1 of
Spike 2 may then not be accurately extracted. However, because the remaining intervals (i.e., J1 of
Spike 1 and J2 of Spike 2) are still non-overlapping intervals, the a1 of Spike 1 and a2 of Spike 2 can be
computed accurately. The feature vectors may still be useful for subsequent spike classification.
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Figure 2. An example of two non-overlapping spikes for feature extraction. (a) Original Spike 1;
(b) original Spike 2; (c) resulting waveform after the combination of the two spikes.
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Figure 3. An example of two spikes overlapping by 25% for feature extraction. (a) Original Spike 1;
(b) original Spike 2; (c) resulting waveform after the combination of the two spikes.
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Figure 4 shows the third example, where Spike 1 and Spike 2 are overlapping by 50%. We can see
from Figure 4 that the peak location variations are still small even for this case. This is helpful for the
successful identification of J1 and J2 for each spike. Due to the large area overlapping, the distortion of
spike waveforms may be visible. This is particularly true for Spike 1 by comparing the waveform of
the first 64 samples in Figure 4a with that of Figure 4c. This can also be further confirmed by observing
from Figure 4c that both the J1 and J2 of Spike 1 are overlapped with both J1 of Spike 2. The correct
classification of Spike 1 may then be difficult. Nevertheless, the successful classification of Spike 2 may
still be possible because its J2 is not overlapped with the intervals of Spike 1, and accurate extraction of
a2 and subsequently classification for Spike 2 may still be successful.

Finally, when Spike 1 and Spike 2 are overlapping by more than 50%, large distortion of spike
waveforms may be observed. The deviations of peak locations from their original ones before spike
combinations may then be large, resulting in inaccurate identification of J1 and J2. In addition,
larger overlapping of J1 and J2 of both spikes is possible. Consequently, accurate extraction of a1 and
a2 of Spikes 1 and 2 may become more difficult in this case.

In summary, based on the results provided by the above examples, we see that the proposed
algorithm may be robust to noise interference. The locations of peaks may not be susceptible to
background noises and spike overlapping. The variations may be small even when the SNR = 1 dB
and/or the degree of spike overlapping is up to 50%. The proposed algorithm is based on the locations
of peaks for the computation of feature vectors. The robustness of the peak locations observed from the
examples is then beneficial for providing useful insight into the effectiveness of the proposed algorithm.
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Figure 4. An example of two spikes overlapping by 50% for feature extraction. (a) Original Spike 1;
(b) original Spike 2; (c) resulting waveform after the combination of the two spikes.
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2.1.2. Operations of the Proposed Architecture Based on the Algorithm

From Equation (6), we see that the computation of fi is dependent of the selection of ximin or ximax

as the reference. For the sake of simplicity, only the case where ximin is the reference is considered for the
hardware implementation. The hardware design for the other case can be followed in a similar fashion.

One direct approach for the hardware implementation of the proposed algorithm is to first identify
imin and imax from the spike x. The computation of ai and fi is then followed. Although the approach
is simple, it is necessary to store the spike x. This is because the spike x is first used for finding imin

and imax, and then, it is re-used again for computing ai, i = 1, 2. As a consequence, the latency of the
circuit may be long. In addition, the circuit may need a buffer to store x. When the dimension N of x is
large, the area costs may be high.

The proposed architecture is able to alleviate the drawbacks stated above. It concurrently computes
imin, imax and ai, fi, i = 1, 2. To carry out the concurrent operation, a novel incremental approach is
proposed. Before presenting the approach, we first note that ai, i = 1, 2, in Equations (2) and (3) can be
rewritten as:

a1 = (
imin

∑
i=1

xi)− iminximin , (7)

a2 = (
N

∑
i=imin+1

xi)− (N − imin)ximin . (8)

Both a1 and a2 can be computed after all of the N samples of x are available. In the case that only
the first j samples of x are available, we define:

p(j) = argmin
1≤i≤j

xi, q(j) = argmax
1≤i≤j

xi. (9)

as the current imin and imax up to the j-th sample of x, respectively. Based on p(j), the incremental
versions of a1 and a2, denoted by a1(j) and a2(j), are defined as:

a1(j) = S1(j)− p(j)xp(j), (10)

a2(j) = S2(j)− (N − p(j))xp(j), (11)

where:

S1(j) =
p(j)

∑
i=1

xi, S2(j) =
j

∑
i=p(j)+1

xi. (12)

Clearly, when j = N, it follows from Equations (1) and (9) that p(N) = imin. Therefore, a1(N) = a1

and a2(N) = a2. Based on ai(j), i = 1, 2, we then define fi(j), i = 1, 2, as:

fi(j) = ai(j)/(p(j)− q(j)). (13)

The fi(j) can also be viewed as the incremental version of fi, i = 1, 2. From Equations (6) and (13),
it can also be easily shown that fi(N) = fi when ximin is used as the reference.

It is interesting to note that the computation of Si(j), i = 1, 2, can be carried out recursively from
their predecessors Si(j− 1), i = 1, 2. To explore the recursive relationship, two cases are considered
separately. The first case is p(j) = p(j− 1). This implies that the current imin remains the same after
the new sample xj has arrived. In this case,
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S1(j) |p(j)=p(j−1) =
p(j)

∑
i=1

xi =
p(j−1)

∑
i=1

xi = S1(j− 1), (14)

S2(j) |p(j)=p(j−1) =
j

∑
i=p(j)+1

xi = (
j−1

∑
i=p(j−1)+1

xi) + xj = S2(j− 1) + xj. (15)

In the second case, p(j) 6= p(j− 1). This occurs only when xj = min1≤i≤j xi. Therefore, in this
case, the current imin is updated as p(j) = j. It then follows that:

S1(j) |p(j) 6=p(j−1) =
p(j)

∑
i=1

xi =
j

∑
i=1

xi = S1(j− 1) + S2(j− 1) + xj, (16)

S2(j) |p(j) 6=p(j−1) = 0. (17)

All of the operations are based on the initial conditions S1(−1) = S2(−1) = 0. We can observe
from Equations (14)–(17) that S1(j) and S2(j) can always be obtained from Si(j− 1), i = 1, 2, regardless
of the variations of p(j). In addition to providing incremental computation, another important
advantage is that it is not necessary to reuse xj for the computation of Si(k), i = 1, 2, for any k > j.
This is beneficial for hardware design because it is not necessary to adopt a buffer for storing x for
data re-use.

2.2. The Architecture

2.2.1. Overview of the Proposed Architecture

Figure 5 shows the proposed architecture for feature extraction. As shown in Figure 5, it can be
separated into three parts: the Global Minimum and maximum Search (GMS) unit, the ACCumulation
(ACC) unit and the Feature Search (FS) unit. Based on an input sample xj, the GMS unit computes p(j)
and q(j), the current imin and imax, respectively. The ACC unit then calculates Si(j), i = 1, 2. Based on
the results of GMS and ACC units, the FS unit produces the features fi(j), i = 1, 2.

Figure 5. The proposed architecture for feature extraction.

2.2.2. GMS Unit, ACC Unit and FS Unit

The architecture of the GMS unit is depicted in Figure 6. The architecture updates and stores
the current imin and imax, as well as the current ximin . It contained two modules: the GMS 1 module
and the GMS 2 module. The goal of the GMS 1 module and GMS 2 module is to find the p(j) and
q(j), respectively. Given an input sample xj, in the GMS 1 module, the comparison between xj and
xp(j−1) is carried out first. When xj > xp(j−1), it follows from Equation (9) that p(j) = p(j− 1). In this
case, no updating occurs. Otherwise, we update p(j) = j, and xp(j) = xj. The module will also notify
the occurrence of updating to the ACC unit. The GMS 2 module operates in a similar fashion for the
updating of q(j), which occurs when xj > xq(j−1).

There are two components in the ACC unit, termed the ACC 1 module and the ACC 2 module,
respectively. Their goal is to compute S1(j) and S2(j). The operations of the ACC 1 and ACC 2 modules
are based on Equations (14)–(17), respectively. As shown in Figure 7, each module contains a register,
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an adder and a multiplexer. As the input xj enters the proposed architecture, the current values held
by the register of the ACC 1 and ACC 2 modules are S1(j− 1) and S2(j− 1), respectively. The input
sample xj directly enters the ACC 2 module.

Figure 6. The architecture of the GMS unit.

Figure 7. The architecture of the ACC unit.

In the case that no updating operations are required (i.e., p(j) = p(j− 1)), ACC 2 will add xj
and S2(j− 1) to compute S2(j) in accordance with Equation (15). In addition, from Equation (14),
we see that S1(j− 1) and S1(j) will be the same for ACC 1 module when no updating occurs. When
p(j) 6= p(j− 1), ACC 2 will first compute S2(j− 1) + xj and then push this value to ACC 1. Meanwhile,
based on Equation (17), the value of ACC 2 would then be reset to zero. Upon receiving the value
S2(j− 1) + xj from ACC 2, ACC 1 adds the value to S1(j− 1) according to Equation (16).

Figure 8 shows the architecture of the FS unit, which contains two components. The goal of the
first component, termed the FS 1 module, is to compute a1(j) and a2(j) based on the results produced
by the GMS unit and the ACC unit. The computation is carried out in accordance with Equations (10)
and (11). Using the results produced by the FS 1 module, the second component of the FS unit, termed
the FS 2 module, then computes the features f1(j) and f2(j) by Equation (13). As shown in Figure 8,
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both the FS 1 module and the FS 2 module mainly contain arithmetic operators for the hardware
implementation of Equations (10), (11) and (13).

Figure 8. The architecture of the FS unit.

2.2.3. Extension of the Proposed Architecture for Parallel Computation

The proposed architecture in its basic form operates on spikes one sample at a time. When the
number of samples N in a spike is large, the latency of the computation may be long. One way to solve
the problem is to separate a spike into non-overlapping segments and then operate on the segments
concurrently. The computation time can then be reduced.

Let K be the number of segments for the parallel computation, and K is a power of two. For the
sake of simplicity, we first consider K = 2. The computation for other cases of K > 2 can be easily
extended from this simple case. Figure 9 shows the proposed architecture for the concurrent operations
with K = 2. Because K = 2, a spike will be separated into two segments. The samples xj with
1 ≤ j ≤ (N/2) belong to the first segment and the others the second segment. There are two inputs:
xj and xj+N/2, which are the j-th sample of the first and the second segments, respectively. There are
two GMS units and two ACC units. As shown in the figure, the units denoted by GMS Unit A and
ACC Unit A are for the first segment. The others are for the second segment. Their computation results
are then combined by the circuits termed the GMS merger unit and the ACC merger unit. Finally,
the FS unit computes the final features based on the data provided by the GMS merger unit and the
ACC merger unit.

To discuss the operations of the circuits, we first define sets A(j), B(j), and C(j) as:

A(j) = {i : 1 ≤ i ≤ j}, B(j) = {i : (N/2) + 1 ≤ i ≤ (N/2) + j}, C(j) = A(j) ∪ B(j). (18)

In addition,

pA(j) = argmin
i∈A(j)

xi, pB(j) = argmin
i∈B(j)

xi, pC(j) = argmin
i∈C(j)

xi. (19)

qA(j) = argmax
i∈A(j)

xi, qB(j) = argmax
i∈B(j)

xi, qC(j) = argmax
i∈C(j)

xi. (20)
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Based on Equation (19), we further define:

SA,1(j) = ∑
i∈A(j),i≤pA(j)

xi, SA,2(j) = ∑
i∈A(j),i>pA(j)

xi. (21)

SB,1(j) = ∑
i∈B(j),i≤pB(j)

xi, SB,2(j) = ∑
i∈B(j),i>pB(j)

xi. (22)

SC,1(j) = ∑
i∈C(j),i≤pC(j)

xi, SC,2(j) = ∑
i∈C(j),i>pC(j)

xi. (23)

Figure 9. The proposed architecture for the concurrent operations with K = 2.

The goal of GMS Units A and B is to compute pA(j), qA(j) and pB(j), qB(j), respectively.
Their architecture is identical to that shown in Figure 6. The ACC Units A and B find SA,1(j), SA,2(j)
and SB,1(j), SB,2(j), respectively. These units can be operated by the architecture in Figure 7. Based on
pA(j), qA(j) and pB(j), qB(j), the GMS merger unit produces pC(j), qC(j) (as well as xpC(j)). The ACC
merger unit then computes SC,1(j), SC,2(j). Figures 10 and 11 shows the architectures of the GMS
merger unit and the ACC merger unit, respectively.

It can be easily observed from Equations (19) and (20) that:

pC(j) =

{
pA(j) if xpA(j) ≤ xpB(j)
pB(j) if xpA(j) > xpB(j)

(24)

qC(j) =

{
qA(j) if xqA(j) ≥ xqB(j)
qB(j) if xqA(j) < xqB(j)

(25)

Therefore, as shown in Figure 10, the GMS merger unit carries out the comparison operations over
xpA(j) and xpB(j) (or xqA(j) and xqB(j)) for finding pC(j) (or qC(j)). Only comparators and multiplexers
are required for the operations. We can also derive from Equations (21)–(24) that when pC(j) = pA(j),

SC,1(j) |pC(j)=pA(j) = SA,1(j), (26)

SC,2(j) |pC(j)=pA(j) = SA,2(j) + SB,1(j) + SB,2(j). (27)

On the other hand, when pC(j) = pB(j),

SC,1(j) |pC(j)=pB(j) = SA,1(j) + SA,2(j) + SB,1(j), (28)

SC,2(j) |pC(j)=pB(j) = SB,2(j). (29)
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Figure 10. The architecture of the GMS merger unit.

Figure 11. The architecture of the ACC merger unit.

The operations of the ACC merger unit then follow Equations (26)–(29). These operations can be
carried out by only adders and multiplexers, as shown in Figure 11.

Based on the data produced by the GMS merger unit and ACC merger unit, the FC unit then
computes fC,1(j) and fC,2(j), defined as:

fC,i(j) = aC,i(j)/(pC(j)− qC(j)), (30)

where:
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aC,1(j) = SC,1(j)− pC(j)xpC(j), (31)

aC,2(j) = SC,2(j)− (N − pC(j))xpC(j), (32)

The architecture of the FS unit for parallel computation is also identical to that of the basic circuit
shown in Figure 8. It can be observed that, when j = N/2, C(N/2) = {i : 1 ≤ i ≤ N}. Therefore,
aC,i(N/2) = ai, i = 1, 2. As a result, fC,i(N/2) = fi, i = 1, 2.

The proposed architectures can also be viewed as trees. The basic architecture shown in Figure 5
is a unitary tree with a leaf node and a root node. The parallel computation circuit in Figure 9 for
K = 2 can be viewed as a simple binary tree with two leaf nodes, one intermediate node and one root
node. Each leaf node contains a GMS unit and an ACC unit. Each intermediate node consists of a GMS
merger unit and an ACC merger unit. The root node comprises the FS unit.

The parallel computation for a larger number of K, where K is a power of two, is a simple
extension of K = 2. In this case, the circuit can be viewed as a binary tree with K leaf nodes and K− 1
intermediate nodes and a root node. There are 2 + log2 K layers for the parallel computation. The leaf
nodes form the first layer. The intermediate nodes can be organized into the subsequent log2 K layers.
The root node is the final layer of the circuit. Figure 12 shows the examples of the binary trees for
K = 2 and K = 4.

K = 2

K = 4

Figure 12. The binary tree representation of the proposed architecture for parallel computation with
K = 2 and 4. The nodes denoted by L, I and F are the leaf nodes, intermediate nodes and root
nodes, respectively.

The circuit with K a power of two operates by first separating a spike into K non-overlapping
segments with length N/K. Each segment is assigned to a dedicated leaf node. Samples of each
segment are delivered to the assigned leaf node one sample at a time. The data produced by the leaf
nodes are then forwarded to the first layer of the intermediate nodes. Each layer would then receive
data from its preceding layer and deliver the results to the next layer. The same process is repeated
until the final layer is reached.

3. Proposed Architecture for Multi-Channel Feature Extraction

The proposed architecture can be easily operated in conjunction with the multi-channel
spike detection circuit for multi-channel feature extraction. Figure 13 shows the architecture of
a multi-channel spike sorting system based on the proposed feature extraction circuit. As depicted in
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the figure, there are three components: spike detection circuit, spike buffer and the proposed feature
extraction circuit.

Figure 13. The architecture of a multi-channel spike sorting system based on the proposed feature
extraction circuit.

The spike detection circuit is able to carry out the detection for multiple channels by the NEO
algorithm. Let M be the number of channels for spike sorting. Assume all of the channels are sampled
with the same sampling rate rs. Let Ts = 1/rs be the sampling period. All of the channels are assumed to
be sampled and multiplexed by a mixed mode circuit using the round robin approach. The mixed-mode
circuit then delivers the samples one at a time to the spike detection circuit. Therefore, the circuit
receives M samples during a time interval of length Ts. Different samples received during the interval
are from different channels.

The spike detection circuit can be separated into two portions: the NEO buffer and the NEO
detection unit. The NEO buffer is a (M× N)-stage Serial-In-Serial-Out (SISO) shift register organized
in a snake-like fashion. Each stage contains a sample of a spike train from a channel. It is therefore
able to hold N consecutive samples of the spike trains from the M channels.

The bottom row of the buffer provides N consecutive samples of the spike train from a channel
(say, channel h). It can be seen from Figure 14 that the bottom row of the NEO buffer is used for both
NEO detection and peak alignment. The NEO detection unit takes three consecutive samples of the
bottom row to carry out the NEO computation. The computation result is then compared to a given
threshold γ. If the result is larger than the threshold, a hit event is issued. In addition, the entire last
row is regarded as a detected spike and is copied to the spike buffer for spike alignment.

Figure 14. The architecture of the multi-channel NEO circuit.

The spike detection circuit is able to perform spike detection one channel at a time. After the
spike detection of the channel h is completed in the current clock cycle, all of the spike samples already
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in the NEO buffer are shifted to the next stage, and a new sample from the next channel (selected in a
round robin fashion) enters the first stage of the NEO buffer. This allows the spike detection for the
next channel to be carried out in the next clock cycle.

The goal of the spike buffer is to hold the detected spikes produced by the spike detection circuit,
carry out the alignment and deliver the detected spikes to the proposed feature extraction circuit.
As depicted in Figure 15, there are two stages in the spike buffer: the input stage and the output
stage. The input stage is an N-input N-output buffer holding the detected spikes provided by the
spike detection circuit. The output stage is an N-input K-output buffer fetching data N samples at
a time from the input buffer. The buffer then delivers data K samples at a time to the proposed feature
extraction circuit.

Figure 15. The architecture of the spike buffer.

The input stage contains M entries, where each entry i stores the detected spike for channel i.
Given N, K, the maximum number of channels M can be evaluated. For any channel h in the circuit,
a detected spike in that channel could be discarded when the spike is over-written in the spike buffer
by the next detected spike from the same channel h before it can be further processed.

Recall from Section 2.2.3 that the proposed architecture supporting parallel computation is able to
accept K samples at a time. Therefore, the proposed architecture is able to process a detected spike
with N samples in N/K clock cycles. To find the maximum number of channels M, the worst case
scenario is considered. In the scenario, the detected spikes from all of the M channels are stored in
the spike buffer and are not processed by the feature extraction circuit yet. In addition, the feature
extraction circuit is currently busy. Assume that the newest detected spike is from channel h. In this
case, the spike buffer is able to accept another detected spike from channel h without discarding
the old one only after the feature extraction circuit has processed M spikes. Because the latency for
processing each detected spike is N/K clock cycles, it follows that the input buffer is able to accept
another detected spike from channel h after MN/K clock cycles. Let Q be the minimum number of
samples between the peak of successive spikes detected by the NEO circuit from the same channel.
Assume that Q is the same for all of the channels. It then follows that a detected spike from channel h
is not overwritten and discarded when:

MNTc

K
≤ QTs, (33)

where Tc = 1/rc is the clock period and rc is the clock rate. It is interesting to know that the NEO
circuit imposes an additional limit on the number of channels M. It is desired that the NEO circuit be
able to receive one sample from each channel in a single sampling period Ts. Based on the round robin
scheme for fetching samples for different channels, it is therefore necessary that:

MTc ≤ Ts. (34)
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Combining Equations (33) and (34), we see that the maximum number of channels, denoted by
Mmax, should then satisfy:

Mmax ≤ min{QTsK
NTc

,
Ts

Tc
}. (35)

4. Experimental Results

This section presents the performance of the proposed architecture. The area complexities are first
considered. Five types of area costs are evaluated: the number of comparators, adders/subtractors,
multipliers/dividers, registers and multiplexers. All of the costs are expressed in terms of the
asymptotic function (i.e., the big O function). Table 1 shows the area complexities of the proposed
feature extraction circuit. It can be observed from Table 1 that all of the area costs of the GMS units,
ACC units, GMS merger units, ACC merger units and FS units are independent of the spike length N
and the number of channels M. However, for the parallel computation, the number of comparators,
adders/subtractors, registers and multiplexers of all of the leaf nodes will grow with the number of
segments K. This is because the total number of leaf nodes is dependent on K, and each leaf node
contains a GMS unit and an ACC unit.

Table 1. The area complexities of the proposed feature extraction circuit.

Comparators Adders/Subtractors Multipliers/Dividers Registers Multiplexers

GMS Unit O(1) 0 0 O(1) O(1)
ACC Unit 0 O(1) 0 O(1) O(1)

GMS Merger Unit O(1) 0 0 0 O(1)
ACC Merger Unit 0 O(1) 0 0 O(1)

FS Unit 0 O(1) O(1) 0 0
Total Leave Nodes O(K) O(K) 0 O(K) O(K)

Total Intermediate Nodes O(K) O(K) 0 0 O(K)
Total Root Nodes 0 O(1) O(1) 0 0

Total O(K) O(K) O(1) O(K) O(K)

Similarly, because the total number of intermediate nodes is dependent on K and each intermediate
node contains a GMS merger unit and an ACC merger unit, the area complexities of comparators,
adders/subtractors and multiplexers of all of the intermediate nodes are O(K). On the contrary,
there is only one root node for parallel computation, and the root node consists of only the
FS unit. Among the units in the proposed architecture, the FS unit is the only unit containing
multipliers/dividers. Therefore, the number of multipliers/dividers is fixed, and is independent of
N, M and K. Summarizing the discussions stated above, we conclude that the complexities of the
total number of comparators, adders/subtractors, registers and multiplexers of the proposed feature
extraction circuit with K segments are O(K). Moreover, the total number of multipliers/dividers is
only O(1).

Based on Table 1, the overall area complexities of the proposed spike sorting circuit are
summarized in Table 2. To facilitate the evaluation, the area complexities of the NEO circuit and
spike buffer are also included in the table. For the NEO circuit, it is necessary to store spike trains from
all of the M channels for detection. In the spike buffer, each channel needs to have its own memory
unit to hold the detected spikes for the subsequent feature extraction. Therefore, it can be observed
from Table 2 that the number of registers in both the NEO circuit and spike buffer are dependent on
the spike length N and the number of channels M. The total number of registers of the proposed spike
sorting circuit is then O(K + MN). In addition, because the NEO circuit has only a fixed number of
adders and multipliers independent of N and M, the overall area complexities for the adders and
multipliers in the spike sorting circuit are only O(K) and O(1), respectively.
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Table 2. The area complexities of the proposed spike sorting circuit.

Comparators Adders/Subtractors Multipliers/Dividers Registers Multiplexers

NEO Circuit O(1) O(1) O(1) O(MN) 0
Spike Buffer 0 0 0 O(MN) O(1)

Feature Extraction O(K) O(K) O(1) O(K) O(K)

Total O(K) O(K) O(1) O(MN + K) O(K)

We next evaluate the actual hardware resource consumption of the proposed circuit. For the
remaining evaluations of this section, the dimension of spikes is N = 64. The circuit implementation
is carried out by ASIC with the Taiwan Semiconductor Manufacturing Company (TSMC) 90-nm
technology and clock gating. The gate level design platform is the Synopsys Design Compiler. Table 3
shows the area (µm2) of the proposed circuit for different numbers of channels M and numbers of
segments K. From Table 3, we see that the area of the proposed circuit grows with M and K, which is
consistent with the results shown in Table 2. Table 4 shows the normalized area (µm2 per channel)
of the proposed architecture. The normalized area is defined as the area of the circuit divided by the
number of channels M. The normalized area can be viewed as the average area cost per channel.
Note that all of the channels share the same computation cores in the NEO circuit (i.e., the NEO
detection unit) and the proposed feature extraction circuit. Therefore, we can see from Table 4 that the
average area per channel decreases as M increases. Consequently, because of the hardware resource
sharing scheme, the proposed architecture shows a higher efficiency in area costs for a larger number
of channels. Although the normalized area grows with K for a fixed M, the circuits with larger K
have the advantages of lower latency for feature extraction. Therefore, as shown in Equation (35),
the channel capacity Mmax grows with K.

Table 3. The area (µm2) of the proposed circuit for different numbers of channels M and segments K.

Number of Segments K
Number of Channels M

2 4 8 16 32 64

1 58,008 98,990 180,665 346,647 676,085 1,337,493
2 65,625 106,607 188,282 354,264 683,702 1,345,110
4 80,859 121,841 203,516 369,498 698,936 1,360,344

Table 4. The normalized area (µm2/channel) of the proposed circuit for different numbers of
channels M and segments K.

Number of Segments K
Number of Channels M

2 4 8 16 32 64

1 29,004 24,747 22,583 21,665 21,127 20,898
2 32,813 26,652 23,535 22,142 21,366 21,017
4 40,430 30,460 25,440 23,094 21,842 21,255

In addition to the area costs, the power consumption of the proposed architecture is also evaluated.
Table 5 shows the normalized power dissipation (µW per channel) for different numbers of channels
M with and without clock gating. The normalized power dissipation is defined as the total power
consumption of the circuit divided by the number of channels M. In the experiment, the number of
segment K = 1, and the clock rate rc is 1 MHz. The power consumption is measured numerically
by Synopsis Prime Time. When the number of channels M increases, because the normalized
area decreases, we can see from Table 5 that the normalized power consumption also lowers for
the circuit without clock gating. In addition, the clock gating is able to further reduce the power
consumption by not supplying the clock signal to the inactive components. However, when M
increases, the components of the proposed feature extraction circuit may become more busy because all
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of the M channels share the circuit. As a result, when M increases from 32–64, it can be observed from
Table 5 that the power consumption with clock gating is not lowered. Nevertheless, the the circuit with
clock gating is still able to achieve a 33% power reduction as compared with its counterpart without
clock gating.

We also compare the proposed architecture with other ASIC implementations [8–11] for spike
sorting in Table 6. It may be difficult to directly compare these architectures because they may
be implemented by different technologies and may be based on different spike detection and/or
feature extraction algorithms. Moreover, their operation clock rates may be different. Nevertheless,
it can be observed from Table 6 that, as compared with the existing architectures, the proposed
architecture provides effective area-power performance while supporting both spike detection and
feature extraction functions.

Note that, among these existing architectures, the proposed architecture and the one in [11] are
based on the same clock rate, technology and spike detection scheme. We can see from Table 6
that the normalized area and normalized power of the proposed architecture are only 25.40%
(i.e., 21,127 vs. 83,159) and 25.44% (i.e., 20.03 vs. 78.719) of those of the architecture in [11], respectively.
This is because the proposed feature extraction algorithm has significantly lower computational
complexities than those of the GHA algorithm adopted by [11].

Table 5. The normalized power consumption (µW/channel) of the proposed circuit with and without
clock gating for different numbers of channels M.

Number of Channels M

2 4 8 16 32 64

No Clock Gating 43.08 36.55 33.00 31.90 31.10 30.69
Clock Gating 32.98 26.58 23.13 21.69 20.03 20.53
Power Reduction 23% 27% 29% 32% 36% 33%

Table 6. The comparisons of various spike sorting architectures.

Architecture Normalized Normalized Clock # of Spike Technology Detection Feature
Area Power Rate Channels Dimension Extraction

[8] 255,495 µm2/ch. 521 µW/ch. 1 MHz 1 64 90 nm No PCA
[9] 1,770,000 µm2/ch. 256.875 µW/ch. N/A 16 N/A 350 nm NEO PCA

[10] 268,000 µm2/ch. 8.589 µW/ch. 281.25 KHz 1 64 130 nm No SPIRIT
[11] 83,159 µm2/ch. 78.719 µW/ch. 1 MHz 32 64 90 nm NEO GHA

Proposed 21,127 µm2/ch. 20.03 µW/ch. 1 MHz 32 64 90 nm NEO Proposed

Although the proposed feature extraction algorithm has simple computation, it is effective for
spike classification. Tables 7–10 show the Classification Success Rate (CSR) of the Fuzzy C-Means
(FCM) [19] algorithm by clustering the feature vectors produced by various feature extraction
algorithms. The CSR is defined as the number of spikes that are correctly classified divided by
the total number of spikes. The PCA, GHA and zero-crossing [15] algorithms considered in the tables
are implemented by MATLAB with double precision floating numbers. The proposed algorithm is
implemented by hardware with 10-bit finite precision.

To see the robustness of the proposed algorithm, different types of noise interference are included
in the experiments: background noises, interfering neurons and overlapping spikes. They are
considered separately to facilitate our observation. The spike trains for the experiments in Tables 7–9
are obtained from the simulator developed in [18]. It also gives access to the ground truth about the
spiking activity in the recording for quantitative assessment.

Table 7 shows the CSRs of various feature extraction algorithms for background noises with
different SNR levels. In the experiments, the number of interfering neurons is set to be zero. In addition,
20% of the spikes are overlapping. It can be observed from Table 7 that the CSRs of the proposed
algorithm are only slightly degraded as the SNR values decrease. In addition, the proposed algorithm
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has CSR performance comparable to that of PCA and GHA for all of the SNR levels. Moreover,
it outperforms the zero-crossing algorithm. When the SNR = 1 dB, the proposed algorithm is still able
to achieve 96.47% CSR. As shown in Figure 1, the proposed algorithm is robust to background noise
because the variations of peak locations due to background noise corruption are small. This leads to
successful identification of intervals J1 and J2 for the computation of features a1 and a2.

Table 7. The CSRs of the various feature extraction algorithms for different SNR levels. The spike
source data are obtained by the simulator in [18].

Algorithms
SNR (dB)

1 4 6 8

PCA [8] 99.57% 99.70% 99.64% 99.82%
GHA [11] 99.30% 99.58% 99.82% 99.82%

Zero-Crossing [15] 96.32% 96.71% 95.44% 95.57%
Proposed 96.47% 97.22% 97.13% 97.52%

The CSRs of various algorithms for different numbers of interfering neurons are revealed in
Table 8. The interfering neurons are the nearby neurons whose spike times are correlated with the
original spike times of the target neurons. We set SNR = 4 dB for the background noises. The percentage
of the overlapping spikes for the experiments is 20%. From Table 8, we can see that only a small
degradation is observed for the proposed algorithm as the number of interfering neurons grows.
Its performance is also comparable to that of the PCA and GHA algorithms.

Table 8. The CSRs of the various feature extraction algorithms for different number of interfering
neurons. The spike source data are obtained by the simulator in [18].

Algorithms
Number of Interfering Neurons

0 2 4 6

PCA [8] 99.70% 99.68% 99.76% 99.58%
GHA [11] 99.58% 99.66% 99.58% 99.51%
Proposed 97.22% 96.09% 95.56% 95.44%

The influences of the overlapping spikes on CSRs are considered in Table 9. In the experiments,
the SNR level of background noises is 8 dB. In addition, there are no interfering neurons, so that the
the impact of overlapping spikes can be easily observed. It appears from Table 9 that the proposed
algorithm is able to maintain CSRs above 95% even when the percentage of the overlapping spikes is
30%. Because the proposed algorithm may still be able to find the J1 or J2 correctly for the overlapping
spikes as revealed in Figures 3 and 4, successful feature extraction and classification may still be
possible. As a result, the proposed algorithm may be able to maintain high CSRs in the presence of
overlapping spikes.

Table 9. The CSRs of the various feature extraction algorithms for different percentages of overlapping
spikes. The spike source data are obtained by the simulator in [18].

Algorithms
Percentage of Overlapping Spikes

15% 20% 30% 40%

PCA [8] 99.80% 99.82% 99.75% 99.35%
GHA [11] 99.76% 99.82% 99.75% 99.36%
Proposed 98.06% 97.52% 96.25% 94.84%

In addition to the simulator developed in [18], the spike trains in the wave_clus database
are also considered in the experiments. Table 10 shows the resulting comparisons. Similar to the
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results shown in Tables 7–9, we can also see from Table 10 that the CSR performances of the
PCA, GHA and the proposed algorithm are comparable. In addition, the proposed algorithm
outperforms the zero-crossing algorithm. Although PCA and GHA offer higher classification accuracy,
the algorithms have higher computational complexities. We can see from Table 6 that their hardware
implementations may have large area costs and power consumption. The computational complexities
of zero-crossing are low. However, the algorithm has inferior CSR values. In particular, for the
spike train data “C_Difficult2_noise005” in Table 10, the CSR of the zero-crossing is only 69.92%.
By contrast, the proposed algorithm still maintain high accuracy (i.e., 82.13%) for the data. Therefore,
the proposed algorithms have the advantages of low computational complexities for efficient hardware
implementation and are capable of providing feature vectors for spike classification with high accuracy.

Table 10. The CSRs of the FCM algorithm by clustering the feature vectors produced by various feature
extraction algorithms. The spike source data are obtained from the wave_clus database [20].

Algorithms
File Names

C_Easy1_Noise01 C_Easy2_Noise01 C_Easy2_Noise005 C_Difficult2_Noise005

PCA [8] 99.32% 96.68% 98.45% 98.57%
GHA [11] 99.32% 94.35% 98.15% 81.66%

Zero-Crossing [15] 89.61% 79.86% 92.26% 69.92%
Proposed 93.00% 90.57% 93.90% 82.13%

5. Conclusions

We have implemented the proposed architecture for spike sorting by ASIC with 90-nm technology.
Experimental results reveal that the proposed architecture has the advantages of low area costs,
low power consumption and high classification accuracy. For the 32-channel design example provided
in the paper, the normalized area is 21,127 µm2/channel, which is the lowest as compared with the
existing designs considered in the paper. When operating at 1 MHz, the proposed architecture
consumes normalized power of 20.03 µW/channel. The CSR values of the FCM based on the
feature vectors provided by the proposed algorithm are also comparable to those of the PCA and
GHA techniques. The proposed architecture therefore is an effective alternative to the applications
where implantable spike sorting circuits with low power consumption, low area costs and high CSR
are desired.
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The following abbreviations are used in this manuscript:
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GHA Generalized Hebbian Algorithm
GMS Global Minimum and maximum Search
NEO Non-linear Energy Operator
PCA Principal Component Analysis
FS Feature Search
ACC ACCumulation
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