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Abstract: Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their
structural applications in corrosive environments. However, a weak interfacial strength between the
fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage
and inadequate concrete compaction during concrete casting, which will destroy the confinement
effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate
(PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition
of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in
the FRP material is about half of that in concrete material. Any voids or debonding created along
the interface between the FRP tube and the concrete will delay the arrival time between the pairs
of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the
defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of
the methodology was analyzed using a finite-difference time-domain-based numerical simulation.
Experiments were setup to validate the numerical results, which showed good agreement with the
numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the
concrete infill condition of CFFTs.

Keywords: concrete-filled FRP tubes; concrete infill condition; lead zirconate titanate (PZT); ultrasonic
time of flight

1. Introduction

Concrete-filled fiber-reinforced polymer tubes (CFFTs), as a type of hybrid compression member,
are attractive for their use as composite materials in several special structural applications including
piles, columns, bridge piers, poles, and highway overhead sign structures [1]. Owing to the light weight,
high strength, and corrosion resistance of fiber-reinforced polymer (FRP) material, this hybrid provides
an excellent alternative to conventional concrete-filled steel tubes (CFSTs) in corrosive situations,
particularly the tidal zones of marine piles and the splash zones of highway pavements, which are
subjected to deicing salt invasion. A CFFT has two main structural components: a FRP tube and a
plain or steel-reinforced concrete infill. When this hybrid item is under compression, the concrete core
is simultaneously subjected to axial compression and lateral confinement from the FRP tube, which is
in a tensile stress state in the circumferential direction. This lateral confinement from the FRP tube can
greatly enhance both the loading strength and the ductility of the concrete [2]. To achieve the improved
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composite strength, with the loading being transferred between these two components effectively,
it is necessary to ensure excellent bonding between the FRP tube and the infilled concrete. However,
a weak interface between the FRP tube and the concrete may develop due to concrete shrinkage and
inadequate concrete compaction during the concrete casting, which will impair the confinement effects
and reduce the load bearing capacity of the CFFT. Therefore, effective detection measures based on
nondestructive testing (NDT) methods should be taken to assess the concrete infill condition of the
CFFT. The concrete infill condition investigated in this paper refers to the completeness of the infilled
concrete inside the FRP tube.

Several NDT methods, such as the ultrasonic pulse velocity method [3,4], acoustic emission [5-8],
infrared thermography [9,10] and the pulse-echo method [11], have been applied in structural
damage detection. These methods have shown various degrees of success in assessing structural
damage severity. However, these methods require substantial access to the structures under test,
which is not always the case, especially for large-scale structures and underground structures.
Recently, piezoelectric materials have been emerging as a promising structural diagnostic tool due
to their commercial availability, low-cost, and wide bandwidth [12,13]. The most widely used
piezoelectric material is lead zirconate titanate (PZT), which can be either mounted on the surface of
existing structures or embedded in new structures [14]. Piezoelectric transducer-based methods are
becoming popular in interfacial debonding detection for various structures, including steel reinforced
concrete [15], concrete-filled steel tubes [16], and concrete-encased composite structures [17,18]. It was
determined from a literature survey, however, that there is a very limited volume of research on the
concrete infill detection of concrete-filled composite tubes. Very recently, Dong et al. [19] investigated
the feasibility of using ultrasound travel time to quantify voids in concrete-filled steel tubes. Similar to
Dong’s methodology, this study investigated the efficacy of an ultrasonic time-of-flight (TOF) method
to determine the concrete infill condition of CFFTs. In addition, active sensing methods using PZT
transducers have been researched in damage detection of various structures [20-23].

In this study, PZT patches were adopted as transmitters and receivers of ultrasonic waves to
monitor the concrete infill for concrete-filled fiber-reinforced polymer tubes by using the ultrasonic
TOE The PZT patches were bonded on the outer surface of the CFFT. The existence of voids inside the
CFFT alters the ultrasonic wave propagation path between the PZT transmitter and the PZT receiver.
The proposed method is developed to monitor the concrete infill condition for concrete-filled FRP tubes.
The basic principle of ultrasonic TOF to detect the defects in CFFTs is that the velocity of the ultrasonic
wave propagation in FRP material is about half of that in concrete material. Any voids along the
interface between the concrete and the wall of the FRP tube will drive the ultrasonic wave travel along
the wall of the FRP tube. By investigating the arrival time of the equally spaced PZT receivers on the
FRP tube, the concrete infill condition and the location of the defects can be identified. The methodology
was first analyzed using a numerical simulation approach based on the finite-difference time-domain
method. The numerical analysis was then validated through the experimental investigations, which
involved four different infill conditions—an empty concrete infill, a 1/3 concrete infill, a 2/3 concrete
infill, and a 100% or complete concrete infill. The proposed method can be adopted to new structures
for concrete infill monitoring during concrete casting and to existing structures for void detection
and determination.

2. Numerical Simulation Based on the Finite-Difference Time-Domain Method

The CFFT under analysis consisted of an FRP tube and a concrete infill. The filling condition of
the concrete directly affects the load bearing strength of the CFFT. Therefore, different filling conditions
of the concrete inside the FRP tube were simulated numerically, and the wave traveling characteristics
were analyzed. The geometry of the numerical model is shown in Figure 1. The concrete infill was
encased by a FRP tube, and four PZT transducers were modeled. The PZT transducers can be used as
either transmitters or receivers, which were equally arranged 90 degrees apart along the circumferential
direction of the tube. A layer of ambient air was also established. The properties of the model are
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shown in Table 1. Note that the ultrasonic wave velocities in FRP material are about half of those in
concrete material. The conditions of the concrete infill can be determined by comparing the arrival
time of the waves.

Air
PZT FRP Tube
patches
Concrete

20 40 60 80 100 120 WO %0 180 20

Figure 1. Geometry of the numerical model of the concrete-filled fiber-reinforced polymer tube (CFFT).

Table 1. Material properties for the numerical simulation.

Material Velocity of Longitudinal Velocity of Transverse Density Inner Outer
Wave (m/s) Wave (m/s) (kg/m®) Diameter (mm) Diameter (mm)
FRP Tube 1600 800 1500 146 150
Concrete 3500 1800 2000 146
Air 330 5

The finite-difference time-domain (FDTD) method was adopted to simulate propagation
characteristics of the ultrasonic waves in the CFFT model. In order to improve the computing efficiency
and reduce the wave distortion, the staggered-grid technique was used, and a perfectly matched layer
(PML)-absorbing boundary condition was also applied during the numerical simulation. The Richer
wavelet with a frequency of 20 kHz was chosen as the excitation wave. The time step (At) and spatial
step (Ax, Ay) satisfy At = 1/ (Vmax\/2(Ax~2 + Ay—2)), where the Vimay is the maximum propagation
velocity of the wave.

Figure 2 illustrates the snapshots excited by the R3 transmitter over time for both empty concrete
and full concrete infills. As can be seen from Figure 2a, when the FRP tube was fully filled with
concrete, the wave energy was concentrated at the concrete region because the waves propagated

faster in concrete. The waves were received by R2 and R4 receivers first and were then received by
R1. As for comparison, the snapshots were also analyzed when the FRP tube was free of concrete.
Unlike the case of a full concrete infill, where the wave energy concentrated at the concrete, the wave
energy was propagated via the wall of the FRP tube.

Furthermore, Figure 3 shows the waveforms received by R1, R2, and R4 when R3 was used as
the transmitter for both full concrete and empty concrete infills. In the notation of Rij, i represents the
number of the transmitter and j represents the number of the receiver. For example, R32 denotes the
waveforms received by R2 when R3 is used as the excitation source. As can be seen from these two
cases, the wave was picked up by R2 and R4 first and was then received by R1 since R2 and R4 were
located closer to the transmitter R3. The wave amplitudes by R2 and R4 are higher. Additionally, the
waveforms received by R2 and R4 overlap with each other because they have equal distance to the
transmitter R3 and the same wave propagation medium. It should be noted that, for the case of the
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full concrete infill, the wave travels with the velocity of that in concrete medium; meanwhile, for the
case of the empty concrete infill, the wave travels with the velocity of that in the FRP material.
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Figure 2. Snapshots excited by R3: (a) a full concrete infill and (b) an empty concrete infill.
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Figure 3. The waveforms received by R1, R2, and R4 when R3 was the transmitter: (a) full concrete
infill; (b) empty concrete infill.

As can be seen from the above analysis, the full and empty concrete infill conditions can be
easily differentiated by analyzing the ultrasonic time of flight. However, in practical engineering,
the concrete is normally partially absent inside the FRP tube due to inadequate compaction, creating
voids and debonding defects. To qualitatively determine the concrete infill condition and locate the
defects, a cross-excitation method was adopted. Two other different concrete infill conditions, i.e.,
the 1/3 and 2/3 concrete infill conditions, were examined using R3 and R4 as excitation sources,
respectively. Figure 4 shows snapshots of the 1/3 and 2/3 concrete infill conditions excited by R3 and
R4, respectively. It can be seen that the snapshots excited by R3 are entirely different from those excited
by R4. The snapshots excited by transmitter R3 are symmetrical, while those by R4 are nonsymmetrical.
The results from the cross-excitation can be used to determine the occurrence of debonding and obtain
the approximate location of the defect.

The waveforms of cross-excitation for the 1/3 and 2/3 concrete infill conditions are shown in
Figure 5. For the case of the 2/3 concrete infill condition, when R3 is used as excitation source, as
shown in Figure 5a, the waveforms received by R2 and R4 have the same arrival time and waveform
amplitude, while the one received by R1 is lagging behind in arrival time and has a weaker amplitude.
When R4 is used as an excitation source, as shown in Figure 5b, the waveform received by R3 is the
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same as R34, which share the same arrival time and amplitude. The waveform received by R1 has
a large amplitude because the waveform propagates via the wall of the FRP tube. The waveform
received by R2, mainly propagating through the concrete material, is the same as R31 in the full
concrete infill condition as shown in Figure 3a.
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Figure 4. Snapshots of the 1/3 and 2/3 concrete infill conditions excited by R3 or R4: (a) the 2/3 concrete
infill condition, excited by R3; (b) the 1/3 concrete infill condition, excited by R3; (c) the 2/3 concrete infill
condition, excited by R4; (d) the 1/3 concrete infill condition, excited by R4.

0.000002 0.000006

p—R32 R43
2/3 State R34 2/3 State R41
——R31 0.000004 - R42
0.000002 -
o o
° °
=] 3
= 0.000000 %
Qo
2 g 0000000
< <
-0.000002 -
-0.000004 -
-0.000002 L L L L L L L L
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
Time(s) Time(s)
(a) (b)

Figure 5. Cont.
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Figure 5. The waveforms of cross-excitation: (a) the 2/3 concrete infill condition, excited by R3;
(b) the 2/3 concrete infill condition, excited by R4; (c) the 1/3 concrete infill condition, excited by R3;
(d) the 1/3 concrete infill condition, excited by R4.

For the case of the 1/3 concrete infill condition, when R3 is used as the excitation source, as shown
in Figure 5c, the waveforms received by R2 and R4 are the same in terms of arrival time and amplitude.
The waveform received by R1 is substantially stronger than the one in the 2/3 concrete infill condition
as the wave mainly propagates via the wall of the FRP tube. When R4 is used as the excitation source,
as shown in Figure 5d, the waveform received by R3 propagates through both the concrete and the
wall of the FRP tube. The waveform received by R1 propagates through the wall of the FRP tube and
the one by R2 mainly via the concrete material. From the results of the above numerical simulation, the
arrival time and the wave amplitude of the received waveforms for different receivers contain useful
information about the concrete infill condition inside the FRP tube. Figure 6 shows the arrival time of
different receivers for different concrete infill conditions. As can be seen that for both the empty (0) and
the full (3/3) concrete infills, the waveforms of the receivers close to the excitation source, such as R32,
R34, R41, and R43, share the same arrival time because they have the same propagation medium and
distance. For the same reason, the waveforms of the receivers located farther away from the excitation
source, such as R31 and R42, show the same arrival time. For the cases of the 1/3 and 2/3 concrete
infills, the arrival time of the receivers shows different characteristics due to the different path and
material of the propagation waves. In general, for the full concrete infill condition, the wave travels
with the velocity in concrete material, and the time of flight between the transmitter and any receiver
is a minimum value. If a void is created in between the transmitter and any receiver, as is the case for
the 1/3 and 2/3 concrete infill conditions, the wave propagation path will be directed to the FRP tube
before arriving the receiver, thus increasing the ultrasonic TOFE. The ultrasonic TOF is at a maximum
when there is no concrete infill in the CFFT. Such characteristics can then be utilized to identify the
concrete infill condition inside a FRP tube and determine the location of the defects.
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Figure 6. The arrival time of different concrete infill conditions.
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3. Experimental Verification

The experimental setup of the concrete infill detection of the CFFT using PZT-based TOF is shown
in Figure 7. The CFFT was fabricated with four PZT actuators installed 90 degrees apart from each
other on the wall of a FRP tube (shown in Figure 1). Four concrete infill conditions were created in
sequence according to the analysis of the numerical simulation, including empty, 1/3, 2/3, and full
concrete infill conditions. The configurations of empty, 1/3 and 2/3, and full concrete infill conditions
were used to simulate the concrete infill process during the concrete casting of the CFFTs, which require
continuous monitoring to ensure the proper coupling between the FRP tube and the infilled concrete.
For existing CFFTs, voids and debonding may develop due to inadequate compaction and concrete
shrinkage, which were also approximated by the 1/3 and 2/3 concrete infill conditions. During the
experiments, the PZT driving module actuated one of the PZTs; at the same time, the data acquisition
and communication module collected the waveforms from the receivers and sent the data to a tablet via
Wi-Fi. Since the data acquisition and communication module has only two input channels, the two PZT
receivers next to the PZT transmitter were used to receive the waveforms.

SN it A K

— 4 8 AR ACA PZT Driving Module Data Acquisition and

Power Supply Communication Module

Figure 7. Experimental setup.

Figure 8 shows the waveforms received by R2 and R4 for different concrete infill conditions
when R3 was used as transmitter. For all these concrete infill conditions, the waveforms of R2 and R4
almost overlap in that conditions are symmetrical for R2 and R4 when R3 was the excitation source.
This overlap is also predicted by the numerical simulation. When there is no concrete infill, as shown
in Figure 8a, the wave propagates via the wall of the FRP tube and thus requires more time to reach R2
and R4. In 2/3 and full concrete infill conditions, the wave propagates via the concrete. As can be seen
from Figure 8c,d, the arrival time of the head wave is smaller. However, for the 1/3 infill condition,
the wave propagation path includes the path in concrete medium and the one along the wall of the
FRP tube; thus, the arrival time of the wave should lie between the one for the full condition and the
one for the empty condition.

Figure 9 shows the waveforms received by R1 and R3 for different concrete infill conditions when
R4 was used as a transmitter. In this case, the waveforms of empty and full concrete infill conditions
are not much different from those in Figure 8. Attention should therefore be paid to the 1/3 and
2/3 concrete infill conditions. For the case of the 1/3 concrete infill, the path taken by the wave from
the R4 transmitter to R1 is via the wall of the FRP tube, while the path to R3 contains the wall of the
FRP tube and the concrete. As can be seen in Figure 9b, the head wave of R43 arrives earlier than
that of R41. Likewise, for the case of the 2/3 concrete infill, the path taken by the wave from the R4
transmitter to R1 contains the wall of the FRP tube and the concrete, while the path to R3 is merely via
the concrete medium. It can be seen in Figure 9c that the head wave of R43 arrives earlier than that
of R41.
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Figure 8. The waveforms received by R2 and R4 for different concrete infill conditions when R3 is
used as transmitter: (a) the empty concrete infill; (b) the 1/3 concrete infill; (c) the 2/3 concrete infill;
(d) the full concrete infill.
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Figure 9. The waveforms received by R1 and R3 for different concrete infill conditions when R4 is
used as transmitter: (a) the empty concrete infill; (b) the 1/3 concrete infill; (c) the 2/3 concrete infill;
(d) the full concrete infill.
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In this experimental study, the arrival time of the different receivers for the different concrete infill
conditions is shown in Figure 10. Comparing the experimental results with the numerical simulation
results in Figure 6, a strikingly similar shape of the wave travel time curve is observed, except that R31
and R42 are not included in the experimental investigation. It is worth noting that the exact values
of the travel time are not well-matched between the numerical calculations and the experimental
measurements. The main reason for this deviation is that the velocities and material properties
adopted in the numerical simulation were assumed based on the manufacturer datasheet. However,
the agreement can be improved by using the exact material properties of the adopted materials through
measurement. In summary, based on the ultrasonic TOF, the concrete infill conditions of a CFFT can
be determined.
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0.00013
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Figure 10. The arrival time of different concrete infill conditions from the experimental study.

4. Conclusions

In this paper, the feasibility of using the ultrasonic TOF method to detect the concrete infill
condition of CFFTs was examined both numerically and experimentally. By investigating the snapshots
of different concrete infill conditions in CFFTs in a numerical simulation, it was found that the energy
of an ultrasonic wave is concentrated in the concrete material. The wave propagates faster in concrete
than in the FRP material. The arrival time of the wave amplitude of the received waveforms contains
critical information about the concrete infill condition inside the FRP tube. In a full concrete infill
condition, the wave travels with the velocity in the concrete material, and the time of flight between
the transmitter and any receiver is at a minimum value. If a void is created in between the transmitter
and any receiver, such as the 1/3 and 2/3 concrete infill conditions, the wave propagation path will be
directed to the FRP tube before it reaches the receiver, thus increasing the ultrasonic TOF. The ultrasonic
TOF is at a maximum when there is no concrete infill in the CFFT.

These results show that the PZT-based time-of-flight method is able to detect and locate the
concrete infill condition of CFFTs. The proposed method can be adopted for new structures for
concrete infill monitoring during concrete casting and to existing structures for void detection and
determination. This method benefits from an easy operation, high flexibility, a low cost, and remote
sensing, and is therefore a promising candidate for the concrete infill monitoring of concrete-filled
FRP tubes.
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