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Abstract: Detection of flow transition on aircraft surfaces and models can be vital to the development
of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient
conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number
testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these
facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance
the natural temperature change from transition. Traditional methods for inducing the temperature
step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work
has shown that adding a layer consisting of carbon nanotubes to the surface can be used to
impart a temperature step on the model surface with little change in the operating conditions.
Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper
describes a modification of this technique enabling operation down to at least 77 K, well below the
temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane
binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition
detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared
with the traditional temperature step method.

Keywords: temperature sensitive paint (TSP); carbon nanotubes (CNT); transition detection;
cryogenic testing; natural laminar flow

1. Introduction

For the validation of aerospace vehicle concepts and prediction tools, it is often desired to
test in conditions that most closely resemble those of flight. This is generally performed in a high
Reynolds number environment, in which the momentum of the fluid dominates the flow, and turbulent
flow is present. High Reynolds number ground-based testing of aerospace models and concepts is
often undertaken in facilities capable of operating at cryogenic conditions, in which cooling the test
gas to near liquid nitrogen temperatures can achieve Reynolds numbers approaching 500 M/m [1].
One important aspect that is often desired in this type of testing is the knowledge of where the
flow transitions on the surface from laminar to turbulent. The determination of this location can
be critical for accurate drag estimation, and there are efforts underway to design wing shapes and
vehicle concepts that can delay this transition for drag reduction (leading to decreased fuel usage).
The location of transition is typically indicated by the change in the adiabatic wall temperature on the
surface in areas of laminar versus turbulent flow.
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There are several methods to determine transition location in ambient facilities, including
multi-element hot-film sensor systems [2–4], sublimating chemicals, [5,6], and infrared (IR)
thermography [7–9]. The multi-element hot-film sensors have been demonstrated down to cryogenic
conditions [10]. However, these are point-based measurements that have difficulty providing global
measurements on complex models. Both sublimating chemicals and IR thermography can provide
these global measurements, but each suffers from distinct disadvantages operating in a cryogenic
facility. Sublimating chemicals require frequent access to the model, and to date there are no
chemicals that can be applied for cryogenic testing that will not sublimate immediately at ambient
conditions. IR thermography can directly image these temperature changes, and measurements
at cryogenic conditions have been accomplished using a commercially available IR camera in the
8–12 µm wavelength range [11] and using a specially designed long-wave IR camera (13–15 µm
wavelength range) capable of operating at 100 K [12]. However, standard IR thermography suffers
from the inherent low amount of IR radiation present at cryogenic conditions, and the custom camera
provided relatively small image sizes (128 × 192 pixels) and requires liquid helium cooling of the
sensor for operation.

An alternative to these techniques for detecting transition at cryogenic temperatures is based on
Temperature Sensitive Paint (TSP) [13–15]. TSP is typically composed of a gas impermeable binder in
which a luminescent molecule is immobilized [16]. With a suitable binder, changes in the output of
the luminescent molecule are due to the changes in the quantum yield due to changes in temperature
(i.e., thermal quenching). The relationship between the luminescence of the probe molecule and the
absolute temperature generally follows Arrhenius behavior over a certain range [16]
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where ENR is the activation energy for the non-radiative process, R is the universal gas constant, and
TREF is the reference temperature. However, for some TSPs, Equation (1) cannot fully describe the
behavior, especially outside of temperature ranges where Arrhenius behavior occurs. Thus, it is also
common to simply model the behavior of the TSP in a more generalized sense

I(T)/I(TREF) = f (T/TREF) (2)

where f (T/TREF) is a function that can be linear, polynomial, exponential, etc., to fit the experimental
data over a suitable temperature range. This behavior is dependent on the nature of the probe, thus
it is possible to select molecules that can lead to formulations that are temperature sensitive from
cryogenic to 473 K [15–18].

Traditionally, for detecting transition at cryogenic conditions, a temperature step is introduced into
the tunnel to enhance the natural temperature change due to transition (depending on flow temperature
and local Mach number, this can be on the order of 0.1 K or less). This is usually accomplished by
rapidly changing the liquid nitrogen injection rate into the tunnel in either a positive (less nitrogen
flow, resulting in a temperature ramp up) or a negative (more nitrogen flow, resulting in a temperature
ramp down) direction. While quite effective in increasing the temperature experienced on the model,
this can add a significant cost in terms of data acquisition time and facility operation. In addition, there
can also be a significant change in the local flow conditions during the step.

Recently, however, work has been presented combining TSP with a carbon nanotube (CNT)
based heating layer [19,20]. The CNT heating layer acts as a resistive heater that can locally increase
the temperature on the model surface when current is flowed through it. This provides a means to
apply a temperature step directly to the model (as opposed to the flow), greatly decreasing the
data acquisition time (as the tunnel does not need to recover after each temperature step) and
stability in the flow conditions. However, the TSP/CNT system demonstrated degradation and
ceased operation at 130 K, [20] most likely due to the fact that the CNT heater layer was based
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on an acrylic polymer. This paper will present an improvement to the system using a CNT heater
layer based on a polyurethane matrix. Laboratory tests have shown that the system is resilient and
functional down to 77 K. A natural laminar flow airfoil was also coated with the improved system
and transition measurements were conducted in the NASA Langley Research Center (LaRC) 0.3-m
Transonic Cryogenic Tunnel (0.3-m TCT) successfully down to 110 K.

2. Materials and Methods

2.1. Preparation of TSP/CNT System

The TSP formulation used in this work is based on a formulation developed at NASA LaRC.
Versions of this TSP have been used for transition detection at cryogenic conditions at the National
Transonic Facility (NTF) [21] and for measurement of heating properties at hypersonic conditions [22].
The formulation is based on a polyurethane sealant in which a ruthenium-based luminophore is
dissolved. The sealant acts as a gas impermeable binder, and the ruthenium luminophore can
be excited using blue lights (e.g., blue LEDs) and exhibits a significant Stokes shift, emitting near
600 nm. This allows easy discrimination of the excitation light from the emitted luminescence using
optical filters. For this work, the TSP employed bis-(2,2′,2′ ′-terpyridine) ruthenium(II) chloride
(Ru(trpy)2) as the luminophore, which has good sensitivity and luminescence output at cryogenic
conditions [13,15,21].

The CNT heater layer consists of carbon nanotubes suspended in a polyurethane base and is
commercially available as Carbo E-therm from Future Carbon [23]. This suspension is easy to work
with, can be applied using conventional painting techniques, and has shown excellent durability in
cryogenic conditions.

The TSP/CNT system is applied to the model surface in several steps. First, an adhesion layer
was applied to the surface (~10 µm) and allowed to cure in air. Next, a white polyurethane layer
(~ 50 µm) was applied to act as an insulation layer. This layer can be either air cured overnight or
cured at 70 ◦C for 2 h. After this layer is cured, the electrical connections are applied. For this work,
simple copper tape was employed. Then the Carbo E-therm (~50 µm) was applied and allowed to cure
in air for about 1 h. Next, another layer of the white polyurethane was applied (~50 µm). This layer is
needed as the Carbo E-therm is black in color. The white layer serves to scatter more of the emission
light away from the surface for collection by the camera. Finally, the TSP topcoat (~40 µm) consisting
of 750 ppm Ru(trpy)2 dissolved in a clear polyurethane sealant (0.75 mg Ru(trpy)2: 1 g sealant) was
applied and allowed to cure. This topcoat can then be sanded for the desired finish. For this test, the
roughness (Ra) was measured to be less than 0.2 µm.

2.2. Model and Facility

The wind tunnel testing was performed on a high speed natural laminar flow (HSNLF)
wing, HSNLF(1)-0213. A description of the airfoil along with the coordinates are provided by
Sewall et al. [24]. The airfoil was constructed from aluminum with a chord of 0.165 m and a span
of 0.330 m. The upper surface of the airfoil was coated with the TSP/CNT system and electrical
excitation of the CNT layer was provided by parallel conductors placed about 12 mm from the end
plates. For this test, the CNT layer was excited from the leading edge to the trailing edge. Connection
to the conductors was accomplished using 16 Gauge wire soldered to the end of the conductors.
These connections were kept near the end plates at the trailing edge, and their effect on the flow over
the surface was minimal. The painted model is shown in Figure 1.
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Figure 1. HSNLF(1)-0213 airfoil coated with TSP/CNT.

Wind tunnel testing was carried out in the NASA LaRC 0.3-m TCT. The 0.3-m TCT is
a continuous-flow, single-return, fan-driven transonic tunnel which can employ either air (ambient
temperature testing) or nitrogen (cryogenic temperature testing) as the test medium. It is capable
of operating at stagnation temperatures from about 100 K to about 322 K and stagnation pressures
from slightly greater than 101 kPa to 607 kPa. Test section Mach number can be varied from near 0 to
0.9. The ability to operate at cryogenic temperatures and high pressure provides an extremely high
Reynolds number capability at relatively low model loadings. The test section has computer-controlled
angle-of-attack and traversing-wake-survey rake systems. Two inches of honeycomb and five
anti-turbulence screens in the settling chamber provide flow quality suitable for natural laminar
flow testing. The relevant characteristics for the 0.3-m TCT are shown in Table 1, and additional design
features and characteristics regarding the cryogenic concept in general and the 0.3-m TCT in particular
can be found previously published works [25,26].

Table 1. Relevant characteristics of the 0.3-m TCT.

Test Section Dimensions 0.33 m by 0.33 m

Speed Mach 0.1 to 0.9
Reynolds Number 3.3 to 330 M/m

Stagnation Temperature 100 to 322 K
Stagnation Pressure 101 to 607 kPa

Test gas Nitrogen or air

2.3. Instrumentation

2.3.1. Illumination

Illumination of the TSP was achieved using commercially available LED arrays (LM2x-400 from
Innovative Scientific Solutions, Inc., Dayton, OH, USA). These arrays were designed specifically for
PSP and TSP applications, thus are capable of producing a very stable output of more than 3 W with
0.1% drift per hour after warm-up. For this work, the LEDs were configured to emit at 460 nm (30 nm
bandwidth at full width at half maximum (FWHM)).

2.3.2. Image Acquisition

Images of the TSP output were acquired from a single camera that was placed coincident with the
LED arrays. The camera employed was a PSP-CCD-M (Innovative Scientific Solutions, Inc., Dayton,
OH, USA), having a resolution of 1600× 1200 pixel resolution operating at either 12-bit or 14-bit digital
resolution. The camera was interfaced to the computer via gigabit Ethernet (GIG-E) and capable of
acquiring data up to 44 frames per second. For some laboratory testing, an infrared camera (SC-6701,
FLIR, Nashua, NH, USA) was employed to monitor heating from the CNT heater.
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2.3.3. Illumination and Image Acquisition Mounting in 0.3-m TCT

The optical access for the 0.3-m TCT consists of a “D-shaped” window that was originally designed
for off-body flow visualization studies. The D-shaped window is constructed of Schlieren quality
fused silica that is mounted in the upper half of the circular angle-of-attack turntables. For this work,
the airfoil is centered horizontally in the test section with its center-line 1.9 cm below the lower edge
of the window. As such, there is no direct optical access to the surface. A diagram of the D-shaped
window with a generic airfoil is shown in Figure 2 [27]. In addition, the D-shaped window (and test
section) is separated from the outside of the tunnel by a rectangular pressure plenum. To facilitate
illumination and image acquisition, a pair of mirrors was deployed as a periscope to allow optical
access to the upper surface of the model. This periscope was attached to the test section door and
inside the plenum. A photograph of the optical setup is shown in Figure 3a.
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Figure 2. Geometry of the “D-shaped” window with a generic airfoil showing approximate location.
From [27].

Optical access from outside of the plenum is provided by a window placed in the plenum wall.
This window is also of Schlieren quality fused silica with a diameter of 22.9 cm. To keep the outer
window clear of condensation (due to the large temperature difference on either side of the window),
a large canister with a purge ring is connected to the plenum. The camera and the LEDs were placed
in this canister. The canister mounted to the plenum is shown in Figure 3b.
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Figure 3. Mounting of equipment at 0.3-m TCT: (a) optical setup showing the “D-shaped” window and
the periscope assembly; and (b) canister mounted onto the side of the tunnel containing the camera
and LED illumination sources.
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2.3.4. Data Acquisition in the 0.3-m TCT

As mentioned above, for transition detection at cryogenic conditions using TSP, it is generally
desirable to enhance the natural transition temperature by the introduction of a temperature step.
For the TSP/CNT system, this was accomplished by applying a current to the CNT layer and data
acquisition generally proceeded using the following paradigm:

1. The flow conditions of the tunnel were established.
2. After stabilization, a series of images was acquired to act as reference images.
3. Current was applied to the heater layer using a remotely operated programmable DC power supply.
4. Images were collected for several seconds during heating (Temperature Images).
5. The current was removed and the model was prepared for the next point.

For the data points in which a temperature step was applied by modifying the liquid nitrogen
injection, the paradigm was modified as follows:

1. The flow conditions of the tunnel were established.
2. After stabilization, a series of images was acquired to act as reference images.
3. The nitrogen flow was rapidly increased to lower temperature. Meanwhile, image collection from

the camera was begun.
4. Images were collected for several seconds throughout the temperature step (Temperature Images).
5. The tunnel was reconditioned to match the desired flow conditions. After re-stabilization, the

model was prepared for the next point.

3. Results and Discussion

3.1. Laboratory Testing

Several experiments were performed in the laboratory to verify the ability of the CNT heater
to function properly at cryogenic conditions as well as ensure that the TSP could function properly
over the CNT heater. Several of these experiments were performed using an IR camera to visualize
temperature distribution as well as verify the TSP operation.

The first experiment involved painting a small coupon (diameter ~7.6 cm) with the entire
system. For this experiment, instead of Ru(trpy)2, the TSP used tris(bipyridine)ruthenium (II) chloride
(Ru(bpy)3). This luminophore displays good luminescence at ambient temperature and has been used
in TSP formulations up to 353 K. Illumination of the coupon was accomplished using 460 nm LEDs and
TSP images were acquired using the PSP-CCD-M camera. In addition, IR images were also acquired.
The resistance measured of the coating was measured as 22 Ω, and several levels of current were
applied in a pulsed manner. The temperature calculated from the TSP measurements compared with
the IR camera results are shown in Figure 4, with 50 V applied (2.3 A, 115 W). As can be seen, the
temperature measured using the TSP coating tracks closely with the temperature measured using the
IR camera.
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The next experiment was to determine if a large sized area could be adequately heated using the
CNT heater. A larger sized aluminum plate was coated with the CNT heater layer (no TSP) so that
an area approximately 0.93 m2 was to be heated. The resistance of the CNT coating for this plate was
approximately 14 Ω, and several levels of current were applied. A set of IR images with no current
applied, 32 V (2.2 A, 70 W) applied, and 74 V (5.2 A, 385 W) applied are shown in Figure 5. As can
be seen, the temperature field is fairly evenly distributed, though there are some bands present near
the middle of the plate. This is from an uneven application of the CNT heater layer and shows that
care must be used to ensure an even coating. Furthermore, the uneven application of the CNT layer
has caused a slight change in either the emissivity of the coating or in its reflectivity, leading to the
appearance of the bands even with no current applied. This application of the CNT layer was corrected
in the wind tunnel tests.
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After verification that the TSP can work with the CNT heating layer and that a larger size (similar
to the airfoil size) can be effectively heated, experiments were performed to determine how well the
system would operate at cryogenic temperatures. Initially, a small coupon was coated with the system
and instrumented with a K-type thermocouple. The entire coupon was immersed into a dewar of
liquid nitrogen until the thermocouple reading measured 77 K (the boiling point of liquid nitrogen).
Then 100 V (2.2 A, 220 W) was applied to the coupon was applied in 2 s bursts at intervals of 5 s (2 s on
followed by 5 s off) with the thermocouple readings constantly recorded. Figure 6 shows the results
of this compared with the same coupon cooled to 77 K with no current applied to the heater layer.
It is readily apparent that even with these short current bursts, the heater is functioning down to at
least 77 K. Additionally, no physical degradation of the paint system was evident even after several
repeated cycles of liquid nitrogen immersion followed by rapid warm up to room temperature.

Sensors 2016, 16, 2062 7 of 17 

 

The next experiment was to determine if a large sized area could be adequately heated using the 

CNT heater. A larger sized aluminum plate was coated with the CNT heater layer (no TSP) so that 

an area approximately 0.93 m2 was to be heated. The resistance of the CNT coating for this plate was 

approximately 14 Ω, and several levels of current were applied. A set of IR images with no current 

applied, 32 V (2.2 A, 70 W) applied, and 74 V (5.2 A, 385 W) applied are shown in Figure 5. As can be 

seen, the temperature field is fairly evenly distributed, though there are some bands present near the 

middle of the plate. This is from an uneven application of the CNT heater layer and shows that care 

must be used to ensure an even coating. Furthermore, the uneven application of the CNT layer has 

caused a slight change in either the emissivity of the coating or in its reflectivity, leading to the 

appearance of the bands even with no current applied. This application of the CNT layer was 

corrected in the wind tunnel tests. 

   
(a) (b) (c) 

Figure 5. IR images from a larger panel painted with a CNT heater layer: (a) No current applied;  

(b) 70 W (32 V, 2.2 A); and (c) 385 W (74 V, 5.2 A). Color scale is temperature K). 

After verification that the TSP can work with the CNT heating layer and that a larger size (similar 

to the airfoil size) can be effectively heated, experiments were performed to determine how well the 

system would operate at cryogenic temperatures. Initially, a small coupon was coated with the 

system and instrumented with a K-type thermocouple. The entire coupon was immersed into a dewar 

of liquid nitrogen until the thermocouple reading measured 77 K (the boiling point of liquid 

nitrogen). Then 100 V (2.2 A, 220 W) was applied to the coupon was applied in 2 s bursts at intervals 

of 5 s (2 s on followed by 5 s off) with the thermocouple readings constantly recorded. Figure 6 shows 

the results of this compared with the same coupon cooled to 77 K with no current applied to the 

heater layer. It is readily apparent that even with these short current bursts, the heater is functioning 

down to at least 77 K. Additionally, no physical degradation of the paint system was evident even 

after several repeated cycles of liquid nitrogen immersion followed by rapid warm up to room 

temperature. 

 

Figure 6. Thermocouple measurements from coupon with CNT heater powered (blue) and unpowered 

(orange) after immersion in liquid nitrogen. 
Figure 6. Thermocouple measurements from coupon with CNT heater powered (blue) and unpowered
(orange) after immersion in liquid nitrogen.



Sensors 2016, 16, 2062 8 of 17

The final laboratory verification of the TSP/CNT system involved coating the large piece of
aluminum described above with the TSP and CNT coatings and imaging the TSP at cryogenic
conditions. This is to verify that the heat provided by the CNT layer is sufficient to overcome the
convection that will be present at full cryogenic conditions (110 K). This testing was performed in
a larger cryogenic chamber that is capable of being cooled to at least 110 K. Unfortunately, a flow field
could not be established in the chamber, so these were simply static tests. The change in temperature
over the surface during temperature steps initiated with different power to the CNT heater layer
is shown in Figure 7. The temperature was measured at five distinct locations on the surface and
the average is presented. These show that even with the application of relatively low power (22 W),
a measurable change in temperature is achievable. As with the previous testing, the standard deviation
across the surface (indicated by the dashed lines) is most likely due to uneven application of the CNT
layer and was not present during wind tunnel testing.
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3.2. Wind Tunnel Testing at 0.3-m TCT

For all wind tunnel testing, registration marks were applied to the model surface and used to map
the image data to a mesh of the surface using a direct linear transformation method. More information
on this method can be found in Liu and Sullivan [28]. The testing took place over a period of 12 days
and the model was not repainted. The resistance of the CNT layer was measured to be ~30 Ω and
showed very little deviation throughout the test. All data presented from the test have been calibrated
to temperature, with darker regions indicating lower temperature and lighter regions indicating higher
temperature. In addition, the flow is from left to right in all images.

3.2.1. Verification of TSP/CNT System in the 0.3-m TCT

Initial testing of the TSP/CNT system in the 0.3-m TCT was accomplished under relatively benign
conditions of Mach 0.7 and a temperature of 200 K. For these runs, the Reynolds number was 32.8 M/m.
The evaluation consisted of several different runs at a fixed angle of attack (−2◦) and applying different
current to the CNTs. A comparison of these results is shown in Figure 8. These data were taken
approximately 8 s after the application of the current to the CNT layer. The transition point between
laminar and turbulent flow is indicated by a sudden change in temperature. As the CNT layer heats the
model surface, areas of the surface under laminar flow will be warmer than areas under turbulent flow
since the turbulent flow interacts with the surface more, thus cooling it to a greater degree. In these
cases, lighter areas represent laminar flow and darker areas represent turbulent flow. As can be seen
in Figure 8, even the application of relatively low power (50 V, 83 W) results in a slight increase in
the model temperature (~0.5 K) and ~0.1–0.2 K temperature change from laminar to turbulent flow.
As the power applied to the CNT layer is increased, this contrast becomes much greater. The transition
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front is clearly visible, and the wedges that are formed are due to small imperfections on the TSP
surface. The greatest temperature increase on the model was ~5 K and a change in temperature from
the laminar to the turbulent flow of ~2 K.
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realized as the CNT layer is powered for longer times. 

Figure 8. Applying increasing current to the CNT layer: (a) 50 V; (b) 100 V; and (c) 150 V.

Recent studies by Costantini et al. [29,30] have shown that care must be taken when interpreting
transition results obtained using TSP and applying a temperature step. Their work has shown that
when the surface temperature (Tw) is greater than the adiabatic–wall temperature (Taw), then the
transition location can vary depending on the Tw/Taw ratio. To see if the application of different
voltages to the CNT layer can cause a change in the transition position, an analysis of the transition
location was carried out for each case using a similar procedure outlined by Costantini et al. [29]
and the results are shown in Figure 9. For this work, the transition position when 50 V was applied
was difficult to visualize accurately. For the 100 V and 150 V case, the data were plotted on different
temperature scales to normalize them. As can be seen, the transition location for both cases was at
an approximate location of 65% chord. A similar analysis was done with time and no change in the
location was observed. This model did not have pressure instrumentation, and there was no way to
visualize the lower surface, so it cannot be determined if transition on the lower surface occurred or
how stable it was. For this model, however, it was established that the CNT operating voltage did not
have a significant effect on the transition location on the upper surface.
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Figure 9. Transition location determined by exciting the CNT layer with 100 V (left axis) and 150 V
(right axis).

The stability of the TSP/CNT layer is shown in Figure 10. In this experiment, a series of images
was acquired after turning on the CNT layer and collected for approximately 10 s. The response of
the TSP is presented at several times in Figure 10 and shows that the transition front position and the
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turbulent wedges are extremely stable, with greater contrast between laminar and turbulent regions
realized as the CNT layer is powered for longer times.Sensors 2016, 16, 2062 10 of 17 
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Figure 10. Temperature images collected during a CNT heating cycle (100 V). Data were collected at
T = 200 K, Mach 0.7, Re = 32.8 M/m: (a) 1.5 s; (b) 3 s; (c) 4.5 s; and (d) 6 s. All times are after start of the
heating cycle.

3.2.2. TSP/CNT System Response at Different Conditions

Throughout this wind tunnel entry, several different tunnel conditions were employed with this
airfoil allowing for a comparison of different tunnel conditions. While there was an aerodynamic
component to this test, this paper is concerned chiefly with the operation of the TSP/CNT system.
Thus, all data presented here are at an angle of attack at −2◦.

The response of the airfoil to different temperatures while maintaining a constant velocity and
Reynolds number are shown in Figure 11. While the surface finish did have some issues causing
a number of turbulent wedges, the positions of the wedges seem quite consistent. It should be
noted that these data were collected on the second day of testing after the tunnel had been warmed.
Inspection of the model after the second day showed the presence of small defects and possible oil
stains on the leading edge. This is most likely due to debris in the tunnel that is stirred up during
tunnel conditioning and running as the number of wedges increased during the typical run schedule.
Towards the bottom of the images, it does seem to show the transition front. This shows that the
TSP/CNT layer is consistent over the temperature ranges that were studied, including the lowest
temperature capable for the facility (110 K).

A comparison of the transition behavior at different Reynolds numbers is shown in Figure 12.
For this case, the speed of the tunnel was constant at Mach 0.7 and the Reynolds number was changed
from 32.8 M/m to 49.2 M/m. At the lower Reynolds number condition, even with the wedges, the
transition front is well established. However, as the Reynolds number is increased, the number of
wedges also greatly increases, again due to imperfections in the surface finish and the decrease in
boundary layer thickness with increasing Reynolds number.
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Figure 11. Temperature images collected at different tunnel temperatures during a CNT heating cycle.
Data were collected at Mach 0.3, Re = 32.8 M/m: (a) 110 K; (b) 172 K; and (c) 200 K.
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Figure 12. Temperature images collected at different Reynolds numbers. Data were collected at
T = 200 K, Mach 0.7: (a) Re = 32.8 M/m; and (b) Re = 49.2 M/m.

3.2.3. Effect of Surface Finish

While it has been demonstrated that the TSP/CNT system is capable of providing a temperature
step on the model surface sufficient enough to determine flow transition location using TSP, the surface
finish of the TSP layer was a limiting factor for full surface characterization. The initial finish of the
TSP coat was ~0.2 µm after sanding. This finish was sufficient to observe the transition from laminar to
turbulent flow in many of the cases. However, turbulent wedges were evident in most of the images.
Many of these wedges did not seem to originate from the leading edge, thus it is reasonable to conclude
that these are most likely from small imperfections on the TSP surface. Additionally, as shown in the
time series of experiments, the positions of the wedges were highly consistent throughout the run.

After the first days of running, the model was removed to install a flow control concept for testing.
This concept is beyond the scope of this paper, but for the transition work, it served as a (rather large)
distributed roughness element that would transition the flow in a known location. Additionally, the
TSP surface was further sanded and a thin layer of wax was added to fill in the small imperfections on
the surface. After this treatment, the surface roughness was reduced to ~0.15 µm. Several additional
runs were made at 200 K.

The effect of the reduction in the surface roughness is shown in Figure 13. This was a repeat of
the testing shown in Figure 10 above. As can be seen, the transition front is easily visualized and the
turbulent wedges that were present in Figure 10 have now been removed. The flow control concept
is acting as a large roughness element that has tripped the laminar flow to turbulent. Not only has
this shown the need to ensure the surface finish is as smooth as possible, it also demonstrates the
robustness of the TSP/CNT system in that it could be warmed to room temperature, the surface
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significantly altered (with the addition of the flow control concept and further polishing), and the
performance does not degrade. This can have big implications for transition to a larger facility with
respect to installation as well as durability.
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Figure 13. Results of surface finish comparing before and after a sanding and waxing step. Data were
collected at T = 200 K, Mach 0.7, Re = 32.8 M/m: (a) before sanding and waxing; and (b) after sanding
and waxing.

3.2.4. Comparison with the Traditional Temperature Step Method

To complete the feasibility test of the TSP/CNT system, its performance was compared with
the traditional method of introducing the temperature step in the 0.3-m TCT. This method involves
the injection of liquid nitrogen at a rate sufficient to introduce a rapid change in temperature over
the model [14]. For this testing, the tunnel was maintained at a constant temperature before the step
(200 K), constant velocity (Mach 0.7), constant angle of attack (−2◦), and an initial Reynolds number of
32.8 M/m. For these runs, tunnel conditions were continuously recorded at a rate of 20 Hz.

A comparison of the results obtained with the TSP/CNT system and obtained with two different
injection rates (the fastest and the slowest) are shown in Figure 13. For Figure 13, the TSP/CNT image
shown was collected ~8 s after application of current to the CNT layer. For the fastest injection rate,
the image shown was acquired ~10 s after the start of the injection. For the slowest injection rate,
the image shown was acquired ~35 s after the start of the injection. As can be seen, in all cases, the
transition front is easily seen. The temperature change on the surface and at transition for each image
in Figure 14 is listed in Table 2, showing similar temperature changes measured using each technique.
As expected, the rapid liquid nitrogen injection method provides a better contrast image with lower
noise than the other techniques, but all would be viable for the intended purpose of determining the
location of transition.
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Table 2. Temperature changes on the model surface for conditions shown in Figure 13.

Temperature Step Method Maximum ∆T on Model ∆T Transition (Laminar to Turbulent)

TSP/CNT 4 K 2 K
Rapid liquid nitrogen injection −8 K −4 K
Slow liquid nitrogen injection −2.5 K −2 K

One of the advantages of the TSP/CNT system is that the temperature step is applied directly to
the model as opposed to the tunnel flow. This should result in greater stability of the tunnel conditions
during the temperature step. Several different tunnel parameters were collected during the run with
the TSP/CNT layer as well as the nitrogen injection methods. A comparison of the Mach number,
Reynolds number, and total temperature are shown in Figure 15. For each case, the time scale is
adjusted so that the introduction of the temperature step (either by CNT or by liquid nitrogen) is set
to t = 0. When the fast injection method was employed, the tunnel conditions changed dramatically,
especially in regards to Mach number and Reynolds number. After about 10–12 s, the flow in the
tunnel began to choke, causing the tunnel to move into a recovery mode. The effects of the rapidly
changing tunnel conditions on the transition are shown in the time series of images shown in Figure 16.
These are sequential images starting at 10 s after the temperature step is initiated. As can be seen, the
initial image shows a good transition front with only small turbulent wedges in front of the roughness
element. However, in the next image, a bigger wedge is starting to form, and is fully established soon
after. In addition, there appears to be a very slight systematic shift in the position of the transition
front of ~2%–3% during the series. This emphasizes that if a rapid temperature step is to be employed,
care must be taken when these data are evaluated and that the tunnel conditions will most likely
change significantly.
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Figure 16. Temperature images collected after introduction of a temperature step using the fast injection
method. Tunnel conditions are the same as Figure 13: (a) 10 s; (b) 10.4 s; (c) 10.8 s; (d) 11.2 s; (e) 11.6 s;
(f) 12 s; and (g) 12.4 s.

For both the slow injection method and the CNT heating method, no change in the Mach number
or Reynolds number is observed (the lines are practically overlapping). However, the total temperature
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of the tunnel decreases with the slow injection method as opposed to the CNT heating method, and
it requires a longer amount of time to establish a suitable temperature step on the model to acquire
better quality images. Overall, the TSP/CNT method showed a conservative increase in efficiency of at
least a factor of 5 compared with the temperature steps. This is taking into account the time necessary
to establish the temperature gradient as well as the time needed for the tunnel to re-equilibrate after
performing the liquid nitrogen injection and prepare for the next data point. This can have very
significant implications in larger facilities. It is conceivable that with the TSP/CNT method, data
points (including both reference images and temperature images) could be acquired in only a few
seconds in these facilities. Previous testing in larger facilities has shown that it could take more than
a minute to acquire a single data point using the liquid nitrogen injection methods [15,31].

4. Conclusions

This paper has demonstrated a system using TSP coupled with a CNT heater for the detection
laminar to turbulent flow in a cryogenic facility. This system works by inducing a temperature step on
the model surface to enhance the natural temperature change when flow transitions from laminar to
turbulent. While the concept has been successfully demonstrated previously in several facilities, its
success has been limited at the lowest temperatures employed for full flight Reynolds number testing
(110 K and below) due to degradation of the acrylic binder used in the CNT layer. The TSP/CNT system
demonstrated here employed a CNT layer based on a polyurethane binder as opposed to an acrylic
binder. This system was validated in the laboratory and successfully operated down to temperatures
of 77 K. Methodologies for applying it to larger scale surfaces were developed and the concept was
successfully demonstrated in the 0.3-m TCT facility down to 110 K with no physical degradation of
the system observed. The system was also robust enough to be handled after application, including
further smoothing of the surface to improve the quality of data. The performance of the TSP/CNT
system was also compared with the traditional method of introducing a temperature step by changing
the injection rate of liquid nitrogen. While the liquid nitrogen injection methods can provide larger
temperature steps (and thus higher contrast images), care must be taken to ensure that the liquid
nitrogen injection rate does not significantly alter the tunnel conditions. This can cause changes in
the transition front location as well as induce turbulent wedges on the surface. Even if the injection
rate is slow enough to maintain constant tunnel conditions, the TSP/CNT layer can typically provide
quality data in a shorter time frame as the temperature step on the model can be applied more quickly
than the slow temperature step in the tunnel. More research into application methodologies and other
limitations are currently being pursued, but the TSP/CNT system has the promise of greatly increasing
the efficiency of transition testing at cryogenic facilities, resulting in significant savings (in both cost,
energy, and time).
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