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Abstract: For asymmetric laser beams, the values of beam quality factor M2
x and M2

y are inconsistent
if one selects a different coordinate system or measures beam quality with different experimental
conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality
characterization method named as M2-curve is developed. The M2-curve not only contains the beam
quality factor M2

x and M2
y in the x-direction and y-direction, respectively; but also introduces a curve

of M2
xα versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement

method to demonstrate beam propagation factor M2-curve with a modified self-referencing
Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS). The feasibility of
the proposed method is demonstrated with the theoretical analysis and experiment in multimode
beams. The experimental results showed that the proposed measurement method is simple, fast, and
a single-shot measurement procedure without movable parts.

Keywords: laser beam characterization; beam quality M2-curve; self-referencing interferometer
wavefront sensor; fringe pattern analysis

1. Introduction

Laser beam characterization plays an important role for laser theoretical analysis, designs, and
manufacturing, as well as medical treatment, laser welding, and laser cutting and other applications.
Therefore, an effective evaluation parameter and its corresponding reliable measurement method for
quantifying beam quality are necessary. Among various charactering laser beam quality approaches,
the most commonly and widely used approach is the beam propagation factor, simply called ‘beam
quality M2 factor’ which was first developed by Siegman [1,2] in 1990. The M2 factor is defined as the
ratio of the beam parameter product of an actual beam to that of an ideal Gaussian beam (TEM00) at
the same wavelength. That proposal was immediately adopted by the International Organization for
Standardization (ISO). The standard draft, ISO/TC172/SC9/WG1, for laser beam characterization
and its measurement method, was published in 1991 [3]. Now ISO published the latest version of M2

factor measurement Standard ISO11146-1/2/3 [4–6], which standardized laser beam characterization
by defining all relevant quantities of laser beams including in measurement method instructions.
Now M2 factor undoubtedly becomes an acceptable characterization parameter for beam quality
characterization in the laser community [7–14].

The definition of the beam propagation ratio M2 for simple and general astigmatic beams and
the instruction for its measurement can be found in the Standard ISO11146 [4–6]. The beam quality
M2 factor is determined by the beam width as a function of propagation distance (z) or propagation
location of the test beams using hyperbolic fitting approaches. Here, the beam intensity distributions of
the test beam measured with a moving CCD camera in various planes is suggested, which allows the
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determination of the beam widths by using second-order moments of the beam intensity distributions
and hence the M2 value. However, using this scanning CCD-based method for M2 value is quite
time-consuming due to the requirements of multiple measurements, consequently, it is unsuitable to
characterize the fast dynamics of a laser beam system. In the past decades, some techniques [15–24]
have been developed to measure the dynamic beam quality M2 factor, such as the Hartmann
wavefront sensor [15,16], but it was shown to yield inaccurate results for multimode beams [17,18].
Other methods to perform M2 comply with ISO11146 techniques, for example, multi-plane imaging
using distortion diffraction gratings [19], optical field reconstruction using modal decomposition [20,21],
and spatial light modulator method [22]. The self-reference interferometer wavefront sensor (SRI-WFS)
method [23,24] is another effective method for real-time measurement of M2 factor which was
developed recently. In general, SRI-WFS is based on a point diffraction interferometer, and its reference
wave is generated by the pinhole diffraction with a pinhole filter and it no longer needs an artifacts
reference beam, therefore, it is called “self-referencing” [25,26]. The SRI-WFS are usually used as
a wavefront diagnosis tool for wavefront phase measurement. However, it cannot measure amplitude
(or intensity) at the same time [25,26]. In Reference [24], a modified Mach-Zehnder point diffraction
interferometer is developed for reconstructing complex amplitudes including in phase and amplitude
(or intensity), and beam quality, M2 factor, can be calculated starting from the complex amplitude field
of the test beams by using numerical method conforming to the ISO11146 standard [24].

For the asymmetric laser beams such as simple astigmatic beam and complex astigmatic beam [27,28],
M2

x and M2
y are usually used to evaluate the beam quality in the x-direction and the y-direction,

respectively [4–6]. However, we found that the values of M2
x and M2

y may change or are inconsistent
if the coordinate axis is rotated. In other words, they are coordinate system dependent and change
under different experimental conditions even when analyzing the same beam. Therefore, just using
the simple parameters of M2

x and M2
y to characterize the beam quality of an asymmetric beam, such as

a simple astigmatic beam and complex astigmatic beam, are not comprehensive or objective [9,29].
In references [30–32], a new beam characterization method, beam quality M2-matrix, is developed.
It not only contains the beam quality terms, M2

x and M2
y, to evaluate the beam quality in x-direction

and y-direction, but also introduces another cross term, Mxy, which is used to characterize the
cross-relationship between x-direction and y-direction [30,31]. The M2-matrix has more general
physical meaning and wider application scope both for asymmetric beams and astigmatic beam [32].

In this paper, a new beam quality characterization method, beam quality M2-curve, for an asymmetric
laser beam is developed. The M2-curve not only contains the beam quality factor M2

x and M2
y in the

x-direction and y-direction, respectively; but also introduces a curve of M2
xα versus rotation angle

α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate
beam propagation factor M2-curve with a modified self-referencing Mach-Zehnder interferometer
based-wavefront sensor (henceforth SRI-WFS). By using the SRI-WFS, a full characterization of laser
beams both amplitude or intensity profile and wavefront phase are reconstructed from a single fringe
pattern with Fourier transform (FT) based spatial phase modulation technology [33]. The beam quality
M2-curve can be obtained starting from the complex field of the test laser beam by using the virtual
caustic method conforming to the ISO standard method [4]. The feasibility of the proposed method
is demonstrated with the theoretical analysis and experiment in asymmetric (Hermite-Gaussian-like
mode) beams. The article is arranged as follows: The first section is the introduction. The theoretical
analysis and derivation of SRI-WFS based complex amplitude reconstruction method is presented
in Section 2. According to the Standard ISO11146, the formula derivation process for determining
beam quality M2-curve starting from the reconstructed complex amplitude is showed in Section 3.
In Section 4, the experimental results of beam quality M2-curve with the proposed SRI-WFS method
are demonstrated. Finally, the conclusions are derived from this work.
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2. Self-Referencing Interferometer Wavefront Sensor

In this section, a new complex amplitude reconstruction method based on self-referencing
Mach-Zehnder interferometer wavefront sensor (SRI-WFS) is presented. Firstly, the SRI-WFS
experiment configuration is introduced. Secondly, we give the basic theory of complex amplitude
method based on SRI-WFS, including in the theoretical derivation process and fringe pattern analysis
method for reconstructing the complex amplitude of the test beam.

2.1. Experiment Setup of SRI-WFS

The experimental setup of SRI-WFS, which can be seen as a modified Mach-Zehnder radial
shearing interferometer [34–36], is shown in Figure 1. This optical system consists of two beam-splitters,
BS1 and BS2; a spatial filter, pinhole; two mirrors, M1 and M2; a two-lens positive telescope imaging
systems which consisted of two lens, L1 and L2, with focal lengths of f 1 = 100 mm and f 2 = 300 mm,
respectively; and another two-lens positive telescope imaging systems which consisted of two lens,
L3 and L4, with focal lengths of f 3 = 300 mm and f 4 = 100 mm, respectively. A pinhole plate, functioning
as a low-pass spatial filter, is placed at the common focal plane of Lens L1 and L2. The signal and
reference waves formed interference pattern in the CCD plane. Here we define, g = f 2/f 1 = f 3/f 4,
and the magnification of SRI-WFS is defined as G = g2. Compared to the tradition radial shearing
interferometer configuration, in our experimental setup as shown in Figure 1, we made an improvement
by simultaneously using a pinhole filter and a telescope system in each arm of SRI-WFS to generate
a promising reference wave.
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Figure 1. Experimental setup of SRI-WFS: BS1, BS2, beam-splitters, L1–L4, lens with the focal length
f 1 = f 4 = 100 mm and f 2 = f 3 = 300 mm, respectively; pinhole, spatial filtering plate with diameter
dpin = 25 µm; M1, M2, reflection mirrors.

2.2. Reconstruction of Complex Amplitude Field

For simplicity, we denote the field of the incident test beam as,

E (r, ϕ) = u (r, ϕ) exp [iφ (r, ϕ)] , (1)

where r and ϕ are radial and circular coordinates, respectively; u(r, ϕ) denotes the amplitude and
φ(r, ϕ) is the phase information of incident test beam. As shown in Figure 1, the incident beam was
split into two beams by the beam-splitter BS1, the reflected beam, and transmitted beam, which acted
as signal wave and reference wave, respectively. The reflected beam travels along the invert telescope
which consists of lens L3 and L4, and forms a constructed beam and served as a signal wave,

Es (gr, ϕ) = g
√

R · u (gr, ϕ) exp [iφ (gr, ϕ)] (2)

Here, g is the amplification factor of the invert telescope and it is defined as g = f 3/f 4; R in the
reflectivity of BS1. The signal wave contains all the information (including in the amplitude u(gr, ϕ)
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and the phase φ(gr, ϕ)) of the tested beam E(r, ϕ). The transmitted beam served as a reference wave
which can be deduced by Fourier optics theory [37–40],

Er

(
r
g

, ϕ

)
=

√
1− R

g
· u
(

r
g

, ϕ

)
exp

[
iφ
(

r
g

, ϕ

)]
⊗ T

(
r
g

, ϕ

)
, (3)

where u(r/g, ϕ) represents the amplitude of the reference wave; and (r/g, ϕ) is the wavefront phase of
the reference wave; ⊗ is the two-dimensional convolution operator. T(r/g, ϕ) is the Fourier transform
of the pinhole with diameter dpin, and it is given by [40],

T
(

r
g

, ϕ

)
=

πd2
pin

4λ f1
· 2J1

[
πdpinr
s · λ f1

]/[
πdpinr
s · λ f1

]
. (4)

Here J1 is a first-order Bessel function of the first kind.
The signal wave Es(gr, ϕ) and the reference wave Er(r/g, ϕ) interfere in their superposition area

(gr, ϕ). Therefore, the fringe pattern produced by the signal wave Es(gr, ϕ) and the reference wave
Er(r/g, ϕ) captured by the CCD can be expressed as,

I (gr, ϕ) =

∣∣∣∣Er

(
r
g

, ϕ

)
exp [iκ (gr, ϕ)] + Es (gr, ϕ)

∣∣∣∣2 , (5)

where κ denotes the linear carrier-frequency coming from an angle between the reference and signal
waves, which is formed by slightly tilting beam-splitter BS2.

Considering the contracted signal wave and enlarged reference wave in the SRI-WFS system,
we redefine the overlapping area, (rg, ϕ), responding to the field of the signal wave, as a new coordinate
domain (r′, ϕ). The field of signal wave can be shown as (r′, ϕ), and the reference wave is shown as
E(r′/g2, ϕ). Therefore, the Equation (5) can be rewritten as,

I (r′ , ϕ) =

∣∣∣∣Er

(
r′

G
, ϕ

)
exp [iκ (r′ , ϕ)] + Es (r′ , ϕ)

∣∣∣∣2 , (6)

where G = g2 is the magnification of the SRI-WFS. For simplicity, we define the overlapping area
(x/G, y/G) as new coordinate domain (x, y) and its intensity distribution in the CCD plane can be
written into a general form of the fringe pattern, as follows,

i (x, y) ∝ a (x, y) + b (x, y) cos[2π
(
κxx + κyy

)
+ φ (x, y)], (7)

where a(x, y) ∝ Es
2(x, y) + Er

2(x/G, y/G) is the background intensity, and b(x, y) ∝ 2us(x, y)ur(x/G, y/G)
is the modulation intensity of fringe pattern; κx and κy are the carrier-frequency components along
x-direction and y-direction, respectively. Therefore, the complex amplitude of modulation (CAM)
function [41] of the interferogram as shown in Equation (7) can be easily extracted by spatial phase
modulation (SPM) technology, proposed firstly by M. Takeda [33]. The CAM function contains both
information of the wavefront phase φ(x, y) and amplitude Es(x, y) of the test beams.

Taking the Fourier transform in two-dimension for the interference pattern [33,42,43],

I (X, Y) = A (X, Y) + [FT {exp [−iφ (x, y)]} ⊗B (X, Y)]⊗ δ
(
X− κx, Y− κy

)
+ [FT {exp [iφ (x, y)]} ⊗ B (X, Y)]⊗ δ

(
X + κx, Y + κy

)
,

(8)

where FT{ } denotes the Fourier transform, X and Y are the spatial frequency variables, and δ(X, Y)
is the Dirac’s delta function, A(X, Y) and B(X, Y) presents the frequency-spectrum of a(x, y) and
b(x, y), respectively. The second and third term in Equation (8) are two Dirac’s functions placed in
(κx, κy) and (κx, κy) around the low spatial frequency A(X, Y), respectively. By using of a band pass
filter, it is possible to extracts the Dirac delta function δ(X − κx, Y − κy). Then, tacking the inverse
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two-dimension Fourier transform of the Dirac’s delta function δ(X − κx, Y − κy), that is, obtaining the
CAM function, as follows [24],

c (x, y) =
1
2

b (x, y) ∝ us (x, y) ur

( x
G

,
y
G

)
exp [−iφ (x, y)] . (9)

In this equation, it can be seen that it is similar to the description of complex amplitude of the test
wave which is expressed in Equation (1). If the magnification G of SRI-WFS is large enough, the term
Er(x/G, y/G) will approach to a uniform plane wave, that is, the amplitude tends to ur(0, 0) and the
phase component tends to an ideal plane φ(0, 0). Taking into account the amplitude is a relative value
in practical application, and the coefficient ur(0, 0) in the Equation (9) can be rewritten as a constant C.
Thus, the complex amplitude distribution of test laser beam can be expressed as [24],

E (x, y) ∝ lim
G→∞

c (x, y) = C · us (x, y) exp [−iφ (x, y)] . (10)

3. Determination of M2-Curve

3.1. Measurement Method for Beam Quality Factor M2 Based on the Complex Amplitude Distribution [24]

Once the complex amplitude field E(x, y, 0) of the test laser beam is obtained, according to the
diffraction integral theory [37,44], the complete complex amplitude fields E(x, y, z) at z planes after
propagation distance z can be calculated using a double fast Fourier transform algorithm [44],

E (x, y, z) = FT−1
{

FT {E (x, y, 0)} exp
{

ikz
[

1− λ2

2

(
η2

x + η2
y

)]}}
, (11)

where z is the propagation distance, k is wave number, λ is wavelength of test laser beam, ηx = x/λz,
ηy = y/λz are the spatial frequencies, respectively. The direct (FT) and inverse (FT−1) Fourier transform
are calculated using a Fast Fourier Transform algorithm. Furthermore, in accordance with the ISO
standard [4–6], the complex amplitude fields E(x, y, z) can be used to determine the beam parameters
relevant for beam propagation, i.e., beam widths wx(z) and wy(z). Performing a hyperbolic fit to the
beam width along the beam transmission axis,

w2
x,y(z) = ax,yz2 + bx,yz + cx,y, (12)

where wx,y is the beam width in the x-direction or y-direction; ax,y, bx,y and cx,y are the hyperbolic fitting
coefficients, and the subscript x and y correspond to the values along the x-direction or y-direction,
respectively. Then the waist radius wx0,y0, divergence half angle θx,y and beam propagation factor M2

x,y
can be calculated from the following expressions [4],

w2
x0,y0 = cx,y −

b2
x,y

4ax,y
; (13)

θ2
x0,y0 = a; (14)

M2
x,y =

π

λ
·

√
ax,ycx,y −

b2
x,y

4
. (15)

According to above analysis (Sections 2.1, 2.2 and 3.1), as long as the phase φ(x, y) and the
amplitude u(x, y) of the test laser beam are obtained, it is possible to calculate the beam quality M2 factor,
specifically, the values of M2

x and M2
y along x-direction and y-direction of the test beams, respectively.
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3.2. M2-Curve

The output beam of a multimode-laser stable cavity with rectangular geometry in many transverse
modes can be written as an incoherent superposition of Hermite-Gaussian (HG) beams [45,46].
Usually the spatial modes are separable; the complex amplitude field distribution of HG modes,
at the plane z = 0, can be written as [45],

HGmn (x, y, 0) =
1

√wx0wy0

√
2

2m+nπm!n!
Hm

[√
2

wx0
x

]
exp

[
− x2

w2
x0

]
×Hn

[√
2

wy0
y

]
exp

[
− y2

w2
y0

]
, (16)

where the phase term is ignored, w0 is the waist radius of the fundamental mode HG00; and Hm and
Hn denotes the Hermite-polynomial of order m in x-direction and order n in y-direction, respectively.
HG modes are one set of orthogonal eigenfunctions of the scalar Helmholtz wave equation. Due to the
completeness of this eigenfunction set, an arbitrary transverse wave field E(x, y, z) can be expanded
into a superposition of HG modes [46],

E (x, y, z) =
∞

∑
m=0

∞

∑
n=0

cmnHGmn (x, y, z), (17)

with
cmn =

x

∞

HG∗mnE (x, y, z)dxdy, (18)

where the asterisk denotes complex conjugation operator; cmn is the complex-valued expansion coefficients,
cmn = Cmnexp(ϕmn), including in the modal amplitude Cmn = |cmn| and phase φmn = angle(cmn).

As the analysis above, generally, the intensity profile of the output beam emitted by a multimode
stable cavity is non-rotational symmetric or asymmetric beams, as shown in Figure 2. According to
Sigman’s theories [1,2], the quality of the laser beam is evaluated by M2

x in x-direction and M2
y in

y-direction. However, we found that the values of M2
x and M2

y are non-unique if we rotate coordinate
the axis in an astigmatic laser beam. Consequently, just using the simple parameters M2

x and M2
y to

characterize the beam quality of an asymmetric beam is not comprehensive or objective [9,29,30].Sensors 2016, 16, 2014 7 of 15 
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Figure 2. Asymmetric beam intensity distribution in the laboratory coordinate system.

Similarly to the traditional definitions form of the beam widths in the general astigmatic beam [4],
we have

w2
xz =

4
∫ ∫ +∞
−∞ I(x, y, z)(x− x)2dxdy∫ ∫ +∞
−∞ I(x, y, z)dxdy

(19)

and

w2
yz =

4
∫ ∫ +∞
−∞ I(x, y, z)(y− y)2dxdy∫ ∫ +∞
−∞ I(x, y, z)dxdy

(20)
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and

wxyz =
4
∫ ∫ +∞
−∞ I(x, y, z)(x− x)(y− y)dxdy∫ ∫ +∞

−∞ I(x, y, z)dxdy
(21)

and

w2
rz =

4
∫ ∫ +∞
−∞ I(x, y, z)

[
(x− x)2 + (y− y)2

]
dxdy∫ ∫ +∞

−∞ I(x, y, z)dxdy
(22)

where x and y are the centroid coordinates of the power density distribution which defined as the
first-order moment of the power density distribution of the test beams. Therefore, the corresponding
beam divergence half angles are given by [4],

θx = lim
z→∞

wxz

z
(23)

θy = lim
z→∞

wyz

z
(24)

θxy = lim
z→∞

wxyz

z
= lim

z→∞

wyxz

z
(25)

θr = lim
z→∞

wrz

z
(26)

As shown in Figure 2, assuming the rotation angle of the coordinate axis is α, we have

xα = xcos α− ysin α, yα = xsin α + ycos α (27)

Therefore, the beam widths and the beam divergence half angles of the original and rotated beam
(with a rotation angle α) have the following relationships which are given by the Equations (28)–(31),
respectively; as following [30,32],

w2
xzα = w2

xzcos2α + w2
yzsin2α (28)

w2
yzα = w2

xzsin2α + w2
yzcos2α (29)

θ2
xzα = θ2

xzcos2α + θ2
yzsin2α (30)

θ2
yzα = θ2

xzsin2α + θ2
yzcos2α (31)

Utilizing the Equations (28)–(31), it is easy to derive the following expressions,

w2
xα(z) + w2

yα(z) = w2
r (z) (32)

θ2
xα + θ2

yα = θ2
r (33)

π2

λ2

(
w2

xα + w2
yα

) (
θ2

xα + θ2
yα

)
=

π2

λ2 w2
r θ2

r . (34)

In this case, we can derive a new beam propagation ratio M2(α) with rotation angle α to
characterize the rotated beam and it can be given as,

M2(α) =
π

λ
wx0αθxα, (35)

where wx0α and θxα are waist radius and divergence half angle in the x-direction with a rotation
angle α of coordinate axis, respectively. M2 can obtain different values if the rotation angle α charges
with the coordinate axis, that is, a track of the M2 values versus the rotation angle (α) of the beam
coordinate axis will be form and named M2-curve which is unique to a specific tested beam. It can
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be seen from the Equation (35) that the M2-curve takes into account changes in angle and can give
a track of the M2 values which is compared to the rotation angle α of the beam coordinate axis. That is,
the M2-curve contains all the values of beam quality M2 in all directions. The traditional M2 factor M2

x
in x-direction and M2

y in y-direction are just special cases of the M2-curve in a special direction of the
tested beam, precisely in two orthogonal directions (x-axis and y-axis). Therefore, the M2-curve has
a more comprehensive physical meaning and is more objective for characterizing the beam quality
because it can be uniquely determined for a particular tested beam. In other words, there is a one-to-one
mapping relationship between a particular tested beam and its sharp of M2-curve. According to the
above analysis in Sections 2 and 3, we can summarize the flow chart of the M2-curve determined by
the SRI-WFS method, as shown in Figure 3.Sensors 2016, 16, 2014 9 of 15 
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4. Experiment Results and Discussions

The beams from a diode pump solid state laser (DPSSL) with 532 nm wavelength are used as
test beam. The excitation of mode mixture in the DPSSL are Hermite-Gaussian-like modes (shorted
as TELMmn) is achieved by adjusting the tilt angle of the cavity mirrors [45]. The experiment setup
of SRI-WFS for completely reconstructing the complex amplitude field of a laser beam is depicted in
Figure 1, and it has been demonstrated that it can be used for beam quality measurements in real-time
and the details of SRI-WFS system can be seen in [24]. Two invert telescopes with telescope factor g = 3,
consisted of achromatic lens L1–L4 with focal length f 1 = f 4 = 100 mm and f 2 = f 3 = 300 mm, respecting
the magnification G = 9 of SRI-WFS. A pinhole plate with diameter dpin = 25 µm is used to generate
a reference wave. A CCD camera, model MVIC-II-1MM, with 1024× 1280 pixels and 5.2 micron in each
pixel, is positioned at the imaging plane to record interferogram in real time. The CCD sampled-data
are sent to the personal computer system (PC) for further processing.

Adjusting a slight tilt angle in the cavity mirrors, we can obtain different mix-mode beam outputs
whose intensity profiles are similar to the Hermite-Gaussian mode in TEMmn. For the convenience of
the following analysis, we denote these mix-mode beams as Hermite-Gaussian-like modes in TELMmn

to distinguish with the pure Hermite-Gaussian modes in TEMmn. As shown in Figure 4, three intensity
profiles corresponding to Hermite-Gaussian-like modes in TELM00, TELM20, and TELM40, respectively,
are used as the test beams in our experiments. Corresponding interferograms formed with SRI-WFS are
shown in Figure 5 (up row). The reconstructed intensity profiles (middle row) and the reconstructed
wrapped phase distribution (low row) of the test beams are also shown in Figure 5. Each reconstructed
distributions of amplitude and phase for the test beams are extracted from a single interferogram
according to Equations (7)–(10). Considering the limited of conditions in our laboratory, we only
investigate the intensity distribution for comparative analysis. For a quantitative comparison of the
measurement and reconstruction intensity profile, two-dimension cross-correlation coefficient Cc is
used as a metric [24]. Here Cc is defined as the cross-correlation between the images of measurement
intensity distribution IM(x, y) and reconstruction intensity distribution IR(x, y), and Cc = 1 is indicated
that the measured intensity profile and reconstructed intensity profiles match perfectly. In our
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experiment, the Cc of the reconstructed and measurement intensities for the Hermite-Gaussian-like
modes in TELM00, TELM20 and TELM40 are 0.999, 0.998 and 0.997, respectively.
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There are several causes for the deviation of the reconstruction intensity and the measured
intensity: (1) optical components such as inaccurate errors of telescope system and misalignment in the
SRI-WFS system lead to beam distortion; (2) the intensity of the reference wave hardly becomes
completely flat with the limited magnification of SRI-WFS in practice; (3) filtering error in the
Fourier transform method for interferogram analysis; etc. As long as reconstructing the complex
amplitude field E(x, y, 0) of the test beams, the field E(x, y, z) at different plane of z-axis direction
(with different propagation length z) can be determined easily according to the Equation (11), and the
intensities distribution I(x, y, z) = |E(x, y, z)|2 are also determined uniquely. According to the Standard
ISO11146, the beam width wxz can be determined by the second moment of the obtained intensity
distributions, as described in Equations (19)–(22). The beam width wxz of test beams in x-direction
of Hermite-Gaussian-like modes TELM00, TELM20, and TELM40 can be calculated directly from
the intensity distribution I(x, y, z) at different propagation location z. Moreover, according to the
Equations (13) and (28)–(31), the beam widths wxzα and the beam divergence half angles θxzα with
different rotation angle α of the coordinate axis also can be obtained. Figure 6 shows the results
of the beam width wxzα in the x-direction of Hermite-Gaussian-like modes (a) TELM00; (b) TELM20
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and (c) TELM40 versus propagation distance z and the different rotation angle α of coordinate axis.
Here, the rotation angles α are settled to 10, 20, 30, 40, 50, 60, 70, 80 and 90◦; respectively.

It can be seen from Figure 6 that with the different rotation angle α, for example, α= 10, 20, 30, 40,
50, 60, 70, 80, and 90◦; the beam widths wx, the beam waist radius wx0, beam divergence half angles
θx, and waist positions z0 of the tested beams are all very different. It is further evidenced by the
results of the normalized waist radius wxα(z0) and beam divergence half angles θx in the x-directions
for Hermite-Gaussian-like modes (TELM00, TELM20, and TELM40) versus rotation angle of coordinate
axis α, as shown in Figure 7. That is, with the changing rotation angle of the coordinate axis of the
tested beam in actual measurement, the waist radius wx0 and divergence half angle θx are ever-changes
and these different will directly result in the non-unique of the values of M2 factor. Obviously, it is
consistent with the previous analysis and the motivation of this paper. Moreover, it also indicates
that using the simple M2 factor, M2

x in x-direction and M2
y in y-direction just two special cases (in the

two orthogonal directions) of the test beams but missing the most of information in the other random
rotation angles α of the test beams.
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The results of the M2-curves of the test beams (Hermite-Gaussian-like modes TELM00, TELM20,
and TELM40) are shown in Figure 8. Note that all the M2-curves for Hermite-Gaussian-like modes
TELM00, TELM20, and TELM40 are asymmetric. The M2-curve is maybe a circle, an ellipse, or an 8-shaped
pattern. Moreover, the length values, from the original point to the cross-point at the curve, denote the
M2 values along this rotation angle α. For example, as shown in Figure 8, the values of the test beams,
Hermite-Gaussian-like modes TELM00, TELM20 and TELM40 along α = 0 direction, which corresponding
to the traditional M2 factor M2

x along x-direction of the tested beams, are 1.06, 2.62 and 3.72, respectively.
Moreover, when the rotation angle α is equal to 90◦, corresponding to M2

y along the y-direction for the
tradition M2 factor. In this case, the values of M2

y are 1.08 for TELM00, 1.27 for TELM20, and 1.37 for
TELM40, respectively. For comparative analysis, we also measured the beam propagation factor M2

values using the traditional ISO11146 standard based beam quality analyzer (BQA) developed in our
previous work [25], and the results are shown in Table 1. It shows that the beam quality M2 factors
with ISO11146 standard based method are M2

0x = 1.04, M2
2x = 2.54 and M2

4x= 3.56 along the x-direction
and M2

0y = 1.06, M2
2y = 1.20 and M2

4y = 1.32 along the y-direction for Hermite-Gaussian-like modes
TELM00, TELM20, and TELM40, respectively. Table 1 also shows the measurement errors between the
M2 factor values of Hermite-Gaussian-like modes TELM00, TELM20, and TELM40 with the proposed
SRI-WFS method and the ISO1116 standard based BQA. The maximum measured deviation of the two
methods are 4.49% for M2

x and 5.83% for M2
y along x-axis and y-axis, respectively. It can be seen from

Table 1 that the results of both measurement methods are well in agreement.
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Table 1. The measurement results of M2 factor for Hermite-Gaussian-like modes TELM00, TELM20, and
TELM40 with the proposed SRI-WFS method and the ISO1116 standard based beam quality analyzer.

Beam Quality
M2

x M2
y

TELM00 TELM20 TELM40 TELM00 TELM20 TELM40

SRI-WFS 1.06 2.62 3.72 1.08 1.27 1.37
ISO1116 method 1.04 2.54 3.56 1.06 1.20 1.32

Errors (%) 1.96% 3.15% 4.49% 1.89% 5.83% 3.79%

As shown in Figure 8, the M2-curve include in all M2 information (including in the traditional
M2 factor values) in all random rotation angle α of the coordinate axis. From this sense, M2-curve
is an extension method for characterization of beam quality. Moreover, its shape will be uniquely
determined for a particular test beam. Consequently, it provides a more comprehensive and more
objective physical meaning for actual applications.
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5. Conclusions

The non-uniqueness of characterization of laser beam quality with the traditional M2 factor can
be overcome by using the M2-curve. The M2-curve has more general physical meaning and wider
application scope both for asymmetric beams and astigmatic beams. The M2-curve not only contains
the beam quality terms, M2

x and M2
y, to evaluate the beam propagation quality in the x-direction

and y-direction, respectively; but also introduces a curve of M2
xα which is used to characterize beam

propagation factor versus the rotation angle α of coordinate axis. Moreover, the measurement method
of the M2-curve based on modified SRI-WFS is also put forward which is used to demonstrate the
potential of the proposed method, M2-curve, for charactering asymmetric beams.
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