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Abstract: The quality of an interferogram, which is limited by various phase noise, will greatly
affect the further processes of InSAR, such as phase unwrapping. Interferometric SAR (InSAR)
geophysical measurements’, such as height or displacement, phase filtering is therefore an essential
step. In this work, an improved Goldstein interferogram filter is proposed to suppress the phase
noise while preserving the fringe edges. First, the proposed adaptive filter step, performed before
frequency estimation, is employed to improve the estimation accuracy. Subsequently, to preserve the
fringe characteristics, the estimated fringe frequency in each fixed filtering patch is removed from the
original noisy phase. Then, the residual phase is smoothed based on the modified Goldstein filter with
its parameter alpha dependent on both the coherence map and the residual phase frequency. Finally,
the filtered residual phase and the removed fringe frequency are combined to generate the filtered
interferogram, with the loss of signal minimized while reducing the noise level. The effectiveness of
the proposed method is verified by experimental results based on both simulated and real data.

Keywords: interferometric synthetic aperture radar (InSAR); Goldstein interferogram filter; local
fringe frequency estimation

1. Introduction

As an all-weather all-time remote sensing technique, the synthetic aperture radar (SAR) is of
great importance in many fields, such as natural hazards’ monitoring, ocean investigation, geographic
mapping, and so on [1–3]. Synthetic aperture radar interferometry (InSAR), a further development
of the traditional SAR technology, employs two or more SAR antennas to retrieve the height profile
or the deformation of the ground surface [4–6]. Due to its high measurement accuracy, the InSAR
technique has been applied in a wide range of areas, such as forest height estimation [7], electronic
warfare [8], ocean measurements [9] and geolocation determination of ground targets [10]. The main
InSAR processing procedures include image registration, interferogram generation, phase unwrapping,
etc. [4,11]. In practice, the quality of the generated interferogram is limited by phase noise due to
co-registration errors, thermal noise, temporal decorrelation, baseline decorrelation, electromagnetic
interference, and so on [12,13]. To reduce the phase unwrapping difficulty and improve the precision of
the unwrapped phase, phase filtering has become an essential step for InSAR data processing [14–16].
An ideal phase filter should be able to reduce phase residues significantly while preserving the fringe
details well [17]. Since failure in edge preservation will cause serious errors in subsequent procedures,
fringe preservation is also a very important topic.

Sensors 2016, 16, 1976; doi:10.3390/s16111976 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 1976 2 of 17

In recent years, various filtering methods were proposed to improve the quality of the
interferometric phase. The simplest ones are the mean filter in the spatial domain and the low-pass
filter in the frequency domain. As an extension, in the spatial domain, the fringe adaptive smoothing
approach, proposed by Lee et al. (commonly referred to as the Lee filter) [18], has been successfully
applied for interferometric phase processing with direction-dependent windows. Another extension is
the slope-compensated mean filter based on local fringe frequency estimation (topography adaptive
filter) [19], and its effectiveness is greatly affected by the size and shape of the filtering window [19].

In the frequency domain, the coherent signal in the filtering patch accumulates and forms
a dominant peak, while the power of uncorrelated noises disperses stochastically in different
directions [20,21]. Based on this characteristic, many filtering algorithms have been further
developed [14,22–26]. The traditional Goldstein filter, as a low-pass filtering method, smoothes
the intensity of Fourier-transformed samples in overlapped interferogram patches [22]. It is widely
used for InSAR because of its notable noise suppression capability and fast operation [14]. However,
one disadvantage of this method is that it destroys phase continuity in those dense fringe regions.
To keep more texture details in the interferogram, Baran et al. proposed an adaptive Goldstein filtering
method with the parameter alpha varying according to the coherence of the filtering window [23].
To improve the estimation accuracy of alpha, Song et al. proposed modified Goldstein filters based
on empirical mode decomposition and the adaptive-neighbourhood technique [24,25]. All of these
modified versions have been shown to be more effective than the traditional Goldstein filter. However,
although these methods can reduce most types of phase noise, their ability to preserve fringes and
edges is limited. Since the filter response in each overlapping window can be essentially considered
as a low-pass filter, the high frequency components of fringes are suppressed [26]. Therefore, these
methods may result in loss of fine details in an interferogram, especially in areas with dense fringes
and complex textures.

To address the aforementioned problem, in this work, an enhanced Goldstein filtering method
is proposed to preserve the fringes by removing the local fringe frequency before phase filtering.
Firstly, a mean-filter moving patch is utilized to prefilter the pixels before fringe frequency estimation.
The size of the prefilter window is adjusted with the mean coherence value and the PSD (phase
standard deviation) in each filtering patch. In this way, the areas with low coherence or high noise level
are filtered with larger windows. Since the phase precision decreases sharply when the size of mean
filtering approaches to or exceeds the critical averaging look numbers [27], the size of the prefiltering
window is limited to prevent the distortion of fringes. Therefore, the subsequent frequency estimation,
achieved by Fourier transforms, will be more efficient and accurate. Then, the detected fringe frequency
in the estimation window is removed from the original noisy phase, and the remaining part is filtered
by the modified Goldstein filter. The filtering parameter α, changing according to the mean coherence
and the re-estimated residual phase frequency, not only prevents the areas of high coherence (less noise
level) from being over-filtered, but also allows stronger filtering in low coherence (high noise level)
regions. Finally, the local fringe frequency and the filtered residual phase are combined to generate the
filtered interferogram. Compared to the original Goldstein interferogram filter, there are three changes
proposed: prefilter with an adaptive window size, the application of fringe frequency estimation and
the optimization of the parameter α. As shown in the simulation results, the new method can suppress
noise more effectively while preserving the fringe well, even for fringes with strong curvatures.

The remainder of this paper is organized as follows. The improved Goldstein filter based on local
frequency estimation is introduced in Section 2, and evaluation results based on the simulated dataset
and collected real data are provided in Section 3. Conclusions are drawn in Section 4.
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2. Improved Goldstein Filter Based on Local Frequency Estimation

2.1. Analysis of the Goldstein Filter

The Goldstein filter smooths the intensity of Fourier-transformed samples of small, overlapping
interferogram patches. The spectrum of the filtered interferogram can be expressed as [22]:

H
(

fx, fy
)
= S

{∣∣Z ( fx, fy
)∣∣}α · Z

(
fx, fy

)
(1)

where fx and fy respectively represent the spatial frequencies in range and azimuth, α is the filter
parameter, Z

(
fx, fy

)
represents the Fourier spectrum of each filtering window and S {·} is a smoothing

operator, which is normally achieved by a low-pass filter. The patches are defined as small windows of
the interferogram, with overlaps to maintain continuity at the boundaries. The parameter α, taking
a value in the range of [0, 1], indicates the desired effectiveness level of the filtering operation. For
α = 0, we have H

(
fx, fy

)
= Z

(
fx, fy

)
, which means no filtering applied. The filtering effect will

become more significant with the increase of α. A large value of α will result in a loss of resolution in
the filtered phases, while a small value will reduce the ability of noise suppression. In general, it is
difficult to choose an appropriate value for α, and for the original Goldstein filter, α = 0.5 is normally
used to ensure a balance between noise suppression and phase preservation [24,25].

To find the best value for α, in [23], the relationship between α and the mean value of the absolute
coherence is derived as:

α = 1− γ (2)

where γ is the mean coherence value of the effective patch (patch minus overlap). Clearly, this choice
prevents areas of high coherence from being over-filtered and meanwhile allows strong filtering in
areas of low coherence, which can effectively reduce the loss of resolution in areas of high coherence.

2.2. Combination of Goldstein Filter and Local Frequency Estimation

The Goldstein filter discussed above has the following drawbacks. In each filtering window, the
smoothing operator removes high frequency components of the noisy interferogram. As a result, the
dense fringe, composed of high frequencies in the filtering window, is also removed. Therefore, the
filtering process may destroy the fringe frequency and result in the loss of fine details, especially in
areas of complex textures.

To overcome this problem, we can incorporate the fringe frequency estimation technique into the
Goldstein filter, which suppresses the noise of slope-compensated phase after estimating and removing
the local fringe frequency in the filtering window. The overall flowchart for the improved method is
shown in Figure 1, with the following three major steps:

1. The proposed adaptive mean filter is applied to ensure the accuracy of fringe frequency estimation.
The prefilter window size, limited by the critical averaging look number, is varying according to
the mean coherence value and PSD.

2. Fringe frequency estimation using Fourier transform is performed after adaptive mean
prefiltering. Note that the estimated principal phase component is removed from the original
noisy phase rather than the prefiltered phase. Hence, the prefiltering operation improves the
accuracy of fringe frequency estimation and does not reduce the resolution of the interferogram.

3. The Goldstein filter is utilized to smooth the residual noisy phase with modified parameter α

dependent on both the coherence map and residual phase frequency. The filtered residual phase
and the removed fringe frequency are ultimately combined to derive the filtered interferogram.

There are three improvements to the original Goldstein filter: prefiltering with size-varied
windows, estimating fringe frequency before the Goldstein filter and optimizing the Goldstein filter
parameter α. In the following, we provide more details for each part.
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Figure 1. Flowchart of the improved Goldstein filtering method based on local frequency estimation.
PSD, phase standard deviation.

2.2.1. Size-Varied Windows Prefilter

Initially, to improve the accuracy of fringe frequency estimation, the prefiltering operation is
implemented. To deal with phase noise, an adaptive mean filter is applied to prefilter the estimation
patches. Thus, the complex interferogram of the centre pixel in the filtering window becomes:

S (x0, y0) =
1

(2m + 1) (2n + 1)

(
x=x0+m

∑
x=x0−m

y=y0+n

∑
y=y0−n

S (x, y)

)
(3)

where S (x, y) denotes the original complex interferogram. The range and azimuth radius of the mean
filtering patch are respectively limited by:

m = min {b(1/γ) + σc , b (nr − 1) /2c} (4)

n = min {b(1/γ) + σc , b (na − 1) /2c} (5)

where min {·} takes the minimum value of its two parameters, γ is the mean coherence value in the
estimation window, σ denotes the PSD in the estimation window and b·c rounds down its parameter
to the nearest integer. nr and na represent the critical averaging look numbers in the range and azimuth
directions, respectively. The PSD is calculated by [25]:

σ =

√√√√∑
N
(ϕ (x, y)− ϕ (x, y))2

N − 1
(6)

where ϕ (x, y) represents the phase value in the estimation window and ϕ (x, y) denotes the linear
phase ramp in a moving patch. A larger PSD means a rough phase with more noise. In the range and
azimuth directions, the critical averaging look numbers calculated by a priori information of the SAR
imaging mode and control point altitude are respectively expressed as [27]:

nr =

⌊
λr

4BRr
· 1

cosβ/sin(θ + β)− sinθ

⌋
(7)
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na =

⌊
λrrg

4B
· 1

R2
atan2β + 2RaHtanβ

⌋
(8)

where λ is the radar operating wavelength, r is the slant range between the master antenna and the
target on the ground, B is the length of baseline, Rr is the slant range resolution, θ is the look angle,
β represents the angle of ground inclination, rg is the projection of r on the ground and H denotes the
satellite flight altitude.

As can be seen, the areas of lower coherence or more noise will be prefiltered with larger windows,
while the low noise region will be prefiltered with smaller windows.

2.2.2. Principal Phase Component Estimation

Next, fringe frequency estimation is performed after the above prefiltering operation. According
to the model of the noisy phase described in [21], the power spectrum is characterized by a principal
narrow-band component and a broadband component. The principal phase component corresponds
to the fringe frequency of the real phase, while the broadband component includes the residual phase
component and the phase noise. To derive the local fringe frequency of the filtering window, the
maximum likelihood (ML) method [15] is employed using Fourier transforms [28–30]. The local
frequency of a (2P + 1)× (2Q + 1) window in the interferogram can be expressed as:

(
f̂x, f̂y

)
= arg max

fx , fy

(∣∣∣∣∣x=x0+P

∑
x=x0−P

y=y0+Q

∑
y=y0−Q

S (x, y) exp
(
−j2π

(
x fx + y fy

))∣∣∣∣∣
)

(9)

where S (x, y) represents the prefiltered complex interferogram and (x0, y0) denotes the centre pixel in
the local fringe frequency estimation window. To speed up the optimization of Equation (9), FFT (fast
Fourier transform) is usually employed. Then, the slope-compensated pixel in a (2P + 1)× (2Q + 1)
patch can be obtained as:

S′ (x, y) = S (x, y) exp
(
−j2π

(
x f̂x + y f̂y

))
(10)

where x ∈ [x0 − P, x0 + P], y ∈ [y0 −Q, y0 + Q], S (x, y) represents the original noise phase before
prefiltering and S′ (x, y) denotes the slope-compensated complex phase. Since the estimated principal
phase component is subtracted from the original noisy phase, the prefiltering operation improves the
accuracy of fringe frequency estimation without reducing the resolution of the interferogram.

2.2.3. Residual Noisy Phase Filter

In this part, the residual noisy phase, containing the noise and the residual phase component, is
further discussed. In an ideal interferogram without noise, the residue phase without fringe frequency
approaches zero in the frequency domain. Nevertheless, the frequencies of the residual phase are not
close to zero in practice due to different types of phase noise. Therefore, a change to the Goldstein
parameter α is required depending on both the residual phase frequency and coherence map. Firstly,
the dominant frequency spectrum amplitude of the residual noisy phase in a (2P + 1) × (2Q + 1)
window can be obtained as:

(
f̂x_res, f̂y_res

)
= arg max

fx_res , fx_res

(∣∣∣∣∣x=x0+P

∑
x=x0−P

y=y0+Q

∑
y=y0−Q

S′ (x, y) exp
(
−j2π

(
x fx_res + y fy_res

))∣∣∣∣∣
)

(11)

where fx_res and fy_res respectively represent the range and azimuth frequency component of the
residual noisy phase in the (2P + 1)× (2Q + 1) window. In Equation (11), a larger frequency means
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greater noise intensity. Therefore, we can combine the dominant frequency spectrum amplitude and
coherence value to modify the Goldstein filter parameter into:

α = 1− γ +

√∣∣∣ f̂x_res

∣∣∣2 + ∣∣∣ f̂y_res

∣∣∣2 (12)

This modification ensures that the incoherent or noisy areas are filtered more than coherent or
low-noise ones. The filtering operation is implemented by combining Equations (1) and (12). To
express it more clearly, we define the filtered residual complex phase as Ŝ′ (i, j). Accordingly, the
derived interferogram filtered by our method can be written as:

ϕ̂ (i, j) = arg
{

Ŝ′ (i, j) exp
(

j2π
(

i f̂i + j f̂ j

))}
(13)

where (i, j) denotes the position in the interferogram.
(

f̂i, f̂ j

)
represents the estimated frequencies

derived by Equation (9) in a local window centred on (i, j). In Equation (13), the processed
interferometric phase is composed of two parts: the estimated fringe frequency and the filtered
residual phase. This enhanced Goldstein filter will effectively prevent the local fringe frequency from
being suppressed by the low-pass filter. Therefore, slope compensation can effectively reduce phase
noise and at the same time maintain the fringe details.

Figure 2 shows the detailed procedure of our method with a patch of 31 × 31 pixels. The original
noisy patch and the corresponding real phase are respectively presented in Figure 2a,b. Then, the
phase after prefiltering is obtained, as shown in Figure 2c. Subsequently, the dominant frequency
spectrum amplitude is derived in Figure 2d, and the local fringe component is produced in Figure 2e.
By subtracting the local fringe component from the original noisy phase, the residual phase is obtained
as Figure 2f. The residual noisy phases, composed of residual phase components and phase noise,
are further filtered by using Equations (1) and (12), as shown in Figure 2g. Finally, the local fringe
component and filtered residual phase constitute the filtered interferogram (Figure 2h), which is closer
to the real phase (Figure 2b). As can be seen, after these modifications, texture details of the effective
phases are preserved while the regions with strong noise are filtered more, which provides a more
accurate filter for the interferogram.
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Figure 2. The example for the procedure of our method by using a window with 31 × 31 pixels.  
(a) Noisy phase window; (b) corresponding simulated true phase; (c) phase after prefiltering;  
(d) principle power spectral density of the prefiltered phase; (e) the removed principal phase 
component; (f) residual noisy phase; (g) filtered residual phase; (h) final processed phase patch by 
our method. 
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Figure 2. The example for the procedure of our method by using a window with 31 × 31 pixels.
(a) Noisy phase window; (b) corresponding simulated true phase; (c) phase after prefiltering;
(d) principle power spectral density of the prefiltered phase; (e) the removed principal phase component;
(f) residual noisy phase; (g) filtered residual phase; (h) final processed phase patch by our method.



Sensors 2016, 16, 1976 7 of 17

3. Results and Analysis

In this section, the performance of the proposed method is studied using simulated and real
data. The effect of the three proposed modifications to the standard Goldstein filter is demonstrated
by simulated data; both the simulated and the real dataset are used to show the effectiveness of
the proposed method in phase noise reduction and fringe preservation in comparison with several
existing methods.

3.1. Comparison with Our Modifications

The interferogram is derived from the simulated complex SAR image pairs through interferometry.
The SAR images with 150× 150 samples are initially simulated according to the SAR geometry and the
imaging area [31]. Subsequently, image co-registration is performed to derive the noisy interferogram,
as shown in Figure 3a. The corresponding coherence map calculated by the coherence estimator [32]
with 3 × 3 windows is presented in Figure 3b. For comparison, the true phase of the mountainous
terrain is given in Figure 3c using the method in [33]. The corresponding phase error of the original
noisy interferogram is shown in Figure 3d.
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Figure 3. Simulated data. (a) Simulated noisy phase (Cross-sections A and B, respectively representing
the transitional region in azimuth and the phase jumping region in range, will be further analysed in
Section 3.2); (b) coherence map; (c) simulated true phase; (d) phase error image.

We filter the simulated data using five algorithms: the reference Goldstein interferogram filter [23],
the improved filter with Modification 1 only (adding the adaptive prefilter to the reference Goldstein
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filter), the improved filter with Modification 2 only (removing fringe frequency before applying the
reference Goldstein filter), the improved filter with Modification 3 only (with the Goldstein filter
parameter α dependent on coherence and noise frequency) and the proposed method. The filtered
results and the corresponding error images are respectively shown in Figure 4a–e. All of these methods
use an 11 × 11 window for Goldstein phase noise filtering. Comparing the proposed Modification
1 with the reference Goldstein filter, as shown in Figure 4a,b, the residues are dramatically reduced
due to the noise suppression capability of the adaptive mean prefiltering operation, leading to a more
accurate fringe frequency estimation result based on Figure 4b. Figure 4c indicates that Modification 2
has a great advantage of preserving fringe continuity. The proposed Modification 3 makes Goldstein
filter parameter α dependent on the absolute value of noise frequency, as well as coherence, as shown
in Figure 4d, where although several dense fringes are not preserved well, such a modification has
effectively increased the smoothness of the filtering result. The proposed method, combining the
advantages of Modification 1, Modification 2 and Modification 3 (see Figure 4e), provides promising
performance in both noise reduction and fringe preservation.
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Figure 4. Simulated interferograms and corresponding error images using different modifications.
(a) Reference Goldstein filter; (b) improved filter with Modification 1 only; (c) improved filter with
Modification 2 only; (d) improved filter with Modification 3 only; (e) our method.

In order to evaluate the performance of our modifications in a quantitative way, the phase residue
number, the edge preservation index (EPI) and the mean-square errors (MSE) between the filtered
and the true phase are calculated. The number of residues determines the effectiveness of eliminating
phase noise, and the EPI, indicating the capability of fringe and edge preservation, is given by [24]:

EPI = ∑ (|ϕs (i, j)− ϕs (i + 1, j)|+ |ϕs (i, j)− ϕs (i, j + 1)|)
∑ (|ϕo (i, j)− ϕo (i + 1, j)|+ |ϕo (i, j)− ϕo (i, j + 1)|) (14)
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where ϕo (i, j) and ϕs (i, j) represent the edge phase before and after filtering, respectively. In this
experiment, ϕo (i, j) is the true phase value. A better fringe means an EPI closer to one. Clearly,
EPI > 1 indicates more noise or false fringe details on the filtered interferogram, while EPI < 1 means
the fringe curvature of the filtered phase is decreased in comparison with the “true” phase. MSE,
which is the mean-square error of the filtered phase, is defined as [15]:

MSE = E
[
|arg (exp (jϕ̂(i, j)− jϕreal(i, j)))|2

]
(15)

where E [·] denotes the statistics expectation, ϕ̂ (i, j) represents the filtered InSAR phase and ϕreal (i, j)
is the ideal phase value.

The filtered interferograms are evaluated using the aforementioned criteria. The results are shown
in Table 1. It can be seen that Modification 1 is mainly for reducing the residues, while Modification 2
and Modification 3 have a good performance in fringe and edge preservation. Furthermore, all of
those modifications have smaller MSE values than the reference Goldstein filter, which indicates an
increased accuracy by the proposed method. These results clearly demonstrate that the proposed
filtering method has a much better performance in reducing noise and preserving fringes than the
reference Goldstein interferogram filter.

Table 1. Evaluation of three modifications (simulated data). EPI, edge preservation index.

Interferogram Residues EPI MSE

Real phase 0 1 0
Noisy phase 3270 7.8684 1.3054

Reference Goldstein 14 1.3739 0.0707
Modification 1 5 1.2275 0.0461
Modification 2 20 1.0921 0.0295
Modification 3 15 1.0725 0.0447
Our method 2 1.0362 0.0171

3.2. Comparison with Other Filters

In this part, the performance of our method is evaluated with the simulated dataset. As a
comparison, the reference Goldstein filter [23], the topography adaptive filter [19] and the Lee filter [18]
are also used, and the corresponding filtered results of different methods are shown in Figure 5a–c,
where 11 × 11 phase denoising windows are used for all cases.

As shown in Figure 5a, the reference Goldstein filter is less capable of edge preservation in
low-coherence regions compared with the true interferogram (Figure 3c). In Figure 5b, the reference
topography adaptive filter induces phase errors along the fringe because of the inaccurate estimation of
fringe frequency. In Figure 5c, several residues are introduced by the Lee filter, since a high noise level
will cause serious problems for the orientation determination of the Lee filter, and a wrong window
direction will result in an inaccurate filtered result. Figure 5d again demonstrates the superiority of the
proposed method.

The calculated quantitative results are shown in Table 2. We can see that the filtered interferogram
of the proposed method has the least residue number among these methods, indicating a very high
noise reduction result. Moreover, the EPI and MSE obtained by our method have almost reached those
of the real phase. This quantitative evaluation has again verified that the proposed method can not
only eliminate phase noise more effectively, but also preserve the fringe well.
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Figure 5. Filtered results and corresponding error images using different methods. (a) Reference
Goldstein filter; (b) reference topography adaptive filter; (c) Lee filter; (d) our method.

Table 2. Evaluation of different filters (simulated data).

Interferogram Residues EPI MSE

Real phase 0 1 0
Noisy phase 3270 7.8684 1.3054

Reference Goldstein 14 1.3739 0.0707
Topography adaptive 73 1.1515 0.0709

Lee filter 48 1.2059 0.0864
Our method 2 1.0362 0.0171

Then, in order to validate the robustness of our method in filtering the transitional region and
phase jumping region, two cross-sections (A in the azimuth direction and B in the range direction)
where phase distortion often occurs are extracted from Figure 3a. By comparing the cross-sections, the
advantage of our method can be revealed.

As show in Figure 6a, the filtered phase obtained by our method is much closer to the real phase
than others. In Figure 6b, the Goldstein filter and the Lee filter cannot achieve a very good result in the
phase jumping area with a high level of noise and produce a shift in the fringe peak. In both figures,
the topography adaptive filter leads to some variations in the transition zone. As can be seen, the
proposed method has the best edge preservation performance among all four methods considered.
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Figure 6. Cross-sections over the simulated interferogram, where “Taf” represents the “topography
adaptive filter”. (a) Cross-section for A in the azimuth direction; (b) cross-section for B in the
range direction.

Finally, the density function of phase errors (filtered phase minus the real phase) within the range
[−π, π) is shown in Figure 7, and we can draw the same conclusion about our proposed method.
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Figure 7. Density functions of phase error (filtered phase minus true phase). Phase error is wrapped to
the range [−π, π).

3.3. Real Data Experiment

In this part, the interferogram of the SIR C-SAR data (C-band, Etna Volcano of Italy) is used to
investigate the performance of the proposed method. A typical area of the experimental results with a
400 × 400 sample dimension is selected.

In Figure 8, the entire phase image is presented in the left column, and the enlarged area in the
white rectangle is on the right. The original noisy image is provided in Figure 8a–c. The fringes in
Figure 8b, buried in significant noise in the white rectangle, represent the steep terrain of Mount Etna.
As shown in Figure 8c, the enlarged area contains more texture details. The filtering results produced
by the reference Goldstein filter, the topography adaptive filter, the Lee filter and our method with a
constant denoising window size of 17 × 17 are shown in Figure 8d–o. As can be seen in Figure 8e,f, the
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reference Goldstein filter has reduced the phase noise effectively, but the fringes are ambiguous and not
continuous in dense fringe areas. Comparing Figure 8g–i with Figure 8d–f, we see that the topography
adaptive filter is more capable of fringe preservation than the reference Goldstein filter in dense fringe
areas. However, the estimated fringe frequency by the topography adaptive method is not accurate,
and the fringe details of the resultant interferogram are lost. In Figure 8j–l, the Lee filter shows a better
performance in detail preservation than the reference Goldstein filter and topography adaptive filter.
Nevertheless, its windows’ direction is difficult to determine, especially in areas with a high noise
level, leading to broken fringes in some regions. Figure 8m–o shows the filtering result using the
proposed method, which has effectively improved the accuracy of fringe frequency estimation and
simultaneously smoothed noise. In the enlarged areas of Figure 8, the proposed method gives the best
result in preserving texture details and has the most continuous fringe in the steep terrain.
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Table 3 lists the results for phase residue number and phase standard deviation. In terms of
residues in the interferogram, the improvements by the reference Goldstein filter, the topography
adaptive filter and the Lee filter are 97.41%, 96.17% and 93.98%, respectively, while our proposed one
is 99.05%, which is the best result. Besides, the PSD for the proposed method is the smallest, giving the
best smoothing effect.

Table 3. Evaluation result of different filters (real data).

Interferogram
Residues Phase Standard Deviation

Magnitude Improvement Magnitude Improvement

Unfiltered 32,956 - 1.5968 -
Reference Goldstein 853 97.41% 0.8996 43.66%

Topography adaptive 1263 96.17% 0.9094 43.05%
Lee filter 1982 93.98% 0.9393 41.18%

Our method 313 99.05% 0.8903 44.24%

Overall, we can conclude that the proposed interferogram filter based on local frequency
estimation has consistently outperformed the existing ones.

4. Conclusions

In this paper, a modified Goldstein filtering method to reduce the phase noise has been proposed.
As demonstrated by experimental results based on both simulated data and real data, it can suppress
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noise effectively while preserving the fringe details well. In detail, we have the following four
major findings:

• The adaptive prefiltering operation based on phase standard deviation and coherence can
effectively improve the accuracy of local fringe frequency estimation for areas incoherent or
with a high level of noise without reducing the resolution of the interferogram.

• The fringe frequency estimation and slope compensation before applying the Goldstein filter can
significantly enhance its performance in edge preservation.

• The modified Goldstein parameter α, varying with coherence and the dominant frequency
component in the residual noise phase, provides a promising result in noise reduction.

• Fringe frequency compensation and residual phase filtering are combined to reduce the number
of phase residues significantly while preserving the fringe details well, even for fringes with
strong curvatures.

As a result, the filtered interferogram can keep its fringe frequency components and also benefit
from the reduced noise level provided by the Goldstein filter, leading to an improved performance by
the proposed method.
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