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Abstract: Understanding travel behavior is critical for an effective urban planning as well as
for enabling various context-aware service provisions to support mobility as a service (MaaS).
Both applications rely on the sensor traces generated by travellers’ smartphones. These traces can be
used to interpret travel modes, both for generating automated travel diaries as well as for real-time
travel mode detection. Current approaches segment a trajectory by certain criteria, e.g., drop in
speed. However, these criteria are heuristic, and, thus, existing approaches are subjective and involve
significant vagueness and uncertainty in activity transitions in space and time. Also, segmentation
approaches are not suited for real time interpretation of open-ended segments, and cannot cope with
the frequent gaps in the location traces. In order to address all these challenges a novel, state based
bottom-up approach is proposed. This approach assumes a fixed atomic segment of a homogeneous
state, instead of an event-based segment, and a progressive iteration until a new state is found.
The research investigates how an atomic state-based approach can be developed in such a way that
can work in real time, near-real time and offline mode and in different environmental conditions with
their varying quality of sensor traces. The results show the proposed bottom-up model outperforms
the existing event-based segmentation models in terms of adaptivity, flexibility, accuracy and richness
in information delivery pertinent to automated travel behavior interpretation.
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1. Introduction

Travel is an inevitable part of human life, required in order to perform an activity which is not
possible at a current location. However, changing the perspective, travel itself can become an activity
in its own right, and again changing perspective, travel can be conceived as a sequence of activities,
each consisting of a segment travelled in a single mode. This paper focuses on the automatic
interpretation of a travel as a sequence of activities, i.e., segments travelled in a single mode of
travelling, from sensor traces collected on smartphones. In particular, the role of granularity will be
highlighted (e.g., between getting on board of a bus, taking the bus, or going to work), along with the
ambiguity about the mode that comes along with it [1]. The elementary trips of a travel are connected
by transfers, at certain granularities. Travel can be mediated by moving objects in the form of different
transport modes, but we explicitly include unsupported body movement (walking, running) as a mode.
Since any mode is mixed with unrelated bodily movements, such as walking through a bus, taking a
smartphone out of a pocket while sitting on a bus, or turning the head while cycling, the interpretation
of sensor traces has to deal also with other noise than only from the sensor characteristics.

Identifying trips automatically is important for understanding the travel demand in a city, people’s
movement behavior, modal preferences, route choice, patronage, and for enabling various customized
services in the context of “Mobility as a Service” (MaaS) [2]. With the emergence of context-aware
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computing in the light of MaaS, there is a need to develop a real-time mobility-based activity detection
framework (e.g., real-time mode detection model): Only real-time detection can provide context-aware
customer services such as providing car drivers with congestion-related routing information while
protecting bus passengers from this to happen. Another instance could be activating auto-answering
on the smartphone for a car driver (in order to avoid distraction) while ensuring that passengers on a
tram remain unrestricted.

In order to understand people’s travel activities, traditional methods rely on paper-based,
telephonic or face-to-face travel survey techniques in order to generate travel diaries. A travel diary
contains the mobility information of a person in terms of trips, with their start time, end time, origin,
destination and transport mode(s). Since there is a time gap between the actual travel and the
reporting of the travel, such a reconstruction process often involves under-reporting, miss-reporting,
and potentially bias. More recently, GPS-based travel surveys have been explored that collect
movement data in the form of time-stamped coordinates along the travelled route [3,4]. Early GPS
assisted travel surveys were based on in-vehicle tracking [5–7], and only with the recent emergence
of smartphones equipped with positioning and other location sensors along with inertial measuring
units (IMU) it has been possible to continuously track an individual across any mode of travelling [8].

The remaining challenge is to automatically interpret these sensor traces for travel activities (single
mode trips) and transfers. In the current state-of-the-art, a trajectory is top-down segmented based on
some critical events (e.g., a drop in speed) and then activity states are detected for each segment [9,10].
However, segmenting a trajectory based on some heuristics is subjective and involves vagueness and
uncertainty in activity transition in space and time, and thus, obscures the recognition and modelling
of transfers. Prior work, discovering activities (including transfers) using clustering techniques, has to
deal with clusters of any shape and any size, and hence comes with a significant uncertainty and
ambiguity as to where a transfer begins and ends vis-á-vis a trip start and end. In contrast, the present
work assumes that within a very fine grained space-time frame the activity state will remain same:
A finer kernel involves less uncertainty than that of a longer segment, and the trip end of one segment
becomes the trip start of the next segment. The common point in time defines a transfer precisely in
space and time, and thus involves less ambiguity than that of a clustering-based approach. This paper
hypothesizes that a state-based bottom-up approach is more adaptive than any top-down approach,
and in addition will be able to detect activity states in a progressive manner (i.e., in near-real time).
This translates into the temporal uncertainty depending on the length of space-time kernel. The shorter
the kernel the less is the uncertainty, but at a cost of overall detection accuracy.

In the state-based bottom up approach an atomic kernel is ran over the entire sensor trace and a
particular activity state is detected iteratively. The assumption behind this approach is, shorter the
temporal kernel more homogeneous the activity state will be. A transfer is then modelled with a given
temporal uncertainty when there is a change in the activity state. The approach can be extended to a
multi-grained atomic kernel approach to drill down the activity states, e.g., first detecting the travel
activities, then the finer grained activity states during any transfer. The hypothesis has been tested on
two different data sets: A trajectory data set of multi-modal inner-urban trips, and also a data set of
inertial measurement unit (IMU) observations on-board a smartphone (without location information).
The experiments prove that the new approach is not only more expressive in terms of richer travel
information, but also capable of near-real time trip analysis as required for context-aware services.
The contributions of this paper are as follows:

(a) Unlike the earlier approaches which are mostly behavior-based depend on a particular event(s)
(say, drop in speed), this research presents a novel state-based bottom-up framework to segment
the trajectories in a progressive way at different granularity.

(b) The aspect of temporal uncertainty in activity transition is explored and modelled using Allen’s
temporal calculus [11]—which was missing in the earlier trajectory segmentation, trip generation
and transport mode detection research (Figure 1).
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(c) The framework presented in this paper is modular, adaptive, flexible and robust, and yet accurate.
Since the framework uses an atomic kernel of definable length it can work in different granularities
(e.g., for travel mode or transfer interpretation), and even in near-real time (defined by the kernel
length). The framework can also handle varying data quality and richness in information content
in the sensor trace.

Thus, in case of a top-down approach depending on a certain behavior or event, a trajectory is
first segmented into a number of segments; and then an activity state is detected over each segment.
On the other hand, for a bottom-up approach, a given activity state is detected within a short temporal
kernel without considering any change in behavior of the moving object. Then the subsequent states
are discovered iteratively, and a progressive segmentation takes place along the given trajectory.

The remainder of the paper is organized as follows. Section 2 gives an overview of the current
state of knowledge and research gap. Section 3 defines some key concepts used in this research.
Section 4 outlines the methodology used for data pre-processing and model building. Section 5
discusses the data sets, experiments and results. Section 6 reflects on the framework, which is followed
by concluding remarks and an outlook in Section 7.

Figure 1. Trip uncertain temporal relationships between a reported trip (TR) and predicted trip (TP)
based on Allen’s temporal calculus. In this figure t1 and t2 are the start time and end time of a given
trip respectively.

2. Literature Review

Travel diaries are a record of people’s travel history and also other activities performed during the
travel. This kind of information is important for understanding people’s travel and activity behavior,
which is considered an input for different types of travel demand models within a given space and time.
In order to collect such travel diaries, travel surveys are conducted, which are currently paper-based or
telephonic in most of the places in the world [12,13]. As surveys rely on people’s ability to recall their
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past travel behavior accurately and at different granularities this approach is generally subject to quality
issues such as under-reporting—missing trips, missing transport mode annotation, missing transfers,
unknown travel speeds—, miss-reporting—wrong transport mode annotation, inaccurate trip start and
end times and locations—, and bias— deliberate manipulation of the provided information [14].

In order to overcome these issues GPS assisted travel surveys have been developed, with a first
proof-of-concept run in Lexington, Kentucky [15–17]. GPS-based travel surveys can generate travel
records in the form of a sequence of time ordered GPS points on the fly (trajectories) and thus are free
from post-travel recall. However, the trajectories need to be interpreted as travel and other activities in
order to fulfil the requirements of a household travel survey.

The efficacy of GPS-based surveys has proven that such in-situ sampled space-time information
produces higher quality data than that of a paper-based travel diary [18–20]. For the trajectory
analysis generally a clustering-based approach is used to detect trip start and end times. However,
GPS trajectories are subject to discontinuity due to signal loss, for example, in urban canyons,
under dense foliage, in buildings, or when travelling underground. Signal loss produces semantic
gaps in clustering-based approaches, and thus creates false origins or destinations. Especially trip
end detection—i.e., the end of a single mode travel segment—and trip purpose identification are
of interest [7]. The trip end is detected based on a longer period of non-movement or longer dwell
time at a given location. Prior studies suggested a threshold of 120 s to detect a trip end [7,18,21–23].
Stopher and others detected a trip end using a rule-based algorithm that considers trip characteristics
before and after possible GPS signal gaps [24,25]. In order to detect the trip purpose Wolf developed a
‘point-in-polygon’ approach that uses a number of pre-defined land use types and trip purpose classes
and evaluates if a trip end falls within a given land use type [6,7].

With the advancement of information and communication technology (ICT) and miniaturization
of location and IMU sensors on-board mobile phones, it has been possible to obtain travel and other
activity information in the form of trajectories without burden, and across any mode of travelling and
any form of environment [26]. Asakura and Hato conducted a first mobile phone-based pilot survey
in Japan [27]. Following that, Ohmori and colleagues developed another mobile phone-based travel
survey application with a manual intervention, with 10 min sampling intervals [28]. Itsubo and Hato
conducted a mobile phone-based travel survey on 31 respondents over five days with 30 s sampling
intervals [29]. However, the earlier mobile phone-based surveys require significant amount of user
intervention and offer limited flexibility in phone usage and sampling rates, and thus the users cannot
follow their true travel behavior. With recent emergence of smartphones researchers started coming up
with more user-friendly applications. These smartphone-based travel survey techniques can generate
high quality travel and activity information in the form of trajectories generated from GPS, Wi-Fi and
3G/4G localization, combined with traces from IMU. These raw trajectories and sensor traces reveal
location information and geometric patterns of the user movements [30–32]. In order to interpret the
trajectories semantically, i.e., with regard of trips, travel modes, and activities, additional information
relevant to the context and application domain is associated with raw trajectories [33]. For this purpose,
the trajectory is segmented into a number of segments where each segment is analyzed to detect a
given activity state (e.g., transport mode) or kinematic behavior (e.g., travel speed).

Gonzalez and colleagues developed a smartphone-based travel survey and detected transport
modes using a neural network model [34]. Charlton and colleagues developed a similar application but
focused on bicycle travel behavior [35]. Recently, Cottrill and colleagues developed the Future Mobility
Survey (FMS), a full-scale household travel survey that consists of four phases: registration, pre-survey,
activity diary, and a follow-up feedback survey [8,36]. In the registration phase the participant registers
on the FMS portal providing basic household information. In the pre-survey more information on
the socio-demographic profile of the household members is provided. In the activity diary phase the
actual travel behavior is recorded, and recorded trajectories are uploaded to the FMS platform for a
backend mode detection model. Finally, the inferred trips, modes and activities are validated by the
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participants in the feedback survey, a web-based prompted recall survey [37]. Similar applications
have been developed elsewhere [38] for detecting transport modes from smartphone trajectories.

In order to analyse the trajectories segmentation is performed. Spaccapietra and colleagues
developed an episodic algorithm known as stop-and-move-on-trajectories (SMoT) from a top-down
perspective: first the trajectory is segmented into a number of segments and then an activity state
is detected over a particular segment using a machine learning approach or expert system-based
model [39]. This algorithm assumes a person will stop at a certain location for minimal amount of time
in order to perform a certain activity and then start moving until reaching the next destination. Thus a
raw trajectory is segmented into two different episodes and each episode is semantically enriched.
A move episode reflects a person’s travel behavior, whereas a stop episode reveals a person’s activity
behavior within a constrained space.

The SMoT algorithm was implemented in different forms. Alvares and colleagues developed
an intersection-based approach (IB-SMoT) to model the stop and move episodes. IB-SMoT evaluates
which spatio-temporal points of the trajectory intersect a given candidate region for a minimal time
duration [30]. If the respective points satisfy the spatio-temporal condition those points will be
considered as stop points, and the points that do not fall within a candidate region will be considered
as move points. Palma and colleagues developed clustering-based stops and moves (CB-SMoT) where
a clustering kernel is run over a trajectory, and the clusters containing low speed points with respect
to a predefined threshold are called potential stop clusters [40]. Then each potential stop cluster is
investigated if the cluster intersects any given region of interest and labeled as stop episode. Das and
colleagues developed a density-based clustering algorithm based on the CB-SMoT approach but
considering the speed, temporal duration and the proximity to nearest points of interests (POI) in
order to detect the transfers [41]. However, a density-based clusters can be of any shape and any size
and hence the crisp activity (or trip) start and end is ambiguous. Following the same line, Rocha and
colleagues developed a direction-based algorithm (DB-SMoT) based on change of directions of GPS
points in a trajectory [9]. Ashbrook and Starner developed a predefined clustering method to detect
the stops from GPS trajectories [42]. On the other hand, Zimmermann and colleagues developed a
spatio-temporal clustering method to detect the stops and moves [43]. In the same line, Andrienko
and colleagues developed a stop detection framework by considering temporal duration and a user
defined distance threshold [44]. Gong and colleagues extended the traditional clustering based stop
detection approach by incorporating a machine learning module. They have developed a two stage
model for detecting stops and stop types. Gong and colleagues used an improved clustering algorithm
(C-DBSCAN) to detect the stops based on the spatial proximity of the GPS points. Then they have
used a SVM-based supervised machine learning technique to infer the stop type in terms of activity
or non-activity [45]. However clustering-based approaches work well on the dense GPS trajectories
with good to moderate positional accuracy. During signal gap or in urban canyon clustering-based
approach does not work well.

Assuming walking is necessary between two non-walking episodes, Zheng and colleagues
proposed a walking-based segmentation approach in their transport mode detection research [10].
Once the entire trajectory is segmented based on speed profile (potential walking episodes),
other non-walking segments are fed into a number of machine learning models and a transport mode is
detected. Zheng and colleagues used four popular machine learning models: decision tree (DT),
Bayesian network (BN), conditional random fields (CRF) and support vector machine (SVM),
with highest accuracy of 75% using a DT model. Zheng and colleagues used five kinematic features
and four modal classes. Stenneth and colleagues developed another decision tree-based predictive
model with 93.5% accuracy [46]. A similar approach (walking-based segmentation) was adopted by
Biljecki and colleagues who developed a Sugeno type fuzzy logic-based transport mode detection
model with 91.6% accuracy [47]. Xu and colleagues developed a similar fuzzy logic-based model that
can detect four different modalities with 93.7% accuracy by adopting a walking-based segmentation
approach [48]. Yang and colleagues developed a two-stage approach for detecting modes with a
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core focus on distinguishing bus and car modality on a set of trajectories collected by handheld GPS
devices [14]. In the first stage a machine learning algorithm was used to distinguish walk, bicycle and
motorized trips. Then in the second stage a motorized mode is further identified as bus or car using a
critical point method [14]. Mountain and Raper used a change in speed and direction for segmenting a
trajectory [49]. However, a low speed (or walking) based segmentation approach creates ambiguity in
certain cases especially when a vehicle moves slowly in heavy traffic or due to bad weather condition.
Xia and colleagues proposed a GPS and accelerometer-based model with 50 Hz sampling frequency
without any walking-based or clustering-based segmentation approach. Xia and colleagues detected
four activity states such as stationary, walking, bicycle, motorized modes using a SVM with 96.3%
accuracy [50].

However, such top-down segmentation approaches first segment the trajectory based on either a
stop episode or a low speed or walking episode, and then attempt to detect a particular activity state
or travel behavior over other segments. But as mentioned in Section 1, this approach is subjective and
creates spatial and temporal ambiguity [51], and thus, if each of the segments is viewed as a specific trip
then there is an uncertainty (or misalignment) of trip start and end (from segmentation perspective)
and uncertainty of activity state (e.g., transport mode) along a given trip (from activity detection
perspective). A vast majority of literature on transport mode detection and trip generation does not
address this ambiguity during the trajectory inference process. Recently, from the transport mode
detection perspective Prelipcean and colleagues developed a new error measure based on the quality
of alignment of inferred segment to their ground truth counterpart to address such uncertainty during
segmentation based on Allen’s temporal calculi [52]. Prelipcean and colleagues modeled three types of
error measures using a cardinality of the measurement and spatial and temporal discrepancy such as
implicit, explicit-holistic, and explicit-consensus-based segmentation [52]. However, their framework
is limited and cannot model all the possible temporal relations in the context of trips. In this paper we
have figured out four different types of trips that may possible during a single mobility-based action
and their temporal inter-relationship.

In order to detect mobility-based activities in real time other researchers developed a temporal
window-based approach. Hemminki developed an accelerometer-based transport mode detection
model with a 1.2 s time window that can produce 84.2% accuracy [53]. Reddy and colleagues integrated
an accelerometer and a GPS sensor to detect the modality in 1 seconds and achieved 74% accuracy [54].
Byon and colleagues used comparatively higher time window (10 min) to detect modalities without
segmenting the GPS trajectories [55].

A similar approach has also been developed in detecting micro-level activities involved with
body parts movement or small scale locomotion in an indoor environment. Such micro-level activities
are known as activities of daily living (ADL) such as running, walking, jogging, brushing teeth,
talking on phone, hand washing and performing various travel related actions—to name a few [56–58].
These activities are usually detected based on sensors, especially the CCTV installed in the environment
and then analyzing the still images or video scenes [59]. With the emergence of IMUs on smartphones
now such micro-level activities are easily detected almost everywhere in offline as well online
mode [60,61].

Thus the existing research in real time urban transport mode detection as well as most of the
activity recognition research in public health and mobile computing attempt to detect the activity
within a queried time window and do not attempt to model the uncertainty of the continuity of a given
activity. That means, the existing activity recognition research lacks in providing the information on
activity start and end.

In this research we use the existing temporal window (kernel)-based approach (but with an
introduction of iterative temporal merging) in order to detect an activity in real to near real time as well
as detecting activity transition at different granularity using different sensor combinations. Thus in
contrast to the existing real time approaches [53–55], where a time window is given and an activity
state is to be detected, we have extended that approach and can detect an activity within a given time
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window as well, and given an activity the model can detect its start time and end time. In contrast
to the offline approaches on trajectories where a subjective segmentation is performed, this paper
presents a simple yet effective approach for segmenting the trajectory based on activity states in a fine
grained time window. We also investigate how activity detection accuracy varies with different sensor
combinations and different feature types.

3. Preliminaries

In this section, we will present some key definitions and basic theory behind the proposed
adaptive travel interpretation framework.

3.1. Definitions

3.1.1. Travel

Travel is a phenomenon of moving from one location to another location over time. Travel can
be viewed as an activity—a temporally extended process—or an action—a not further expanded
event—depending on the context of the travel analysis [1]. Furthermore, this notion of travel is open
across a range of spatial scales. Inner-urban travel happens generally at environmental scale [62],
but single parts, such as transfers between modes, can happen in vista scale. Inter-city travel is travel
on geographic scale. In this research we are mainly interested in urban travel.

3.1.2. Sensor Trace (Γ)

A sensor trace is a time ordered set of sensor observations that capture a user’s activity state at a
specific granularity defined by the sampling frequency. In this research the sensors are assumed to
be installed on a smartphone, and may include a location sensor as well as an inertial measurement
unit. A sensor trace Γ consists of the signals of one or more sensors Ii (including sensors operating on
different channels), i ∈ [1, n], each expressed as a set of {s(k)} where k ∈ [1, m] and m is an integer.
A sensor trace can be mathematically expressed as:

Γ = {Ii} : Ii = {s(1)i, ......, s(m)i, ti}|∀i : ti−1 < ti, i ∈ [1, n] (1)

3.1.3. Trajectory (Π)

A trajectory is a sequence of time ordered spatio-temporal points that represent a person’s travel
history with coordinates in a three-dimensional Euclidean space (xi, yi, zi) at a given time (ti). In this
research the ‘z’ value will be ignored as not relevant. However, a ‘z’ value can be integrated where
the altitude information is vital, for example, travels between levels of a complex built environment.
From the definition of a sensor trace, all the trajectories that are captured using GPS sensors, WiFi or
3G/4G localization onboard a smartphone are a type of sensor trace. A trajectory can be mathematically
expressed as follows:

Π = {Pi} : Pi = (xi, yi, [zi], ti)|∀i : ti−1 < ti (2)

Depending on the information content and level of processing a trajectory can be classified into
three distinct types as follows.

• Raw Trajectory (ΠR): A raw trajectory is an unprocessed set of time ordered spatio-temporal points
with varying levels of inaccuracy due to the noise present in the sensor signals, or signal gaps.

• Pre-processed Trajectory (ΠP): A pre-processed trajectory is a set of time ordered spatio-temporal
points which is pre-processed and filtered to some extent in order to discard inaccurate
spatio-temporal points and other noise present in the data set. The level of processing depends on
the application context.

• Semantic Trajectory (ΠS): Both raw and pre-processed trajectories suffer from a semantic gap
between the movement history of the traveller and their movement behavior. Such a semantic gap
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can be bridged by enriching a raw or pre-processed trajectory by domain information including
spatial, non-spatial and temporal information. A semantic trajectory is constructed from a raw
trajectory through a semantic enrichment operation.

3.1.4. Segment (Seg)

A segment is a connected sequence of a sensor trace between a defined start and end point in
time. A segment must include a portion of GPS trajectory, and may include observations of the sensors
on an IMU.

3.1.5. Atomic Segment (ASeg)

An atomic segment is the smallest segment of a sensor trace, defined by a context-dependent
kernel length.

3.1.6. Atomic Kernel (Kη)

An atomic kernel is an operator that extracts an atomic segment of a sensor trace, including a GPS
trajectory. An atomic kernel has a defined, constant length (η) within a specific context (Figure 2).

Figure 2. A raw trajectory is shown in Figure (a); Atomic segments are generated using an atomic
kernel of time length η on the raw trajectory in Figure (b); Using a state-based bottom-up approach a
given trajectory is then segmented into four segments that are detected as four distinct trips based on
different transport modes with three transfers in Figure (c).

3.1.7. Trip (T)

A trip is an action of changing location with a purpose. A travel can consist of more than one trip.
A trip is characterized by a constant transport mode. Thus, the trips are attributed by their start location
and time, end location and time, and a given transport mode. There may be different types of trips:

• Actual Trip (TA): An actual trip is what happens in reality while traveling from one location to
another location.

• Reported Trip (TR): A reported trip is the trip that is annotated or reported by the traveler from
memory, which often involves quality and granularity issues.

• Scheduled Trip (TS): A scheduled trip is a trip that is predefined by a given transport service with
its trip origin, destination, trip start time, end time, route and the intermediate stops that are to be
visited along during the travel.
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• Predicted Trip (TP): A predicted trip is a trip that is inferred from a predictive framework based
on the features computed from a given sensor trace that may include a GPS trajectory and IMU
information.

3.1.8. Transfer (Trans)

A transfer is an action of changing from one transport mode to another transport mode.

3.1.9. Transport Mode (M)

A transport mode is a mediation of mobility, either by locomotion or by some vehicle. In the
following experiment data was collected for four public transport modes: bus, train, tram, and walk.
Other modes of urban mobility are cycling, driving a car, or riding in a car (being passenger in a car).

3.2. Uncertainties in Trips

Trips are characterized by start and end time locations, and a travel mode. Each of these
characteristics can vary between the reported trip, the scheduled trip, the actual trip, and the predicted
trip, leading to temporal, spatial and semantic uncertainties. These uncertainties may occur due to
synchronization problems between clocks (such as the smartphone’s and the transport provider’s)
or the memory or attention of the traveller when reporting a trip. The uncertainties also stem from
the varied ontological commitments and cognitive perceptions of trip starts and transitions in actions
(e.g., resolving a transfer into subsequent actions). The uncertainty can also arise from actual travel
times other than the scheduled time, wrong inferences from the predictive model on the mode,
and also uncertainties in sensor signal information (e.g., signal loss or multipath effects in case of a
GPS trajectory).

3.3. Trip Uncertain Temporal Relationships

The experiment below is designed with trips reported in-situ, not from memory in hindsight.
These reported trips will form the ground truth in the experiment, i.e., they are assumed to be correct
representations of the actual trips. In this case it is difficult to model the temporal uncertainty between
the reported trip and actual trip, although it must exist. Temporal deviations will also occur between
the reported trip and the predicted and the scheduled trip. Such temporal uncertainties can be modeled
qualitatively by using Allen’s interval calculus [11]. Figure 1 shows nine possible relationships between
a predicted trip (TP) and a reported trip (TR) where ς is the crisp uncertainty for time observations
predefined at a given context. It will be shown later how the inference accuracy varies by varying
the ς value. The relationships also hold between a reported trip (TR) and a scheduled trip (TS), or a
scheduled trip (TS) and a predicted trip (TP).

3.4. Predictive Model

A predictive model is a module in this framework in Layer 1 in the processing phase (Figure 3)
that detects a given activity state. A predictive model is basically a classifier constructed based on a
number of features (Section 4.3.4). In this paper a number of machine learning algorithms have been
investigated to construct the best predictive model in Layer 1 which is explained in Section 5.
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Figure 3. A state-based bottom-up framework for travel dairy generation.

4. Trajectory Segmentation Frameworks

In this section we will present the existing trajectory segmentation frameworks that detect
the trips based on different criteria (see Section 2). We then present our novel state-based trip
detection framework, which detects the trips more adaptively along with rich behavioral information
(e.g., transport mode state).

A trip can be modeled as a particular segment with a homogeneous state and distinct behavior.
Trajectory segmentation approaches can be classified into two broad categories: behavior-based and
state-based approaches. Behavior-based approaches segment a trajectory into meaningful parts and
then infer a state for each segment. Thus, these approaches are top-down. The number and type of
segmentation operations is context dependent. In contrast, the state-based approach developed in this
paper extracts an atomic segment assuming the state will remain constant in that fine grain, and then
the state is detected using a hybrid approach (machine learning and heuristic rules), whereupon
homogenous segments are generated using an advanced merging operation, which will generate the
trips. Thus, the second approach is richer in information content and more adaptive. This approach
is bottom-up. This paper presents the novel state-based bottom-up approach, which is compared
with the two state-of-the-art top-down approaches: a walking-based approach and a clustering-based
approach (and its variants), which is basically a realization of the SMoT algorithm [30,39].

4.1. Trip Detection by a Walking-Based Approach

A walking-based approach is a variant of the behavior-based approaches where the behavior
is attributed to drop in speed. It is generally used in order to segment a trajectory in the context of
transport mode detection.

The assumption behind a walking-based approach is that people need to walk in between two
different transport modes [10]. In this regard, a walking segment is detected by deterministic rules
where the key parameters are speed ( dl

dt ), merging distance (δl), and total distance (L) traveled over a
segment. However, by relying on these parameters this approach is subjective and thus it is difficult to
set the threshold parameters.

Since a GPS trajectory is prone to signal loss and multipath effect a walking-based approach needs
a thorough pre-processing of the raw trajectory. The trajectory is filtered in such a way that no high
speed points remain in between two low speed points and vice-versa. The filtering process should also



Sensors 2016, 16, 1962 11 of 40

remove points with high DOP values (or spatial uncertainties). In this research the speed threshold is
considered 9 km/hr based on prior research [63], and the merging distance is 20 m based on trial and
error. The total distance threshold for a segment to qualify as a walking segment is iteratively tested
from 10 m to 200 m. Algorithm 1 presents a two stage pre-processing operation where a GPS trajectory
is first filtered based on spatial uncertainty (Spatial_Filter) followed by speed outliers (Velocity_Filter).
The walking-based technique is then presented in Algorithm 2.

Algorithm 1 Pre-processing of a GPS trajectory in two stages

1: INPUT 1)ΠR : rawTlist(), 2)lowSpeed: LST
2: OUPUT ΠP [spatialFiltered: sfTlist(); velocityFiltered:vfTlist()]
3: PROCEDURE Spatial_Filter()
4: rawTlist.size() = k1

5: for i=0 to k1-1 do

6: if rawTlist.get(i).getAccuracy() > 40 then

7: s f Tlist.add(Pi) # rawTlist.get(i)=Pi, where Pi is a GPS point in raw trajectory ΠR

8: end if
9: end for

10: END PROCEDURE
11: PROCEDURE Velocity_Filter()
12: s f Tlist.size() = k2

13: for i=1 to k2-1 do

14: if s f Tlist.get(i− 1).getSpeed() > LST||s f Tlist.get(i + 1).getSpeed() > LST then

15: vfTlist.add(Pi)
16: else

17: if s f Tlist.get(i).getSpeed() < LST then

18: if s f Tlist.get(i− 1).getSpeed() ≤ LST||s f Tlist.get(i + 1).getSpeed() ≤ LST then

19: vfTlist.add(Pi)
20: end if
21: end if
22: end if
23: end for
24: END PROCEDURE
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Algorithm 2 Trip generation using walking-based approach

1: INPUT 1)ΠP : pTlist(), 2)lowSpeed: LST, 3)mergingDistance: δl, 4)totalDistance: L
2: OUPUT a set of trips
3: PROCEDURE Trajectory_Segmentation()
4: pTlist.size() = k3

5: for i=0 to k3-1 do

6: if pTlist.get(i).getSpeed() ≤ LST then

7: templist.add(Pi)
8: else

9: if pTlist.get(i).getSpeed() > LST then

10: if templist.size() > 0 then

11: seglist.add(newlist(templist))
12: templist.clear()
13: end if
14: end if
15: end if
16: end for
17: END PROCEDURE
18: PROCEDURE getPotential_Walking_Segments()
19: if seglist.hasMergeableSegments(δl) then

20: mergedSeglist = segmentMerging(seglist) #

merging all the mergeable short low speed segments
21: end if
22: mergedSeglist.size() = k5

23: for i=0 to k5-1 do

24: if mergedSeglist.get(i).getLength ≥ L then

25: walkingSeglist.add(mergedSeglist.get(i) #

walking segments are detected
26: end if
27: end for
28: nonWalkingSeglist = getNonWalkSegments(walkingSeglist) #

non walking segments are extracted
29: END PROCEDURE

4.2. Trip Detection Based on Clustering-Based Approach

A clustering-based technique is another popular approach for trajectory segmentation. Since a
clustering technique is based on proximity of GPS points the clusters generated over a trajectory bear
a semantic significance, for example, where the traveller has been stationary or had limited body
movement for a certain time period. The notion behind a clustering-based approach is that during
traveling on different modes people transfer or do some static activity (say, in a station, office, or home).
In this research the clusters are assumed as the extent in space and time where a transfer takes place in
order to change from one transport mode to another.

In this paper, a clustering-based algorithm is implemented using a spatial clustering application
with noise (DBSCAN). DBSCAN is initialized with an arbitrary point (Pi) in the trajectory. The algorithm
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then searches for neighbor points (N) within an ε-neighborhood of point Pi. If N ≥minPts then Pi is
defined as core point. The parameter ‘minPts’ is the minimum number of points to be present in the
neighborhood of any given point in order to qualify that point as a core point. The algorithm then
evaluates the next point and grows the cluster(s) until all the points are visited.

Once the clustering operation is performed there may be a number of clusters of different shape
and size. In order to extract the most potent clusters (in the context of trip detection) a merging
operation is performed followed by a relevance measure check. The merging operation is performed
based on inter-cluster spatial distance threshold (ICSD) and inter-cluster temporal duration threshold
(ICTD). However, a spatial clustering may raise the risk of clustering the to and from points together
and thus leading to erroneous trip modeling. In order to deal with this issue a temporal proximity
(tdiff) is used along with the spatial proximity (ε) to modify the basic DBSCAN into spatio-temporal
DBSCAN (ST-DBSCAN).

However, there may also be some clusters that form without characterizing a transfer, for example,
due to vehicle stops for pickup or drop-off or at traffic lights, or over a walking trip where the speed
of walking is low, such as a stroll in a park or moving in a crowd. In order to filter such irrelevant
clusters a temporal relevance check is performed over all the clusters. If the duration (Φ) of the cluster
is greater than or equals to a temporal threshold then that cluster qualifies as a relevant cluster or a
potential transfer zone. That said, clusters can be of any shape and size and hence from ontological
point of view it is difficult to model the trips with their start and end in space and time. Algorithm 3
demonstrates a spatio-temporal clustering on trajectories to retrieve the transfer information.

Algorithm 3 Spatio-temporal clustering on trajectories

1: INPUT 1)ΠR : rawTlist(), 2)Neighbors: minPts, 3)search radius: ε,
2: INPUT 4)temporal proximity: tdiff, 5)ICSD, 6)ICTD
3: OUPUTa set of clusters denoting possible transfers in a trajectory ΠR

4: PROCEDURE ST_Clustering()
5: clusterlist=getST_DBSCAN (rawTlist, minPts, ε, tdiff)
6: clusterlist.size()=k1

7: for i=0 to k1-1 do

8: if spatialDistance(clusterlist.get(i), clusterlist.get(i + 1)) ≤ ICSD then

9: if temporalDistance(clusterlist.get(i), clusterlist.get(i + 1)) ≤ ICTD then

10: clusteri = merge(clusterlist.get(i), clusterlist.get(i + 1))
11: clusterlist.remove(i,i+1)
12: clusterlist.add(clusteri)
13: end if
14: end if
15: end for
16: clusterlist.size()=K2

17: for i=0 to K2-1 do

18: if clusterlist.get(i).getDuration ≥ Φ then

19: clusteri = clusterlist.get(i)
20: transferlist.add(clusteri)
21: end if
22: end for
23: END PROCEDURE
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In this paper two existing top-down approaches (walking-based and clustering-based) have been
implemented along with the proposed state-based approach for a comparative study. Although there
could be different variations of the two above mentioned top-down approaches (see Section 2), but in
general such approaches are inadequate in certain circumstances. For example, the walking-based
approach requires a consistent and good quality GPS signal, it cannot handle IMU information, and it
completely fails when there is no GPS signal for a prolonged period of time. On the other hand the
clustering-based approach is robust to GPS noise, but also cannot deal with the IMU information,
and does not work very well on sparse GPS trajectory data. More significantly, the clustering-based
approach suffers from the ontological ambiguity about start and end of a trip.

4.3. Trip Detection Using a State-Based Bottom-up Approach

In order to address these issues a more robust and adaptive state-based bottom up approach is
proposed. The proposed approach can handle GPS noise as well as IMU information. The proposed
approach is less subjective than the walking-based approach, and at the same time tends to generate
activity transitions with a clear provision of trip start and end, which is missing in the clustering-based
approach. A state-based bottom-up approach also generates rich activity information (in terms of
transport mode along a given trip) and thus this proposed approach is more effective in terms of
generating travel diaries at different granularity with different level of uncertainty.

A state-based bottom-up approach is a hierarchical framework consisting of three layers (Figure 3).
The first layer is the input layer where a raw trajectory is fed in. The second layer is the processing layer
that consists of further three sub-layers (LAYER 1, LAYER 2, LAYER 3), where the third layer is the
output layer that generates the travel diary containing the trip information. In the first processing layer
(LAYER 1) an atomic kernel is ran over the trajectory based on the query time that detects the activity
states using a set of machine learning algorithms over each atomic segment. Thus, the first layer can
also infer activity states (transport mode in this case) in near-real time. In the second processing layer
(LAYER 2) an advanced merging operation is performed based on a set of heuristic rules. This will
merge the consecutive atomic segments with similar activity states and predict the trips. In order
to raise the confidence and strengthen the inference process, especially on trip start and trip end
along with the transport mode used in that particular trip, a general transit feed specification (GTFS)
information is used to evaluate the initial predicted trips in the third processing layer (LAYER 3).
Figure 2 illustrates how the atomic kernel bounded in time [tk−1, tk] of duration (tk-tk−1=η | k ≥ 1) is
ran over the trajectory and how different trips are inferred based on given transport modes. In the
following section each layer is explained in detail. The model presented in this paper is a hybrid
approach that leverages the machine learning algorithm(s) for the initial activity state prediction
followed by processing the rule base.

4.3.1. LAYER 1: Near-Real Time Activity State Detection

Since a trip is characterized by a set of time-ordered homogeneous sensor data points (that may
include GPS data points), in the first layer a predictive model is developed that will detect the activity
state based on a classifier. In order to train the classifier different types of kinematic and spatial features
are computed using sensor signals.

In this context the activity state is traveling on a given transport mode, and the transport mode
is the mediation of this activity. In order to detect the transport mode an atomic kernel is applied
(with 50% overlap) over the trajectory (or sensor trace) to extract a set of atomic segments. Then a
number of features are computed within each atomic segment and a feature vector is created. Thus,
if there are N atomic segments then there will be N feature vectors for a given trajectory. In some
literature the atomic kernel is termed as sliding window or sliding kernel. The overlap is necessary
in order to capture all the possible kinematic behavior especially during state transition and sudden
change in behavior. Once the feature vectors are generated training is performed on a number of
classifiers. Then all the classifiers are evaluated using testing trajectories separately. Once all the atomic
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segments are inferred (from all the test trajectories) an advanced merging operation is performed to
generate longer segments of homogeneous activity states, which will turn into predicted trips. The six
machine learning-based classifiers are chosen based on prior research in transport mode detection and
trajectory analysis.

4.3.2. LAYER 2: Advanced Merging Operation and Potential Segment Generation for Trip Detection

In the second layer the atomic segments are merged sequentially based on similarity in their
predicted transport mode (queried from Layer 1). The assumption behind such a merging operation is
that all the points in a sensor trace or a portion of GPS trajectory that form a particular trip will bear
a uniform activity state: traveling on one transport mode along one and the same trip from a given
origin to a (temporary or final) destination. Thus, when there is a change in activity state, a new trip
has started. The point in time and space where the transition occurs is the transfer point.

In the first stage in Layer 2 an initial merging is performed based on the initial transport mode
inference. However, due to the diverse performance of classifiers and depending on the data quality
and uncertainties in movement behavior there may be false positives. In order to address this issue a
set of rules refines the merging operation of the consecutive atomic segments (Algorithm 4).

4.3.3. LAYER 3: Trip Refinement Using GTFS and Spatial Information

Once the merged segments (predicted trips) are generated from Layer 2 a further refinement
operation is performed using GTFS and other spatial information realizing the following five lemmas.
In this layer a matching is carried out that matches the predicted trips with the scheduled trips based
on spatial and temporal information along with the trip start and trip end with the scheduled stop
information. For the following lemmas an ith predicted trip (TP) is represented by a tuple of trip
origin (Oi

p), trip destination (Di
p), and predicted mode over trip i (Mi

p(Ti)). However, in order to
match against the scheduled transit information the framework requires predicted stop and route
information. Thus, a pair of stops at predicted trip origin (Si

p(O)) and destination (Si
p(D)) are queried

using a variable search radius of 50 m, 100 m and 300 m progressively until at least one stop is retrieved
around the trip origin point (Oi

p) and trip destination point (Di
p). This information is then used to

match the predicted trips with the scheduled trips and refine the prediction through the following
lemmas. Figure 4 shows different component tables of GTFS schema with their common primary keys
(pkey) and a consistency check between the predicted trip generated from Layer 2 in processing layer
(with stop information at trip start and end) and a suitable scheduled trip, which is retrieved from the
GTFS data.

Figure 4. General transit feed specification (GTFS) schema and consistency check between the predicted
trip and the scheduled trip.
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Algorithm 4 Rules for segment merging

1: INPUT All the atomic segments in a given trajectory (seglist), temporal threshold: Ψ
2: OUPUT a set of merged segments (mergedSeglist)
3: PROCEDURE Segment_Merging()
4: seglist.size() = k
5: boolean f lag = f alse
6: for i=0 to k-2 do

7: current_seg = seglist.get(i)
8: next_seg = seglist.get(i + 1)
9: RULE 1:

10: if current_seg.mode_type == next_seg.mode_type&&next_seg.duration ≤ Ψ then

11: merge_seg = merging(current_seg, next_seg)
12: mergedSeglist.add(merge_seg)
13: f lag = true
14: end if
15: RULE 2:
16: if current_seg.mode_type == next_seg.mode_type&&next_seg.duration > Ψ then

17: merge_seg = merging(current_seg, next_seg)
18: mergedSeglist.add(merge_seg)
19: f lag = true
20: end if
21: RULE 3:
22: if current_seg.mode_type! = next_seg.mode_type&&next_seg.duration ≤ Ψ then

23: merge_seg = merging(current_seg, next_seg)
24: mergedSeglist.add(merge_seg)
25: f lag = true
26: end if
27: RULE 4:
28: if f lag == f alse then

29: mergedSeglist.add(current_seg)
30: mergedSeglist.add(next_seg)
31: end if
32: end for
33: END PROCEDURE

• Lemma 1: Stop type similarity

Since a trip is a segment of the trajectory, which consists of sensor data points that bear the same
transport mode state (Mi

p), the stops at trip start and end must be of type (Mi
p). For example if a

trip is made by a tram then the start stop and end stop of this trip must be two tram stops.

Mi
p(S

i
p(O)) = Mi

p(S
i
p(D)) (3)

• Lemma 2: Disjoint stop relationship

Since the GPS signal is prone to multipath effects and occasional signal loss due to obstruction
must be expected, not all GPS points are recorded, and instead of updates in the GPS feed
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successive points will be recorded as the last known point. However, technically the stop at the
trip start and end must be spatially different if it is not a return trip.

Si
p(O)l 6= Si

p(D)l (4)

=⇒ (XSi
p(O), YSi

p(O), ZSi
p(O)) 6= (XSi

p(D), YSi
p(D), ZSi

p(D)) (5)

• Lemma 3: Stop sequence (un)ambiguity

No pair of trip origin and destination stop may be the members of more than one scheduled trip.
That said, two scheduled trips may have a portion of their routes overlapping with each other.
There may also be two routes with the same pair of origin and destination stops but in reverse
order (which is a typical case in a return travel along the same route but in different direction). In
this case routes may overlap. Figure 5 illustrates some of these ambiguities in stop sequences for
different routes.

For the time being we will ignore the first case in lemma 3. In order to address the latter case the
following proposition should be followed.

Figure 5. Some possible stop sequence ambiguity along different routes: SO(Ri) and SD(Ri) denote an
origin and destination stop along route Ri. However, departure time at SO must be earlier than at SD.

Proposition L3.1: The end stop or destination stop (Si
p(D)) should occur after start or origin stop

(Si
p(O)) in terms of time of visit (t).

Si
p(O)t > Si

p(D)t (6)

• Lemma 4: Closest time selection

The arrival and departure time at predicted origin and destination stops should be close to the
scheduled stops in that location. However, there always exists a temporal uncertainty that makes
the predicted trip start and end time deviate from the scheduled trip start and end time. For this
purpose a temporal threshold (δt) is used. For origin stops this can be expressed as follows,
and similarly for destination stops. This will also conform with the first case in Lemma 3.

|Si
p(O)t − Si

s(O)t| = δt (7)

• Lemma 5: Use of WTi±1 OD information

Due to signal loss and uncertainties in the inference process in Layer 1, some (predicted)
non-walking trips may have wrong trip start and end time. And these trip origin and destination
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stops may not have any scheduled trips in common within a given temporal threshold (δt).
To address this issue following proposition is made.

Proposition L5.1: If there is no scheduled trip (TS) found in the GTFS data base that matches a
predicted trip i (Ti

P) in terms of the mode type (M) or temporal information (arrival/departure
time) then the mode type (Mi

p(Si−1
p (D))) at the destination stop of the previous predicted trip

(Ti−1
P ) or mode type (Mi

p(Si+1
p (O))) at the origin stop of the next predicted trip (Ti+1

P ) stops are
considered, whichever is a walking trip (WT) in between Ti−1

P and Ti+1
P .

The lemmata developed in this paper are not complete. Depending on the situation new lemmata
can be added. However the lemmata presented in this paper are sufficient enough to deal with different
spatio-temporal and predictive uncertainties of trip patterns. That said, the thresholds set to quantify
the lemmata and length of the temporal kernel depend on the type of data quality, sampling frequency
and mode types to be distinguished. For temporal kernels the length has been evaluated starting with
the shortest possible duration depending on the sampling frequency. Empirically the length of the
temporal kernel must be greater than the minimum sampling rate used to capture the sensor trace.

4.3.4. Feature Computation for Detecting Near-Real Time Activity States in Layer 1

In order to construct the predictive model, a number of features are generated using different
machine learning classifiers, inferring the activity state on a queried trajectory using a given kernel
length (η) over In number of data points. Three different case studies are presented (Context 1
Scenario 1, Context 1 Scenario 2, and Context 2) depending on the quality and granularity of data
using different sensor combinations (e.g., GPS, 3-axis accelerometer, gyroscope and gravity sensor).
Prior work has investigated the aspects of sensor calibration in the context of activity recognition [64].
However, in real to near-real time scenario the sensor information can come from different (unknown)
smartphone sources owned by different users to a centralized server where the inference model is
running. In such situation it is not always possible to get the hardware type, or mobile manufacturer
information and thus poses difficulty in calibrating the particular source(s). To emulate the real world
condition, thus in this paper no attempt has been made to calibrate the sensors. However, a low pass
filter has been used to remove the noise present in the IMU signals used in the proposed framework
(see Section 5). Figure 6 shows different axes of a smartphone in different positions [64]. Conventionally
the axes will remain constant irrespective of the phone’s orientation.

Figure 6. Smartphone axes in different directions. This figure has been reproduced from [64].
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A total of 34 features are computed using different sensor signals, based on acceleration in three
directions such as (X: Ax, Y: Ay, Z: Az), rotational vectors in three directions (X: rx, Y: ry, Z: rz), pitch (rx),
yaw (rz), roll (ry), speed (v), and spatial proximity to the nearest route network using latitude, longitude
information from a GPS sensor. In order to eliminate the gravity component a linear acceleration in
three axes is chosen (X: ax, Y: ay, Z: az). The features generated are as follows:

• Average of linear acceleration in X-direction (Avgax), Y-direction (Avgay) and Z-direction (Avgaz)

Avgax =
Σax

In
(8)

Avgay =
Σay

In
(9)

Avgaz =
Σaz

In
(10)

• Average of resultant linear acceleration (Avgaxyz)

Avgaxyz =
Σaxyz

In
(11)

• Average of resultant rotational vector (AvgRxyz)

AvgRxyz =
Σrxyz

In
(12)

• Average of rotational vectors in X-direction (Avgrx), Y-direction (Avgry) and Z-direction (Avgrz)

Avgrx =
Σrx

In
(13)

Avgry =
Σry

In
(14)

Avgrz =
Σrz

In
(15)

• Variance of linear acceleration in X-direction (Varax), Y-direction (Varay), Z-direction (Varaz) and
resultant linear acceleration (Varaxyz)

Varax =
1

In − 1 ∑ (ax − Avgax)
2 (16)

Varay =
1

In − 1 ∑ (ay − Avgay)
2 (17)

Varaz =
1

In − 1 ∑ (az − Avgaz)
2 (18)

Varaxyz =
1

In − 1 ∑ (axyz − Avgaxyz)
2 (19)
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• Variance of rotational vector in X-direction (Varrx), Y-direction (Varry), Z-direction (Varrz) and
resultant rotational vectors (Varrxyz)

Varrx =
1

In − 1 ∑ (rx − Avgrx)
2 (20)

Varry =
1

In − 1 ∑ (ry − Avgry)
2 (21)

Varrz =
1

In − 1 ∑ (rz − Avgrz)
2 (22)

Varrxyz =
1

In − 1 ∑ (rxyz − Avgrxyz)
2 (23)

• Signal magnitude area in 2-channels (SMA2) and 3-channels (SMA3) respectively

SMA2 =
1
In

∑ (ax + ay) (24)

SMA3 =
1
In

∑ (ax + ay + az) (25)

• Average of Fourier coefficients of the resultant acceleration (FFTA) over kernel length η

FFTA = f f t({Axyz}) (26)

• Average of Fourier coefficients of the resultant acceleration (FFTR) over kernel length η

FFTR = f f t({Rxyz}) (27)

• Number of zero crossings along in linear acceleration over η in X-direction (zax), Y-direction (zay),
Z-direction (zaz)

• Average speed (AvgV) and 95th percentile of maximum speed (MaxV)
• Correlation of linear acceleration in X-Y direction (corrxy), Y-Z direction (corryz) and X-Z

direction (corrzx)
• Entropy of resultant rotational vector (ER) and linear acceleration (EA) based on normalized

power spectrum density (PSD) of resultant rotational vectors (pri) in the time domain and
normalized PSD of resultant acceleration (pAi)

ER = ∑−pri log2 pri (28)

EA = ∑−pAi log2 pAi (29)

• Average spatial proximity (Euclidean distance) to the bus network (avgBusProx), tram network
(avgTramProx), train network (avgTrainProx), street network (avgStreetProx)

Table 1 gives an overview of the different features that are used in different contexts to detect the
activity states over atomic segments that leads to trip detection after further merging and refinement.
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Table 1. Feature selection in different contexts. A • denotes the corresponding feature is selected under
the given context. Likewise ◦ denotes the feature is not selected.

FID Feature Context 1
Scenario 1

Context 1
Scenario 2 Context 2

1 Avgax • ◦ •
2 Avgay • ◦ •
3 Avgaz • ◦ •
4 Avgaxyz • ◦ •
5 Avgrx • ◦ •
6 Avgry • ◦ •
7 Avgrz • ◦ •
8 AvgRxyz • ◦ •
9 Varax • ◦ •
10 Varay • ◦ •
11 Varaz • ◦ •
12 Varaxyz • ◦ •
13 Varrx • ◦ •
14 Varry • ◦ •
15 Varrz • ◦ •
16 VarRxyz • ◦ •
17 FFTA • ◦ •
18 FFTR • ◦ •
19 SMA2 • ◦ •
20 SMA3 • ◦ •
21 zax ◦ ◦ •
22 zay ◦ ◦ •
23 zaz ◦ ◦ •
24 corrxy ◦ ◦ •
25 corrxz ◦ ◦ •
26 corryz ◦ ◦ •
27 EA • ◦ •
28 ER • ◦ •
29 AvgV • • ◦
30 MaxV • • ◦
31 avgBusProx • • ◦
32 avgTramProx • • ◦
33 avgTrainProx • • ◦
34 avgStreetProx • • ◦

5. Evaluation

In order to evaluate the developed approach, two different types of data sets have been used,
each on one context. Data set 1 consists of low frequency sensor data including GPS and IMU sensor
signals. Data set 2 consists of a high frequency IMU signal without location information.

5.1. Context 1: Availability of Location and Speed Information Along with IMU Signals Sampled at a
Coarser Granularity

In the first context, a low frequency (1 Hz, 2 Hz) sensor trace containing GPS and IMU has been
used. This is the typical context of smartphone based travel surveys, which generally sample at a low
frequency to preserve battery power, as well as to capture real life kinematic behavior during signal
loss and in urban canyons.

Since Data set 1 contains GPS points, this data set is well suited for testing also the two existing
methods (walking-based and clustering-based). In the subsequent section a comparative study is
performed showing how the three methods perform on the same data set.
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5.1.1. Data Set 1: Low Frequency GPS and IMU Data

The data set (Figure 7) covers different travels in Greater Melbourne, Australia, over three months.
The data set contains 0.6 million GPS points over approximately 85 h collected by an Android-based
application on a smartphone. The data set reflects different trip behavior in terms of kinematic profile
and data quality mediated by four transport modes, walk, bus, train and tram, collected between 7 a.m.
to 11 p.m. along different routes. In order to capture the real world problems, the data set also
covers cases of overlapping routes of different modes and single modes with different speed profiles
(e.g., a bus moving slowly in the CBD and fast along an expressway, whereas maintaining a moderate
speed in the suburb).

Figure 7. Data set 1: Low frequency (1Hz, 2Hz) GPS trajectories in Greater Melbourne.

Since different transport networks frequently overlap, it is often difficult to distinguish between
different modes from GPS-only data points. The problem becomes more challenging when there
is frequent GPS signal loss or high positional uncertainty due to multipath effects. In order to
estimate the overlapping area by the present transport networks (bus, train, tram) a spatial analysis is
performed where a set of minimum bounding rectangles (MBR) is developed that contains a given
set of route networks. Then an intersection operation is performed to extract the common region
that shows a significant overlap by all the public transport route networks. This region is called zone
of ambiguity (ZA), which is around 222 sq km (Figure 8a). Another spatial operation is performed
on the trajectory data set to generate a convex hull to estimate an extent of the area covered by the
trajectories for this experiment (Figure 8b). It is estimated that the data set collected for this research
covers 139 sq km of the ZA, which is approximately 63% of the total ZA (Figure 8a).

The data set has been pre-processed using a spatial filter that removes any noise point where the
positional inaccuracy is more than 40 m. The data set is collected in the WGS84 coordinate system,
which is then projected on to GDA94 zone 55 reference system in order to perform spatial computation
on the trajectories in an Euclidean space.
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Figure 8. Map (a) shows the zone of ambiguity with a significant overlap between different public
transport routes; Map (b) shows the overlap between the convex hull of the trajectory data set
(Data set 1) and the zone of ambiguity.

5.1.2. Experimental Setup and Results

In Context 1, two different scenarios are tested. In the first scenario, the full sensor trace is used
(GPS and IMU), whereas in the second scenario investigates how the model behaves with GPS only
signal and how the accuracy improves when the semantic gap created by the signal loss is bridged by
a set of IMU signals sampled at a coarser granularity. A GPS feed sampled at a frequency of ≥1 Hz
is state-of-the-art practice in smartphone based travel surveys [3,8,34] and various location based
context-aware service provisions [10]. Hence, although the IMU is sampled at a lower frequency,
the framework is able to detect the trips and the transfers in between the trips effectively. A prior
study on stop detection from smartphone-based travel surveys that also includes GSM trajectories and
3-axis accelerometer signals sampled at a lower frequency demonstrates the efficacy of such sampling
strategy [65]. The sampling rate is sufficient for trip or transfer detection, which are phenomena of
significantly coarser temporal granularity.

In order to evaluate the framework, 56 trajectories are used as the training sample and
49 trajectories are used as the testing sample for both the scenarios in Context 1. The experiments
are realized in three stages. In the first stage (LAYER 1) an atomic kernel of time length η is run over
each trajectory to generate atomic segments. Each atomic segment is then used to compute a number
of features to train a predictive model in Layer 1. In this stage, a near-real time mode detection is
performed in order to infer the given activity state. In the second stage (LAYER 2) the atomic segments
are merged based on a rule base, where the primary goal is to merge the consecutive atomic segments
that bear the same activity state (see Section 4.3.2). This stage generates potential predicted trips.
In the third stage (LAYER 3) the predicted trips are further refined based on GTFS information and the
lemmata. The basic assumption behind such modular approach is the higher the consistency in mode
detection accuracy in Layer 1 the better the inference performance for trip detection in Layer 3.

In order to select the best predictive model in terms of average accuracy and consistency in
Layer 1 six different machine learning based classifiers are constructed through supervised learning:
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a decision tree (DT), a multi-layered perceptron artificial neural network (MLP), a random forest (RF),
a K-nearest neighbor (KNN), a naive Bayes (NB) and an ensembled meta classifier (EC-Voting) that
predicts based on majority voting by combining three learning algorithms together (e.g., RF, KNN and
MLP) to construct the meta-classifier. These classifiers are tested against each test trajectory separately.
The classifiers are chosen based on prior studies on transport mode detection and activity recognition.
There are ten experiments performed for each of the classifiers using different kernel lengths with
different time windows η. Table 2 shows the average accuracy of near-real time mode detection for
each atomic segment for all the test trajectories in Layer 1 at different η.

Table 2. Average accuracy (%) in Layer 1 for near-real time mode detection using GPS, inertial
measuring units (IMU) and spatial information.

Kernel Length η in s

Classifier 10 20 30 40 50 60 120 180 240 300
DT 80.47 83.11 83.48 84.19 83.67 83.91 91.01 90.93 90.63 89.72

MLP 83.25 85.25 85.21 88.04 85.55 89.21 92.32 93.25 91.05 91.13
RF 86.47 87.53 88.42 89.67 90.12 90.37 92.48 93.48 93.94 93.83

KNN 79.74 81.36 82.11 82.25 83.21 84.09 86.03 86.92 86.08 86.92
NB 55.84 56.08 57.89 57.69 59.61 57.57 59.87 60.59 62.63 63.58

EC-Voting 83.61 85.73 86.01 86.79 86.85 87.55 92.51 93.41 91.04 91.95

Average accuracy reflects the representative measure of each classifier’s prediction accuracy.
In order to measure the consistency of the performance of each classifier standard deviation of average
accuracy is computed for each kernel length for the same set of test trajectories (Table 3). The result
shows a RF based classifier generally yields the maximum accuracy in all the ten experiments with
least standard deviation followed by MLP and EC-Voting. A low standard deviation value essentially
indicates high consistency with less variation in the accuracy value. However, the difference in average
accuracy between a RF based classifier and an MLP based classifier (Table 2) is less. In order to
evaluate the statistical significance of their performance measure a paired t-test is performed using the
individual prediction accuracy made on all the test trajectories. It shows the difference in performance
between RF and MLP is statistically significant in eight experimental setups (from 10 s to 60 s and
then from 240 s to 300 s) out of 10 experiments (Table 4). This draws a clear contrast between a RF
based and MLP based classifier. The result also suggests a RF based classifier outperforms all other
learning algorithms used in this paper to infer the activity state (transport modes) in near-real time
when using GPS and IMU signal to generate the feature vectors. Figure 9 shows how six different
classifiers perform at 10 s and 60 s kernel lengths on all the test trajectories.

Table 3. Measure of standard deviation at different kernel length by different classifiers in Context 1,
Scenario 1.

Kernel Length η in s

Classifier 10 20 30 40 50 60 120 180 240 300
DT 3.31 2.8 1.76 1.66 2.73 2.59 0.61 1.05 0.81 2.65

MLP 3.79 3.12 2.73 1.83 3.58 1.53 0.88 1.27 2.1 0.75
RF 1.88 1.72 1.61 1.48 1.51 1.29 0.86 0.72 0.71 0.74

KNN 3.34 3.22 3.28 3.36 3.13 3.27 2.85 2.74 2.57 1.83
NB 3.67 3.72 3.48 3.62 3.63 3.72 3.71 4.18 4.26 3.46

EC-Voting 3.51 3.24 3.05 2.84 3.02 2.85 0.63 0.82 2.27 0.67
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Table 4. Context 1, Scenario 1: Measuring statistical significance of prediction accuracy between MLP
and RF based classifiers at 5% significance level. A p-value ≤ 0.05 and h-value = 1 signifies the result is
statistically significant.

Kernel Length in s p-Value h

10 6.65 × 10−7 1
20 2.14 × 10−5 1
30 2.55 × 10−10 1
40 5.37 × 10−6 1
50 9.50 × 10−13 1
60 9.74 × 10−5 1

120 3.5 × 10−1 0
180 2.8 × 10−1 0
240 1.18 × 10−14 1
300 4.33 × 1032 1

Figure 9. Performance of various classifiers in Layer 1 when using GPS and IMU information at 10 s (a)
and 60 s (b).

In Context 1 Scenario 2 when a sensor trace consists of GPS only information, the performance
of different classifiers are evaluated at different kernel lengths. The result shows an MLP based
classifier outperforms an RF based classifier in terms of average accuracy (Table 5). In terms of
consistency of performance MLP and RF based classifier behave close to each other, however the
average accuracy of a RF based classifier is less than that of an MLP based classifier (Table 6). The
result also demonstrates that the difference in performance of RF and MLP is statistically significant
(Table 7) in nine experiments, except the 240 s window.

Table 5. Average accuracy (%) in Layer 1 for near-real time mode detection using GPS and
spatial information.

Kernel Length η in s

Classifier 10 20 30 40 50 60 120 180 240 300

DT 77.81 83.38 85.02 85.24 81.46 84.45 89.61 91.21 91.54 90.85
MLP 82.99 84.36 87.38 87.28 89.15 90.28 93.03 93.37 92.91 91.86
RF 76.95 79.12 84.62 85.82 87.13 89.24 91.07 92.69 93.01 92.71

KNN 75.26 77.51 78.75 79.02 84.71 86.43 89.05 86.21 90.28 89.61
NB 76.07 81.93 83.93 84.88 85.67 86.62 90.76 92.56 92.69 92.76

EC-Voting 77.86 79.65 81.78 82.36 87.28 89.05 91.83 93.16 93.65 92.52



Sensors 2016, 16, 1962 26 of 40

Table 6. Standard deviations at different kernel lengths by different classifiers in Context 1, Scenario 2.

Kernel Length η in s

Classifier 10 20 30 40 50 60 120 180 240 300

DT 4.11 1.59 1.31 1.19 4.41 3.81 1.07 1.11 0.79 1.05
MLP 2.08 1.27 1.53 1.84 1.26 1.35 1.26 1.08 0.84 0.84
RF 4.55 4.55 1.28 1.11 1.01 1.21 0.86 0.97 0.79 0.77

KNN 4.18 3.93 4.02 3.79 1.27 1.51 0.88 3.47 1.53 1.29
NB 3.95 2.23 2.12 1.93 1.98 1.96 1.58 1.41 1.01 0.95

EC-Voting 4.83 3.93 4.31 3.94 0.87 1.23 0.58 0.69 0.73 0.82

Table 7. Context 1, Scenario 2: Statistical significance of prediction accuracy between multi-layered
perceptron artificial neural network (MLP) and random forest (RF)-based classifiers at 5% significance
level. A p-value ≤ 0.05 and h-value = 1 signifies the result is statistically significant.

kernel Length in s p-Value h

10 3.26 × 10−13 1
20 9.22 × 10−12 1
30 8.29 × 10−16 1
40 7.15 × 10−6 1
50 7.05 × 10−14 1
60 1.19 × 10−4 1

120 2.81 × 10−14 1
180 1.50 × 10−3 1
240 4.77 × 10−1 0
300 1.75 × 10−6 1

Once the atomic segments are generated with a given activity state (transport mode) a rule-based
merging operation is performed to generate a set of homogeneous segments for each queried trajectory.
Then a pair of stops is retrieved using a ring buffer corresponding to the beginning and ending of the
segment. Following that, the segments are now transformed to potential predicted trips with trip start
and end in space-time with their stops. These trips are then fed to the Layer 3, where a spatio-temporal
consistency check is performed and a refinement process takes place which generates the final trips
with their start time and end time, start stop and end stop along with the given transport mode taken
during that trip.

For validation purposes in Context 1, the final predicted trips are compared with the reported
trips based on trip start time, end time, and the mode. The origin and destination is not validated
in this research as the reported trips did not have the complete origin-destination information, but a
detailed information on trip start time, end time, and transport mode. However, the framework has a
provision to validate the origin, destination and route information if needed (or if the reported data
incorporates such detailed ground truth data).

Since there is a temporal uncertainty (Figure 1) associated with the trips due to several reasons
(from data end, user end, device end, service end, inference end, and the environmental aspects
including the noise and signal loss introduced in the data), while validating the final predicted trips
against the reported trips two temporal uncertainty bounds ς are used. Table 8 shows at 10 s kernel
length MLP outperforms an RF based classifier in terms of trip detection. But with the growing window
RF outperforms MLP in terms of precision and recall accuracy both when 0 ≤ ς ≤ 3 and 0 ≤ ς ≤ 4.

Figure 10 shows an RF based classifier performs better in general over an MLP classifier—and
other classifiers, which is not shown here but evident from the performance in their respective Layer 1
(Table 2). The result shows that with growing upper bounds of temporal uncertainty (ς) the accuracy
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improves significantly especially for an RF based classifier, where the precision jumps from 57.96% to
65.50% at η of 10 s, 70.30% to 76.36% at 20 s, 72.18% to 79.30% at 60 s and 82.78% to 88.07% at 120 s.
Table 8 also demonstrates there is a significant improvement in recall when ς is increased from 3 min
to 4 min. Figure 11 shows the false discovery rate (thus the Type I error) of a RF based classifier also
decreases with growing time window, suggesting that the uncertainty is reduced with growing the
kernel length (vis-a-vis the window size). The result also shows when the upper bound of temporal
uncertainty is raised from 3 min to 4 min the Type I error has reduced for each kernel length. Since the
temporal uncertainty may vary from 3 min to 4 min in this research atomic segments with kernel
length of 2 min have been tested assuming there is no change in activity state within that shorter
window. The result shows the maximum accuracy is reached at a 120 s window, which is followed by
a 60 s window. However, in some situations a quick transfer may take place within 120 s and even
within 60 s.

Table 8. Context 1, Scenario 1: Trip detection accuracy by RF and MLP based classifier using GPS, IMU
and spatial information.

Classifier: RF 0 ≤ ς ≤ 3 0 ≤ ς ≤ 4

η Precision (%) Recall (%) F1-Score Precision (%) Recall (%) F1-Score

10 57.96 59.01 0.58 65.50 65.60 0.65
20 70.30 75.32 0.72 76.36 81.81 0.78
30 70.10 77.27 0.73 74.70 82.16 0.78
40 67.25 74.67 0.71 76.02 84.41 0.79
50 72.50 75.32 0.73 79.37 82.46 0.81
60 72.18 79.20 0.75 79.30 87.01 0.82
120 82.78 81.16 0.81 88.07 86.36 0.87

Classifier: MLP 0 ≤ ς ≤ 3 0 ≤ ς ≤ 4

η Precision (%) Recall (%) F1-Score Precision (%) Recall (%) F1-Score

10 65.86 71.42 0.68 71.85 77.90 0.74
20 64.28 75.97 0.69 67.03 79.22 0.72
30 63.74 70.77 0.67 69.00 76.60 0.72
40 63.63 72.72 0.67 69.31 79.22 0.74
50 65.53 75.32 0.70 81.16 70.62 0.75
60 57.22 66.88 0.61 63.88 74.67 0.68
120 74.25 80.51 0.77 76.64 83.11 0.79

Figure 10. Precision of RF and MLP classifier at different temporal uncertainties.
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Figure 11. False discovery rate (FDR) of a RF based classifier for trip detection at different ς using a
state based bottom up approach.

However in Scenario 2, Context 1, in absence of the IMU signal the detection accuracy drops
significantly than that of Scenario 1, Context 1. When the sensor trace consists of only GPS based
location information without further IMU observations an MLP based classifier performed better in
processing Layer 1 as well as in processing Layer 3 and detects trips more accurately than that of a RF
based classifier (Table 9). The results in Scenario 1 clearly indicate that although IMU information is
sampled at a low frequency this information can bridge the gap present in a GPS trajectory to some
extent and helps in detecting the trips. In Scenario 2 using a GPS-only data set the maximum recall
and precision obtained using a RF based classifier are 70.77% at 60 s and 64.93% accuracy respectively
when 0 ≤ ς ≤ 3, and 79.22% recall at 60 s and 72.72% precision at 120 s when 0 ≤ ς ≤ 4. On the other
hand an MLP based classifier yields 75.32% recall and 72.51% precision at 120 s when 0 ≤ ς ≤ 3 and
83.76% recall at 50 s and 75.01% precision at 120 s when 0 ≤ ς ≤ 4.

Table 9. Context 1, Scenario 2: Trip detection accuracy by RF and MLP based classifiers using GPS and
spatial information.

Classifier: RF ς ≤ 3 ς ≤ 4

η Precision (%) Recall (%) Type I Precision (%) Recall (%) Type I

10 32.41 38.31 123 44.51 52.59 101
20 35.38 44.81 126 47.17 59.74 103
30 39.11 51.29 123 48.51 63.63 104
40 38.74 48.05 117 48.16 59.74 99
50 47.33 57.14 98 59.13 71.42 76
60 60.55 70.77 71 67.77 79.22 58
120 64.93 64.94 54 72.72 72.72 42

Classifier: MLP ς ≤ 3 ς ≤ 4

η Precision (%) Recall (%) Type I Precision (%) Recall (%) Type I

10 40.41 50.64 115 46.11 57.79 104
20 46.96 60.38 105 52.52 67.53 94
30 52.42 70.12 98 60.19 80.51 82
40 49.46 60.38 95 58.51 71.43 78
50 60.21 72.72 74 69.35 83.76 57
60 62.92 72.72 66 70.78 81.81 52
120 72.51 75.32 44 75.01 77.92 40

In order to compare with the existing trajectory segmentation and trip detection approaches the
data set has also been evaluated using a walking-based and clustering-based approach. Walking can
take place anywhere (along the street, along the train station, close to the bus stop or tram stop) or
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over any distance (Figure 12). In order to find the most suitable walking distance threshold (L) for the
given data set a set of eleven experiments are performed starting with 10 m to 100 m incremented by
10 m, and 200 m separately. The existing walking-based approach segments a trajectory into either
a walking or non-walking mode. Thus, for validation purposes any motorized mode is labeled as
non-walk. The validation is also performed by measuring the difference between predicted trip start
and end time (inferred from walking based model) with the reported trip start and end time. Like the
state-based bottom-up approach, if the difference for start and end of the trip falls within a given
temporal uncertainty then that predicted trip is considered as a true positive.

Table 10 shows for the given data set and given movement that behavior maximum accuracy
is obtained when the distance threshold (L) ranges from 60 m to 70 m. When ς ≤ 3 the maximum
precision accuracy by the walking-based approach is 66.85% and recall accuracy is 75.97% at 70 m
distance threshold. The walking-based approach generates many irrelevant segments for shorter
distance thresholds, denoting false positive trips when a motorized mode moves very slowly in
traffic. On the other hand a longer distance threshold would miss some true positive walking trips
thus reduction in precision accuracy. However, in this experiment we have started with a very short
distance threshold—10 m to 100 m. Prior studies found a critical distance threshold (>100 m) for
effective trajectory segmentation in cities like Beijing [10]. The result shows a shorter distance threshold
tends to over-segment the trajectory and gives rise to high FDR and thus to reducing the accuracy of
the model (Figure 13). When comparing between the proposed state-based bottom-up model and the
walking-based model, it is evident that a walking-based model generates high Type I error owing to
high FDR (Figures 11 and 13). For a state-based bottom-up model the maximum FDR obtained is 0.42
(at ς ≤ 4) and the minimum is 0.12 (at ς ≤ 3) (see Figure 11), whereas for walking-based model the
maximum FDR is 0.71 and the minimum is 0.32. Both the max-min FDR generated by walking-based
approach is higher than the state-based bottom up model. Thus, it is clear the proposed approach is
less context-sensitive and less subjective and can work in any environment with a diverse topology of
different region of interest (say, transfers between a train stop to the nearest bus stop may be different
between cities, which is difficult to model by a walking-based approach but can be effectively detected
by the proposed method in this paper).

Figure 12. Illustrates average proximity of some of the trips to different route types. Although there
is an overlap by the routes of different public transport modes but a trip with a given mode type
(for bus (a); train (b); tram (c)) shows a distinct proximity behavior to the given route type. However,
since walking can happen anywhere for walking trips there is discernible visual pattern (d).
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Table 10. Accuracy measure of trip detection by walking-based approach.

ς ≤ 3 ς ≤ 4

L (m) Precision (%) Recall (%) F1-Score Precision (%) Recall (%) F1-Score

10 28.98 51.94 0.37 33.69 60.38 0.43
20 37.65 60.38 0.46 40.98 65.58 0.5
30 50.47 68.83 0.58 53.33 72.72 0.61
40 55.94 73.37 0.63 58.41 76.62 0.66
50 61.45 76.62 0.68 63.02 78.57 0.69
60 65.53 75.32 0.70 67.23 77.27 0.71
70 66.85 75.97 0.71 67.42 76.62 0.71
80 66.67 74.02 0.70 67.83 75.32 0.71
90 63.58 71.42 0.67 64.73 72.72 0.68

100 61.21 65.58 0.63 62.42 66.88 0.64
200 61.78 49.35 0.54 61.78 49.35 0.54

Figure 13. False detection rate (FDR) generated by the walking-based model.

For illustration a test trajectory and its inference process is explained in Figure 14. Table 11
presents a comparison between the reported trips and the predicted trips generated by an RF classifier
with 60 s kernel length on trajectory ID 150615_1. Using a state-based bottom-up approach 6 out of
6 trips are correctly detected with trip start and end time and respective transport modes. Using the
walking-based method only 4 out of 6 trips are detected, and with less detailed mode information
(Table 12). The raw trajectory is shown in 2D; except location information no other semantics is known
(Figure 14a), whereas in Figure 14b the same trajectory is shown in 3D in the form of a space-time
path with inferred semantics such as different trips with different modes, trip start and end in space
and time. In that figure (Figure 14b) the X-Y space denotes the geographical space and Z the time.
From the space-time path it is also evident that there are two semantic gaps in the trajectory due to
signal loss. The existing approaches such as the walking-based or the clustering-based approach tend
to generate misleading information within such gaps. However, the state-based approach bridges
these gaps since it is is able to handle IMU information. The IMU signals show a distinct kinematic
behavior for the different modes (Figure 15).

The data set is also tested with a clustering-based approach. In this paper we have developed a
clustering-based model that produces the geometric clusters of points based on the spatial proximity
between the GPS points. The clusters are not semantically enriched. Based on the neighborhood (ε)
and the dwell time (φ) over each cluster three sets of experiments (based on φ) are performed where
each of the sets contains further ten sets of setups (based on ε). The minimum number of neighbor
points are considered as three, so the total number of points to form a cluster is the core point itself and
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at least three neighbors. The value of ε is chosen from 1 m to 10 m assuming the GPS inaccuracy will
vary from 1 m to 10 m and beyond in the urban environment using cheap commercial smartphone GPS
receivers. However, in real world applications where the location information comes only from GPS
feeds (without other location sources such as GSM, Wi-Fi, checkpoints installed in the environment,
or from social media) and without semantic enrichment of the clusters, it is evident that the temporal
uncertainty is quite high between the predicted trips and the reported trips leading to a low accuracy
for all the clustering based experiments (Table 13). The result shows that using a clustering-based
method without any semantic enrichment (i.e., without considering the intersected point of interest or
other contextual information) a state-based approach outperforms a clustering-based model.

Table 11. Trip comparison between reported trips and predicted trips in an automated travel diary
generated by a state-based bottom-up approach (TrajectoryID150615_1).

Reported Predicted

Trip ID Trip Start Trip End Mode Trip ID Trip Start Trip End Mode

1 12:48:00 12:49:00 walk 1 12:48:45:412 12:49:43:413 walk
2 12:49:00 12:58:00 bus 2 12:49:43:413 12:58:10:913 bus
3 12:58:00 13:03:00 walk 3 12:58:10:913 13:03:00:913 walk
4 13:03:00 13:14:00 train 4 13:03:00:913 13:14:22:413 train
5 13:14:00 13:16:00 walk 5 13:14:22:413 13:16:03:912 walk
6 13:16:00 13:27:00 train 6 13:16:03:912 13:26:56:413 train

Table 12. Trips generated by a walking-based method on Trajectory ID 150615_1.

Trip ID Trip Start Trip End Mode

1 12:48:16:412 12:49:53:413 walk
2 12:49:53:413 12:57:52:912 non-walk
3 12:57:52:912 13:03:00:413 walk
4 13:03:00:413 13:26:59:412 non-walk

Figure 14. A raw trajectory ID 150615_1 in 2D without any semantic information (a); and in 3D as a
space-time path with semantic information such as different trips with their start and end in space-time,
modes used, travel direction, signal gap, and travel speed (b).
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Figure 15. A continuous acceleration profile showing distinct behavior of different transport modes
even through the semantic gap due to GPS signal loss on the (TrajectoryID150615_1).

Table 13. Trip detection accuracy by a geometric clustering-based model.

total minPts = (3 + 1) = 4;
φ = 60 s ς ≤ 3 ς ≤ 4

ε (m) Precision (%) Recall (%) Type I Precision (%) Recall (%) Type I

1 48.01 15.58 26 48.01 15.58 26
2 46.15 15.58 28 46.15 15.58 28
3 40.32 16.23 37 40.32 16.23 37
4 44.61 18.83 36 46.15 19.48 35
5 41.42 18.83 41 42.85 19.48 40
6 38.15 18.83 47 40.78 20.12 45
7 36.25 18.83 51 38.75 20.12 49
8 36.71 18.83 50 39.24 20.12 48
9 35.71 19.48 54 38.09 20.78 52

10 34.48 19.48 57 36.78 20.77 55

total minPts = (3 + 1) = 4;
φ = 120 s ς ≤ 3 ς ≤ 4

ε (m) Precision (%) Recall (%) Type I Precision (%) Recall (%) Type I

1 46.93 14.93 26 46.93 14.93 26
2 46.93 14.93 26 46.93 14.93 26
3 48.97 15.58 25 48.97 15.58 25
4 44.23 14.93 29 44.23 14.93 29
5 43.13 14.28 29 43.13 14.28 29
6 43.39 14.93 30 43.39 14.93 30
7 42.59 14.93 31 42.59 14.93 31
8 42.59 14.93 31 42.59 14.93 31
9 43.63 15.58 31 43.63 15.58 31

10 43.85 16.23 32 43.85 16.23 32

5.2. Context 2: Fine Granular Inertial Sensor Information in Unknown Location

Existing approaches (walking-based and clustering-based) rely on the consistent availability
of location information. But GPS signal is not available everywhere and also GPS receiver on the
smartphone draws on significant amount of energy, hence in Context 2 it has been investigated how
the proposed state-based bottom-up approach behaves without location information. It turns out to be
adaptive to different contexts, while the existing approaches are not applicable due to lack of location
and speed information. Context 2 is also applicable to public health research where one needs to know
the current activity state of the user at an even finer granularity (including body movements). As the
location information is unknown and a normal body movement frequency is generally 20 Hz [50,66]
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the sampling frequency is chosen as 50 Hz (which is roughly double of 20 Hz) which also aligns with
the prior studies in intelligent transportation systems [50]. Such a high frequency is required mainly
due to the lack of location information in the sensor trace. The inference process will solely rely on the
IMU signals.

5.2.1. Data Set 2: High Frequency IMU Only Data

In order to evaluate the framework in absence of location information, a high frequency IMU
only (linear accelerometer and gyroscope) information is collected across Greater Melbourne sampled
at 50 Hz over approximately 8.5 h that covers bus, train, tram and walk trips. Most of the prior
transport mode detection research that used IMU signals did not attempt to distinguish between
different motor modes [50,54], and only detected pedestrian modes and motor modes. Prior studies
also used additionally speed information using a GPS receiver. Here, the inference process is solely
based on accelerometer and gyroscope.

5.2.2. Experimental Setup and Results

In order to detect the trips using only high frequency IMU data, nine sensor traces are used as
training data and nineteen sensor traces are used as testing data. The experiments are performed
in two setups. In the first setup a 5 s kernel is run over each sensor trace, and feature vectors are
computed from the extracted atomic sensor segments with 50% overlap after passing the atomic
segments into a first order low pass filter (LPF) in order to remove any sudden jerk or noise. In the
second setup a 10 s kernel is used to generate the feature vectors. In order to avoid the correlation
effect (and thus the overfitting of the model) training and testing sensor traces are used separately.
The result shows that without using speed information, a sensor trace containing only accelerometer
and gyroscope cannot yield very high accuracy (which is in line with a prior research [67]) due to the
ambiguity in annotation. For example, a reported tram trip with its trip start and end may have several
waiting events in between (at stops), which may not be reported and thus can be misclassified. Also,
the vibration of trams and trains may produce similar effects, especially when the train and tram move
at a similar speed. During walking changes of speed can happen more abruptly compared to other
modes of transport, and thus there is a sharp distinction between walk and non-walk modes in their
acceleration profile. Figure 16 shows the accuracy in processing Layer 1 for mode detection on IMU
sensor traces. The result shows an RF classifier generally works better than other classifiers and yields
accuracies from 60% to 78%. In order to train different classifiers a total 2285 feature vectors are used,
whereas a separate set of feature vectors are used for each of the test sensor traces to infer the trips for
each of those testing sensor traces. The number of feature vectors ranges from 190 (very short sensor
trace) to 1571 .

Figure 16. Transport mode detection accuracy using a 5 s kernel over different test sensor traces.
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In Context 2, once the activity states (transport modes) are detected, the atomic sensor segments
are fed to Layer 2 where a rule based advanced merging is performed and potential predicted trips are
generated. Since in this case the location information is missing, the predicted trips are not further
fed to Layer 3 for location consistency checking. Rather the predicted trips generated by Layer 2 are
treated as the final predicted trips. Since there is no consistency check hence there are ambiguities in
detecting motorized modes, however the models can correctly distinguish between a walking and
non-walking mode (bus, train, tram). Hence during validation for the trips generated by IMU only
sensor trace, only the predicted trip start and trip end time is matched with the reported trip excluding
the activity state (transport mode) at a given temporal uncertainty. When 0 ≤ ς ≤ 3 the recall accuracy
for trip detection is 71.05% and precision accuracy is 67.50% using a 5 s kernel.

6. Discussion

In this paper a novel state-based bottom-up framework is proposed that can interpret a raw sensor
trace and can generate an automated travel diary containing a rich travel information from smartphone
based sensor information. A travel diary generated through this framework contains the number of
trips, their start and end time, and the particular transport mode used during that trip(s). The model
presented in this paper is adaptive and modular in nature. The model is adaptive because it can be
applied in different contexts with different types of sensor data and different granularity. The model
can generate the activity state information based on a user defined kernel length. The model consists
of three phases: an input phase, a processing phase and an output phase. The core of this model is the
processing phase which consists of three layers. Depending on the situation each of the layers can be
activated or deactivated. For example, if the interest lies in near-real time activity detection (transport
mode in this case) then the Layer 1 will be activated and the subsequent layers (Layer 2 and Layer 3)
can be deactivated. On the other hand, if one is interested in trip detection from GPS trajectory all
three layers can be activated. However, if the same task (trip detection) is to be performed based on
IMU only then the third layer is no longer required—thus the model can adapt depending on the
requirements and workload effectively.

In this paper we have also introduced the concept of temporal uncertainty (ς), while modeling
the trips using Allen’s temporal calculus [11]. The upper bound of ς is considered to vary from
3 min to 4 min depending on the observation for this particular research. The quantification of such
temporal uncertainty is done from the fuzziness in traveler and driver behavior, uncertainties in
hardware performance (sensors and clock), and the uncertainty present in user’s perceptions of
activities while reporting the trips. Since in this research the precision used in temporal information
on reported trips is limited to minutes and not seconds, there is always an uncertainty of at least 59 s.
Thus, the minimum temporal uncertainty that can be improved in future research will be 2 min by
shortening the 3 min minimum uncertainty modelled in this research, which can be further improved
if a finer temporal precision is available while recording the ground truth.

In order to illustrate the efficacy and performance of the proposed model for trajectory
segmentation and trip generation, it has been compared with two state-of-the-art approaches
(walking-based and clustering-based). A walking-based approach is subjective and context-sensitive
and thus subject to proper functioning in different situations and for different users. The success
of a walking-based approach depends on proper selection of walking speed, distance merging
threshold and total distance threshold, which are difficult to set. On the other hand a clustering-based
approach depends on the minimum number of points to form a potential cluster based on their spatial
proximity. A potential cluster can be treated as a stop or slow walking trip depending on the chosen ε.
The relevance of a cluster can be measured based on the dwell time and other contextual information.
In this paper, the clusters formed are simple geometric clusters without any semantic enrichment.
The clusters can be of any shape and size, thus raising more uncertainty especially when there is
frequent signal gap and randomness in GPS locations. Since both the methods work only when there is
a consistent location information (say from a GPS feed) with reasonable accuracy they do not perform
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well in sparse GPS trajectory data (Context 1) and cannot cope without location information (Context 2).
However, the state-based bottom-up method presented in this research can incorporate different IMU
information, and hence can work in diverse situations with a reasonable accuracy for mode detection as
well as trip detection. The proposed model can also work on a low frequency GPS, combination of GPS
and IMU signals, and a high frequency IMU only signal. The model can be made more robust and more
intelligent by extending the layers in its processing phase to deal with more diverse and challenging
situations, for example, detecting trips and modes on a GSM trajectory, which is generally coarser and
more uncertain than that of a GPS trajectory depending on the distribution of cell phone towers.

Despite of the richness in mobility-based activity information the proposed model has some
limitations. For example, in Layer 3 while performing the consistency checking an alternate possibility
checking is missing at this moment, and that is due to the fact that machine learning algorithms cannot
generate an alternate prediction in a human understandable format.

We also investigated the optimal kernel length for detecting transport mode in near-real time.
The length of kernels ranging from 5 s to 300 s conforms with the prior studies that attempt to
detect mobility-based activities from different perspectives [50,55]. The results show that an RF-based
classifier performs better than the other classifiers, and an optimal kernel length can be 60 s to 120 s.
However, since some activities, e.g., a transfer, can take place within a 120 s interval, the kernel
length can further be reduced to 10 s with the given accuracy. The experimental results show that
the performance of the model drops in high frequency IMU only information. This is because the
public transport modes (bus, train and tram) can stop at different locations due to traffic signals,
congestion, passenger drop off and pick up. During all these events the traveler was most likely
being stationary and sitting (or standing) in the vehicle, and the acceleration profile would show a
momentary drop during that period. But while reporting the trips, it is difficult to get such a fine
ground truth information including how many times a vehicle stopped during a given trip and why.
The reported trip is generally annotated as trip start and end time with origin, destination information
with a single trip mode type. Thus, if a reported trip mode is bus, all atomic segments of the trip are
labeled so, although some of them may be actually stationary. This can cause missclassification as well
when the predictive model is wrongly trained and detects some of the stationary atomic segment as
bus and others as train or tram. When merging the segments in Layer 2, due to this issue some of the
trajectories show unreasonable travel behavior, especially Trip ID 1 to 3 (Table 14), where a bus mode
has been detected in between two tram modes, which is not realistic due to the two reasons: (a) if the
trip duration (|t3 − t2|) is very short that means it was actually a continuation of tram trip, but some
portion of that particular tram trip has been wrongly detected as bus; (b) For some reason if the given
trip (Trip ID: 2) is a bus trip then there has to be two walking trips before and after the bus trip as
walking can only connect two motorized (or bicycle) modes, which is missing in this case (Table 14).

Table 14. Unreasonable trips.

Trip ID Trip Start Trip End Mode

1 t1 t2 tram
2 t2 t3 bus
3 t3 t4 tram
4 t4 t5 walk

Such ambiguity can be resolved in a number of ways. In the first approach all the consecutive
non-walk trips can be merged together until a discontinuity in activity state occurs or a walk trip is
encountered (assuming walking is necessary between two non-walking modes). The first approach
is used in this research. However, there may be some cases when a quick transfer may take place
shorter than the kernel length, which will generate a Type I error, and wrongly detects a trip with
its end time higher than the end time in reported trip. The second approach is collecting even finer
ground truth data that should contain intermittent stationary states at different locations (stop, traffic
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light, congestion, driver fatigue), while traveling in a particular mode in order to train the classifier
accordingly. Then while predicting the trips, all the consecutive stationary atomic segments will be
merged together until a non-stationary atomic segment is found. The merged segment will be labeled
as the immediate non-stationary mode found. However, this approach is tedious, puts cognitive
burden on the travelers keeping records for ground truthing, and also deviates these travelers from
their normal travel behavior. The third approach can be using a phased sampling strategy (whenever a
there is a drop in speed a higher sampling rate can be deployed to record the movement behavior). And
lastly the IMU information can be supplemented by speed information from a GPS sensor. Prior studies
show using speed information along with the acceleration profile improves mode detection accuracy
[54].

7. Conclusions and Future Outlook

Understanding travel behavior is important for developing different context-aware services that
can enrich mobility as a service (MaaS). Understanding travel behavior is also critical for urban
planning and traffic management. Mobility-based activities can also generate information in the
interest of public health, analysing a person’s movement behavior at a finer granularity.

In this paper a novel and adaptive state-based bottom-up approach for travel diary generation is
proposed, which can detect individual trips with their trip start and end in space and time and the
transport mode used to mediate the trip. The approach presented in this paper first detects the activity
state on a finer segment (which is called an atomic segment) and then progressively models the trips
based on the consistency in the activity state. The reasoning process incorporates a set of machine
learning algorithms, heuristic rules and transit feed information. The model is also compared with
existing approaches.

In order to test the model, three situations were evaluated using two different real word data sets.
The model shows that an RF-based model outperforms other machine learning models in the presence
of GPS and IMU information with 0.75 F1-score at 0 ≤ ς ≤ 3 and 0.82 F1-score at 0 ≤ ς ≤ 4 using
a 60 s kernel length. On the contrary an MLP-based model works better compared to an RF-based
model in absence of IMU information but with a low frequency GPS information, yielding 72.72%
and 81.81% recall accuracy at 0 ≤ ς ≤ 3 and 0 ≤ ς ≤ 4 respectively. The model also demonstrates its
efficacy in a high frequency IMU only context in absence of location information with accepted loss in
granularity in trip information (missing or ambiguous trip mode type). The model also contributes to
the knowledge in travel behavior analysis by modeling different types of trips possible at an abstract
level (such as actual trip, reported trip, predicted trip and scheduled trip) with their different level of
granularity. The results show the proposed model performs better in different situations on different
types of data. The model works well even when the existing approaches completely fail especially in
absence of location information. The model can also detect a return travel and its direction (Figure 14).

Future research will investigate the notion of alternate solutions in Layer 1. The model also can
be improved by more intelligent reasoning schemes to be incorporated during merging operations and
consistency checking, such as introducing the longest common subsequence strategy while matching
the stop behavior. The model can also be strengthened by implementing a phased sampling strategy
to detect finer mobility based activity states especially in the absence of location information. The core
of the framework developed in this paper is a hybrid approach which is based on machine learning
and a set of heuristics, which can be further enhanced by introducing a further clustering concept
whenever there is a consistent location information. Future research can also test other contexts such
as on a trajectory with the location information with varied accuracy (e.g., when the source is not only
a GPS but also GSM and Wi-Fi).
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