Supplementary Materials: Highly Sensitive and Practical Detection of Plant Viruses via Electrical Impedance of Droplets on Textured Silicon-Based Devices

Marianna Ambrico, Paolo Francesco Ambrico, Angelantonio Minafra, Angelo De Stradis, Danilo Vona, Stefania R. Cicco, Fabio Palumbo, Pietro Favia and Teresa Ligonzo

Table S1. Chemical-physical properties of TYMV and ToMV: Average yields of purified viruses (in mg/ml of suspension) was accordingly converted into molar concentration to calculate the sensitivity threshold limit.

Virus	Average	Nucleic				Coat	СР		
	Purified	Acid		Extinction	MW of a	Protein	Subunits	Molar Concentration	
	Amount	Content	A260/280	Coefficient *	Virion ⁺	Subunit	per	(mol/mL) ‡	
	(mg/mL)	(%)				MW	Particle		
T (0 (1)	10	25	1 70	7 608	5.6 × 106 Da	20 13 kDa	190	1 77 x 10 ⁻¹⁹ mol/mI	
IYMV	12	55	1.70	7.09	5.0 × 10 Da	20.15 KDa	100	1.77 × 10 III01/IIIL	

* Absorbance of a purified virus suspension at 1 mg/mL at 260 nm UV light. † Including genomic RNA molecule; ‡For 1 pg/mL virus; § Average of the bottom and top component [1].

Figure S1. Evolution of NPs at V = 0 V for virus-in TRIS-HCl droplet collected at t = 0 min and subsequently read outs up to a residence time t = 20 min showing the same magnitude of the impedance values thus excluding possible relevant droplet evaporation. Similar results were obtained also in blank Tris-HCl. The inset is an enlarged view of the HF region.

Figure S2. Capacitance vs. frequency at different molar concentrations and phase angles for ToMV (**a**,**b**) and TYMV (**c**,**d**) virus based suspension.

Figure S3. Sketch of modified Randles circuit for NPs representing blank TRIS-HCl droplet on the T-Si surface system.

Table S2. EIS best-fit parameters variations for a T-Si exposure to droplets with different virus concentration and $V_{DC} = 0.0$ V (see text) for ToMV/TRIS-HCl (up) and TYMV/TRIS-HCl (down). The best fit parameters extracted from NP of T-Si surface exposure to TRIS-HCl droplet are reported for comparison.

ρ (ToMV) Fitting Parameters	1.0 pg/mL	0.1 ng/mL	1.0 ng/mL	10 ng/mL	1.0 µg/mL	Tris-HCl					
Снғ	2.5×10^{-8}	3.65×10^{-8}	$4.85\times10^{_{-8}}$	7.4×10^{-8}	8.1×10^{-7}	8.6 × 10 ¹⁰ , 0.8 *					
Rc	1097	6000	7090	6286	1097						
Rhf	7.0×10^5	1.13×10^{-6}	1.01×10^{6}	9.5×10^5	1.5×10^6	4.1×10^6					
Rads/Rct	11,036	6866	6456	5886	13,067	-					
Zcpe,dl	1.76×10^{-8}	2.023 × 10 ⁻⁸	2.05×10^{-8}	1.89×10^{-8}	7.5 × 10-9	1.5×10^{-8}					
n1	0.64	0.62	0.59	0.58	0.5	0.63					
ZCPE,ads	2.5×10^{-9}	8.1×10^{-9}	1.22 × 10 ⁻⁸	1.64×10^{-8}	3.1×10^{-8}	1.9×10^{-12}					
n2	0.99	0.94	0.94	0.93	0.9	1					
Zw	0.0	88.654	81,075	77,831	55,477	0.0					
* ZCPE,HF(1MHz), n .											
ρ (TYMV) Fitting Parameters	1.0 pg/mL	0.1 ng/mL	1.0 ng/mL	10 ng/mL	1.0 µg/mL	Tris-HCl					
Chf	1.2×10^{-8}	3.3×10^{-8}	1.2 × 10 ⁻⁷	1.15×10^{-7}	1.2×10^{-8}	8.6×10^{-10} +, 0.8 +					
Rc	7740	7009	5714	4660	3382						
Rhf	3.2×10^{6}	1.61×10^6	6.8×10^5	6.7×10^5	8.2×10^5	4.1×10^6					
Rads/Rct	14,285	6868	5450	6502	7549	-					
Zcpe,d1	1.6×10^{-8}	1.8×10^{-8}	2.1×10^{-8}	2.0×10^{-8}	$1.47\times10^{_{-8}}$	1.5×10^{-8}					
nı	0.58	0.54	0.54	0.52	0.52	0.63					
$Z_{CPE,ads}$	5.1×10^{-9}	9.1 × 10 ⁻⁹	1.5×10^{-8}	2.6×10^{-8}	2.6×10^{-8}	1.9×10^{-12}					
n2	0.94	0.95	0.95	0.94	0.9	1					
Zw	38.170	1.35×10^5	2.81×10^5	2.6 × 10 ⁵	86.968	0.0					

⁺ ZCPE,HF(1MHz),n, ZCPE = $\frac{1}{Q(j\omega)^n}$ (nF·s⁽ⁿ⁻¹⁾/cm²); $\frac{A_W}{(j\omega)^{0.5}}$ (Ω ·s^{-0.5}).

Figure S4. Evolution of NPs at V = -0.2 V for blank TRIS-HCl droplet collected consecutively for residence time t_r = 20 min showing a shift in time opposite to that observed in virus in TRIS-HCl droplet under similar conditions.

SEM Images of textured surfaces: SEM images (Figure S5) have been acquired by means of a Supra 40 SEM-FEG (Zeiss, Oberkochen, Germany) with an extraction voltage of 5 KV, at 0° of tilting angle, both on the top of the samples and from cross sections obtained by smoothly breaking the silicon sample.

Figure S5. (a) Top image of an as prepared T-pSi surface and (b) corresponding cross section. It can be seen that the surface is composed of homogeneously distributed islands with lateral size and distance around 0.3 and 0.5 μ m. However looking at the cross section it is possible to observe that such islands are as tall as 1.1 μ m, and composed of thinner units (c) T-pSi is exposed to a drop of ToMV (0.1 mg/mL), and dried in a vacuum chamber; the virus can be layered on the bottom of the sample between the islands. (Figure S5c) In the case of virus incubated samples, the SEM analysis was carried out onto 20 nm gold metalized surfaces.

References

1. Descirptions of Plant Viruses. Available online: http://www.dpvweb.net (acccessed on 14 November 2016).