Supplementary Materials: A Microfluidic DNA Sensor Based on Three-Dimensional (3D) Hierarchical MoS₂/Carbon Nanotube Nanocomposites

Dahou Yang, Mahnoush Tayebi, Yinxi Huang, Hui Ying Yang and Ye Ai

The scanning electron microscopy (SEM) of pristine multi-walled nanotubes (MWNTs) used in the experiments is shown in Figure S1. The outer diameter of the multi-walled carbon nanotubes (MWCNTs) range from 20 to 60 nm with a length of 5 to 15 μ m. MoS₂ is extended the layered structure out of the cylindrical tubules, which is different from MoS₂ sheath/CNT-core nanoarchitecture where MoS_x layers are confined to the MWCNTs [1].

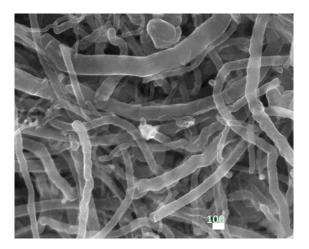
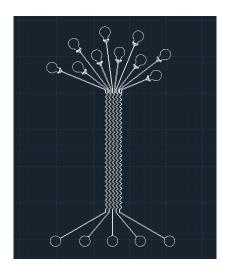
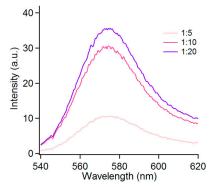




Figure S1. Scanning electron microscopy (SEM) image of pristine multi-walled nanotubes (MWNTs).

Figure S2. Channel geometry of the polydimethylsiloxane (PDMS) microfluidic device. The microchannel height is 40 µm and width is 100 µm.

Figure S3. Fluorescence spectra of P1 (100 nM) in the presence of different ratios of MoS₂/MWCNT (1:5, 1:10, and 1:20). The concentrations of the different MoS₂/MWCNT ratios are all 150 µg/mL.

Sensor	Description	Linear Range (nM)	LOD (nM)	Reference
MoS ₂ nanosheets	Using the fluorescence quenching ability of MoS ₂ nanosheets toward the dye-labeled ssDNA was investigated in the zigzag-shaped microchannel	0–50	0.5	[2]
MoS ₂ nanosheets	Using the fluorescence quenching ability of MoS ₂ nanosheets toward the dye-labeled biomolecules was investigated in bulk samples	0–15	0.5	[3]
PL measurements of graphene/MoS2 film	Photoluminescence mappings for the graphene/MoS2 stack film immobilized with the probe DNA	0-0.000001	0.001×10^{-6}	[4]
MoS2-based method for DNA detection using hybridization chain reactions (HCRs)	MoS2 is used to reduce the background signal and HCRs are employed to amplify the fluorescence emission	0-0.2	0.015	[5]
Few-layer MoS ₂ nanosheets	Electrical detection of DNA by (2D) few-layer MoS ² as a sensing-channel	-	0.00001	[6]
MoS2 and WS2 nanoflakes	Fluorescence detection of nucleic acids, based on a signal-on sensing approach	9.60–366	9.60	[7]
GOD/AuNPs/MoS2/MWCN Ts/GCE	For DNA sensing, cyclic voltammetry (CV) was carried out	0.00001–10	79×10^{-8}	[8]
CdS/MoS ₂	Photoelectrochemical biosensor	10-6-0.1	0.39 × 10-6	[9]
MoS ₂ /MWCNT	Fluorescence quenching	0–50	1	This Work

Table S1. DNA detection performance of existing MoS₂-based biosensors.

Reference

- 1. Wang, Q.; Li, J. Facilitated lithium storage in MoS₂ overlayers supported on coaxial carbon nanotubes. *J. Phys. Chem. C* **2007**, *111*, 1675–1682.
- 2. Huang, Y.; Shi, Y.; Yang, H.Y.; Ai, Y. A novel single-layered MoS₂ nanosheet based microfluidic biosensor for ultrasensitive detection of DNA. *Nanoscale* **2015**, *7*, 2245–2249.
- 3. Zhu, C.; Zeng, Z.; Li, H.; Li, F.; Fan, C.; Zhang, H. Single-layer MoS₂-based nanoprobes for homogeneous detection of biomolecules. *J. Am. Chem. Soc.* **2013**, *135*, 5998–6001.
- 4. Chen, C.-H. Label-Free Detection of DNA Hybridization on MoS₂ Using Photoluminescence Measurements. In Proceedings of the 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED), Honolulu, HI, USA, 15–18 November 2015; pp. 196–199.
- 5. Huang, J.; Ye, L.; Gao, X.; Li, H.; Xu, J.; Li, Z. Molybdenum disulfide-based amplified fluorescence DNA detection using hybridization chain reactions. *J. Mater. Chem. B* **2015**, *3*, 2395–2401.
- 6. Lee, D.-W.; Lee, J.; Sohn, I.Y.; Kim, B.-Y.; Son, Y.M.; Bark, H.; Jung, J.; Choi, M.; Kim, T.H.; Lee, C. Field-effect transistor with a chemically synthesized MoS₂ sensing channel for label-free and highly sensitive electrical detection of DNA hybridization. *Nano Res.* **2015**, *8*, 2340–2350.
- Loo, A.H.; Bonanni, A.; Pumera, M. Strong dependence of fluorescence quenching on the transition metal in layered transition metal dichalcogenide nanoflakes for nucleic acid detection. *Analyst* 2016, 141, 4654–4658.

- 8. Huang, K.-J.; Liu, Y.-J.; Wang, H.-B.; Wang, Y.-Y.; Liu, Y.-M. Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, au nanoparticle and enzyme multiple signal amplification. *Biosens. Bioelectron.* **2014**, *55*, 195–202.
- 9. Zang, Y.; Lei, J.; Hao, Q.; Ju, H. Cds/MoS₂ heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation. *Biosens. Bioelectron.* **2016**, *77*, 557–564.