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Abstract: Hyperspectral data provide new capabilities for discriminating spectrally similar classes,
but such class signatures sometimes will be difficult to analyze. To incorporate reliable useful
information could help, but at the same time, may also lead increased dimensionality of the feature
vector making the hyperspectral data larger than expected. It is challenging to apply discriminative
information from these training data to testing data that are not in the same feature space and
with different data distributions. A data fusion method based on transfer learning is proposed,
in which transfer learning is introduced into boosting algorithm, and other out-date data are
used to instruct hyperspectral image classification. In order to validate the method, experiments
are conducted on EO-1 Hyperion hyperspectral data and ROSIS hyperspectral data. Significant
improvements have been achieved in terms of accuracy compared to the results generated by
conventional classification approaches.
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1. Introduction

With advanced sensors and space technology, now it is possible to access to remote sensing
(RS) image data, which potentially provide more information individually and as a time series.
RS has become an indispensable tool in many scientific disciplines. It is one of the major tools in
monitoring our earth environment in a cost-effective way. Hyperspectral sensors simultaneously
capture hundreds of narrow and contiguous spectral bands from a wide range of the electromagnetic
spectrum. Due to their capability to precisely characterize the spectral signatures of different materials,
hyperspectral images have been extensively used in the last decades in remote sensing applications.
In such context, hyperspectral images are informative sources for detailed mapping, environmental
monitoring, modeling, and biophysical characterization of agricultural crops [1-4].

Apart from deploying improved hardware system approaches [5], efficient application of this
advanced capability should be with sophisticated hyperspectral image processing and analysis
methods. While any of multispectral classification methods may be directly extended to hyperspectral
images, there are additional challenges in the huge training data requirements, computational cost, and
constraints on exploiting the information content. Classification of hyperspectral imagery is usually
performed in a reduced feature space whose dimensionality is significantly lower than the number of
original spectral bands [6].

Those will limit the direct application of multispectral image classification methods for
hyperspectral image classification. Consequently, several image pre-processing techniques are now
available for hyperspectral dimensionality reduction while using multispectral classification methods.
Many other methods have also been introduced such as Spectral Angle Mapper (SAM), Spectral
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Feature Fitting, and Spectral Information Divergence [7], which are quite specific for hyperspectral
image, learning-based artificial neural networks, and support vector machines [8-10].

Classification of a single hyperspectral image on a manifold, a feature space of reduced dimension
developed via a nonlinear method, has been investigated in several works [11-13]. The trained
classifiers are typically valid only for the corresponding remote sensing data set. For subsequent RS
images over the same area, e.g., additional training samples are required, and the classifier must be
retrained, for the variation of either signature or environmental conditions during the acquisition.
It is still expected that two images are associated in some way in terms of class-dependent signatures
and classification models. Although significant progress has been made in developing approaches
in hyperspectral image classification, studies assessing the generalization and transfer characteristic
of the spectral details of hyperspectral data for independent image classification are still limited.
Exploring the association between data sets is an interesting and charming topic in the machine
learning community and often referred to as transfer learning [14]. In addition, transfer learning
can be used in the different domains or multi-task learning. On the basis, it is proposed a boosting
algorithm to address inductive transfer learning problems, called TrAdaBoost [15]. TrAdaBoost has
been efficiently used in text data mining. It is proposed a general instance weighting framework for
domain adaptation to achieve instances transfer learning [16].

Manifold alignment (MA), where a joint manifold representing multiple images is obtained by
aligning similar geometries, is a potentially attractive strategy for transfer learning from a geometric
point of view [17-19]. A relevant development is the knowledge transfer or semi-supervised learning
based classification methods [20-25]. In these methods, training data from one image are used for
classifying another image of the same or adjacent area. Land cover classification accuracies from this
approach are reported to be comparable with the image-based training data.

It is proposed an effective fusion method that makes use of the out-date image data. The main
idea is to use boosting to select out the available training data that are very distinguishable from the
classified image data by automatically adjusting the weights of training instances. The remaining
available data are treated as additional training data, which greatly boost the confidence of the learned
model even when classified image training data are scarce. Support vector machine (SVM) that has
been widely used for classification tasks in remote sensing image, are adopted in the classification
validation experiments. The experiments are respectively carried out on Botswana Hyperion data set
and University of Pavia data set including the same classes.

This paper is organized as follows: in Section 2, our transfer learning-based fusion method is
described. Experimental results and discussion are present in Section 3 and conclusions are presented
in Section 4.

2. Transfer Learning Based Fusion Method

In this paper, we mainly use the instance-transferred idea and propose a method that combines
transfer learning with data fusion. In many machine learning applications, the case exists that the
training or labeled data are too sparse to train a classification model with better performance. In this
case, the traditional learning methods require users to re-collect more labeled data, which is expensive
in time and cost. However, there are often a lot of existing out-of-date data which are related to
training data. Part of those data can be able to considered as the source domain and reused to instruct
these problems as the target domain. Transfer learning can be applied in different learning domains.
In transfer learning, we are particularly interested in transferring the knowledge from source task to
a target task rather than learning all source and target tasks simultaneously, whereas, not all source
instances are available to the target task. If the training sets in source data were sufficient, the algorithm
efficiency would be lower due to excessive selection. To improve the efficiency of transfer learning, the
framework of source instances based on adaboost has been carried out as shown in Figure 1. There are
mainly two parts in this scheme, which include selecting instances and removing misleading instances.
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Figure 1. Framework of the classification scheme in this paper.

2.1. Selecting the Source Domain Instances to Append Labeled Target Domain Instances

In transfer learning, the problem solved firstly is to implement the domain adaptation, one
approach of which is instances transfer [16]. In this paper, we mainly use the instances transfer.
However, not all source instances are available to the target task. If the source data are large scale, the
algorithm efficiency would be lower because of the available selection. Thus, we select some source
data firstly to implement preliminary domain adaptation. Generally, instances transfer methods are
also motivated by instance weighting. In our work, we used the adaboost algorithm to select the
source instances for transfer learning.

In this method, domain adaptation is firstly implemented. Generally, instances transfer methods
will be motivated by instance weighting. The adaboost algorithm is used to select the source instances
for transfer learning. The distribution of source domain distinguishes from the target domain; however,
both domains are in the identical feature space. Assume the source domain instances set is Equation (1),
and the target domain instances set is Equation (2):

st{xf,x§,~~,x§1} ¢y

XT:{xlT,sz,---,xZ} 2

If the source instances only instruct one type or some types, the labeled set is Equation (3), while
the residual target labeled instance set is Equation (4). The preliminary selection scheme of source data
is shown as follows:

X1 = (a1, XT e T )

X = {xsz,szz,--- ,xzzz}, X2 c Xt m+npy=n 4)

As it is expected that the source domain knowledge can instruct the target domain learning, the
training procedure in the adaboosting is adopted to select the instances according to their weights.
During training procedure of adaboosting, the weights of the instances wrongly classified are increased.
The training dataset is composed of source instances and target labeled ones instructed. After training,
those source instances with higher weights are similar to the target ones. The source instance set is X°,
and the target instance-set XT1 where n; < m. Let the labels of X5 be 1, while the labels of X'! are —1.
In order to make two patterns instances of balance, X5 can be divided into about m/ ny portions, that is
Equation (5), where [.] is a rounding operator. Each portion of training datasets is Equation (6), which
respectively train the classifiers based on adaboosting. The instances weights are updated during
training, which of those instances wrongly classified increase. After a few rounds training, the source
instances with higher weights that exceed a threshold W are considered that they have the similar
property to the target domain. Then, they can be selected to form instances set X2 ,.

XS=X{UX5U---UX? (5)

[m/n]

T,=xSUX™, (i=1,2-,[m/n]) (®)



Sensors 2016, 16, 1895 40f 13

2.2. Removing “Misleading” Source Domain Instances

However, the above method is only applied to select source instances for only one type of target
domain. The source instances used to transfer learning should be easily classified from instances of
other types. To avoid the negative transfer, adaboost is used to remove “misleading” source domain
instances as shown in Figure 2. The training dataset is composed of Xssub and the other types target
labeled instance-set X'2. Unlike previous steps, we select the source instances classified correctly X°

sub
from X5 . X5

o Xoup is the final transfer instance-set to instruct the target learning.

source domain target labeled
instances X:, instances X'*

combine

Input

AdaBoost

Removing instance that the
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Figure 2. Framework of choosing the source domain instance-set.

The source domain instances selected out are as the training data with the labeled ones of target
domain. In traditional classification model, the training instances are considered to have the same
distributions as test instances. If the distributions varies, the traditional model is not acceptable and
supposed to be modified.

The source domain instances selected out are as the training data with the labeled ones of the
target domain. In traditional classification model, the distributions of the training and test instances
are considered the same. When the distributions are different, the traditional model is not suitable and
must be modified.

In the target domain, the instances set is XT, in which the unlabeled instances set is the test
dataset TS = {xlT) , where xl-T e XT (i=1,2,...,k), and the labeled instances set whose distribution
is similar to TS is denoted TRg = {xiT,y (xlT) }, where xl-T e XT(i=1,2,...,n),y (xlT) is the label
for xl.T and TRs = X™ U X2, so the size of X' is k + n. Xssub1 with a different distribution from TS
is redefined as TRp = {xiS,y (xls) }, where xf € X% (i =1,2,...,m). The training data is denoted as
TR = TRs UTRp. Also TRg and TRp are respectively named the same-distribution dataset and the
diff-distribution dataset. The scheme is as follows:

Input: Directed Network N; Nodes number K; Training rounds T; Sampling parameter p;
The target labeled instances set and the source instances on the k-th node are respectively TRs,
and TRp,, k=1,2,... K, where [5(k) is the size of TRp,;

Initialize: for any node k (k=1, 2, ..., K), the weight of instance x;:

k,t(xi) _ {1/15(]() X; € TRS (7)

1/ZD(k> x; € TRp

Do for:
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Step 1. Generate a replicate training set Ty ; of size pls (k) + plp (k), by weighted sub-sampling with
replacement from training set TRs, and TRp,, k=1,2, ..., K, respectively;

Step 2. Train the classifier (node) Cy ; in the classifiers network with respect to the weighted training
set Ty ; and obtain the hypothesis for multi-classification hx; : x — Y, k=1,2,... , K, where Y
is the label set.

Step 3. Calculate the weighted error rate of the instances in TRg;

e = ), Wie(xi)I[yi # hee(x)] ®)

x,ETRsk

Step 4. Hypothesize the classifier C; ; weight:

1 — .
ax; = 0.5 x log (SSkZ) 9)

ki

Step 5. Set weights update parameters B ; = %’ and v = . Note that g ; < 0.5.

1
1++/2In(Ip (k) /T
Step 6. Update the weight of instance i of node k:

Akii) = —2a,;(1 —1/2) 22%1 = 1/2),I[y(x;) # hyi(xi)] (10)
A N ) wri(xg) X B i, x; € TRs,
Wit (%;) = { wii(xi) x 1M, x; € TRp, (11)

where node # is neighbor of node k.

Output: Final hypothesis:

K T
Hyr =argmax) ) ( (i () == Y]+ Y e [Pi(x) == }> (12)

yeY  k=1i=1

As shown in the algorithm, in each round, the training subset is respectively sampled from
TRs and TRp with the same sampling rate p. The hypothesis contains the classifier weight ay,
which represents the classifier importance for the final hypothesis. It stabilizes the final result and
tune to attain the stable classifier network. The weight update methods are different between the
same-distribution instances and the diff-distribution instances. The weight update parameter of the
same-distribution instances is f ;, while that of the diff-distribution ones is 7, which is related to the
diff-distribution instances number on the current node. In each round, if a diff-distribution training
instance is mistakenly predicted, it may likely conflict with the same-distribution training data. Then,
adjustment should be introduced to its training weight to reduce its effect through multiplying its
weight by vy = Y& 10, which is opposite to the same-distribution training data. After several rounds,
the diff-distribution training instances with better fitting of the same-distribution will have larger
training weights, while the dissimilar ones will have smaller weights.

3. Experiments and Discussion

In this section, we provide empirical evidence that incorporating the boosting algorithm into the
knowledge transfer framework results in classification rate curves. We present results showing that our
proposed method exhibits better classification rates than updating existing classifiers with data points
selected either at random or via an existing, related general method. We also empirically show results
that the proposed method offer a significant advantage over the more traditional semi-supervised
methods by requiring far fewer data points to obtain better classification accuracies.
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The proposed fusion classification method is tested on hyperspectral data sets obtained from
two sites: NASA’s Okavango Delta, Botswana [26], University of Pavia and Pavia center [27]. Support
Vector Machine (SVM) is selected for the basic learner.

3.1. Data Sets

3.1.1. Okavango Delta, Botswana

The NASA EO-1 satellite acquired a sequence of data over the Okavango Delta, Botswana in
2001-2004. The Hyperion sensor on EO-1 acquires data at 30 m pixel resolution over a 7.7 km strip in
242 bands covering the 400-2500 nm portion of the spectrum in 10 nm windows. Preprocessing of
the data was performed by the University of Texas Center for Space Research to mitigate the effects
of bad detectors, interdetector miscalibration, and intermittent anomalies. Uncalibrated and noisy
bands that cover water absorption features were removed, and the remaining 145 bands were included
as candidate features: [10-55, 82-97, 102-119, 134-164, 187-220]. The data analyzed in this study,
acquired 31 May 2001, consist of observations from 14 identified classes representing the land cover
types in seasonal swamps, occasional swamps, and drier woodlands located in the distal portion of
the delta. These classes were chosen to reflect the impact of flooding on vegetation in the study area.
The class names and corresponding numbers of ground truth observation used in the experiments are
listed in Table 1.

Table 1. Class names and number of data points for the Botswana data set.

No. Class Name Areal Area 2
1 Water 270 126
2 Hippo grass 101 162
3 Floodplain grasses1 251 158
4 Floodplain grasses2 215 165
5 Reedsl 269 168
6 Riparian 269 211
7 Firescar2 259 176
8 Island interior 203 154
9 Acacia woodlands 314 151

10 Acacia shrublands 248 190
11 Acacia grasslands 305 358
12 Short mopane 181 153
13 Mixed mopane 268 233
14 Exposed soils 95 89

3.1.2. ROSIS Data

The flight over the city of Pavia, Italy, was operated by the Deutschen Zentrum fur Luftund
Raumfahrt (DLR, the German Aerospace Agency) in the framework of the HySens project, and
managed and sponsored by the European Union. According to specifications, the number of bands of
the ROSIS-3 sensor is 115 with a spectral coverage ranging from 0.43 to 0.86 pm. The data have been
atmospherically corrected but not geometrically corrected. The spatial resolution is 1.3 m per pixel.
Two data sets were used in the experiment.

University Area

The first test set is around the Engineering School at the University of Pavia. The image is
610 x 340 pixels in size, with a spatial resolution of 1.3 m. The ROSIS sensor has 115 spectral channels,
with a spectral range of 430-860 nm. The 12-noisiest channels were removed, and the remaining
103 spectral bands were used in this experiment. The reference data contain nine ground-cover classes:
asphalt, meadows, gravel, trees, metal sheets, bare soil, bitumen, bricks, and shadows. This is a
challenging classification scenario as the image is dominated by complex urban classes and spatially
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nested regions. True-color composite and related ground reference maps are shown in Figure 3, and
the number of class-dependent labeled samples is shown in Table 2.

Figure 3. ROSIS data, three-channel color composite of the areas used for the classification:
(a) University area; (b) Ground reference map of university; (c) Pavia center; (d) Ground reference map
of center.

Table 2. Information classes and true samples of COP and UOP.

No. Center of Pavia University of Pavia cor uor
1 Asphalt Asphalt 9248 6641
2 Meadow Meadow 3090 18,649
3 Tree Tree 7598 3064
4 Bare_soil Bare_soil 6584 5029
5 Bitumen Bitumen 7287 1330
6 Brick Brick 2685 3682
7 Shadow Shadow 2863 945
8 Tile Gravel 42 826 2099
9 Water Metal_sheet 65,971 1345
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Pavia Center

The second test set is the center of Pavia. The Pavia center image was originally 1096 x 490 pixels.
Some channels (13) have been removed due to noise. The remaining 102 spectral dimensions are
processed. Nine classes of interest are considered, i.e., water, trees, meadows, bricks, soil, asphalt,
bitumen, tiles, and shadows. Available training and testing set for each data set are given in Table 2,
and Figure 3 shows false color images for both data sets.

3.2. Experiments

The assumption of transfer learning is that two data sets are different but related. It exploits
relationships between data sets and extends a current statistical model to another data set. A class of
popular transfer learning methods involves the updating strategy, whose origin is semi-supervised
learning. Model parameters are updated by incorporating samples from the new data set. Therefore,
a modified model can be generalized to the new data set.

In this section, we provide empirical evidence that incorporating adaboost into the knowledge
transfer framework results in better accuracies. We present results showing that the proposed method
exhibits better learning rates than traditional classifiers with data points selected by only stacking.
We also empirically show results that this method have a significant advantage in few training
samples, comparing with the more traditional methods, by requiring fewer data points to obtain better
classification accuracies.

In these experiments, SVM was used as the basic learners in transfer adaboost. SVM classification
(adopting the LIBSVM library [28]) was accomplished using a Gaussian RBF kernel. The SVM hyper
parameters were optimized every ten iterations of the process by a fivefold cross validation. The C
and 7 parameters were selected in the range [27°, 21°] and [271°, 23], respectively. In the experiment,
the network structure selected is regular network with 20 nodes and the degree is 10, the sampling
parameter p = 0.6, the training round T = 10. Furthermore, some constraints were added to the basic
learners to avoid the case of training weights being unbalanced. Thus, during training procedure,
the overall training weights between positive and negative examples are consistently balanced.

Three benchmark methods are implemented by using SVM as shown in Table 3. In the following,
SVM, SVMt, TSVM will be used to represent various implementations of classifiers. SVMt means that
training data will be only stacked by using SVM classifier. Moreover, the TSVM is the key method
proposed in this paper.

Table 3. The descriptions of baseline methods.

Training Data

Benchmark Test Data Basic Learner
Labeled Unlabeled
SVM X5 (%) S SVM
SVMt x*ux’ @ S SVM
TSVM X ux’ S S SVM

The Botswana Hyperion data and ROSIS University of Pavia data set are respectively split into
two sets: a training set X° and a test set S. We adopted KPCA algorithm to extract the image features
including 30 dimensions [29]. The comparison experiment based on TrAdaBoost is performed. In the
experiment, the network structure selected is regular network with 20 nodes and the degree is 10,
the sampling parameter p = 0.6, the training round T = 10. Table 4 presents the experimental results
of SVM, SVMt and TrAdaBoost (TSVM) when the ratio between training and testing data is 2% and
5%. The performance in classification accuracy was the average of 10 repeats by random. Finally, the
Botswana data classification maps obtained by the different methods are shown in Figure 4 and the
ROSIS data in Figure 5.
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Table 4. The accuracy of three methods.

Botswana UOP
Ratio
SVM SVMt TSVM SVM SVMt TSVM
2% 0.9013 0.8832 0.9105 0.9225 0.8952 0.9387
5% 0.9171 0.9053 0.9210 0.9449 0.9265 0.9543

(b)

s %o .
2 B RiR 2 BEG

(e)

90f13

Figure 4. Classification maps achieved on the Botswana dataset. (a) RGB map; (b) Ground reference
map; (c) SVM; (d) SVMt; (e) TSVM.

Figure 5. Classification maps achieved on the Pavia University dataset. (a) SVM; (b) SVMt; (¢) TSVM.

From Table 4, the accuracy given by TSVM are obviously higher than those given by SVM and
SVMLt. Intuitively, this is inevitable since SVM is not a learning technique designed for transfer
classification, while adaboost is. However, as several researchers have already noted, transfer learning
could not improve the generalization classification accuracy all the time and sometimes will show
even lower performance on test set. This phenomenon is mentioned as transfer learning lowers the
original performance negative transfer. Although in our experiments, adaboost continuously exhibit
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better or comparative performances than baselines, there is no guarantee for TrAdaboost to improve
the basic learner.

In Figure 6, University of Pavia data set was deliberately used. The ratio between training and
diff-distribution testing examples gradually increased from 0.01 to 0.1. Classifications were performed
10 times for each sampling rate. The average overall accuracies and standard deviations of the two
baseline methods and the proposed method are listed in Figure 5. TrAdaBoost (SVM) consistently
improves the performance of SVMt. TrAdaBoost (SVM) also outperforms SVM, when the ratio is lower
than 0.05. But, when the ratio reaches larger than 0.05, TrAdaBoost (SVM) performs a little worse than
SVM, but still comparative. Generally out-date image set training data contain both good knowledge
and noisy data. In the case of that too few original image set training data could be used to train a
good classifier, the useful knowledge from out-date image set training data will be beneficial to the
learner, while the noisy part does not have significant negative effect.
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Figure 6. The accuracy curves on different ratios between training and testing.

In the following discussion, ROSIS data were used as an illustrative example. This data set
combination is representative of the remaining data sets as due to its similarity with some classes.
We first use SVM classifier on the University of Pavia image data set. The resultant graph presents a
misleading clustering condition, and consequently leads to an unfaithful joint manifold. Subsequently,
as seen in the example in Table 5, some misclassified samples are observed, e.g., for classes 2 and 4.
It can be seen that the two classes, i.e., Meadow (Class 2) and Bare_soil (Class 4), exhibit significant
confusion. Samples of Class 2 from the source image and samples of Class 4 from the target image
are difficult to discriminate since the two features are very similar, which can also be validated by the
confusion matrix in Table 4. The separation of these two classes is clearer in the latent space provided
by the proposed method. The same trend is observed for Classes 3 and 4 of the data, as well as these
two class pairs of the Class 3 and Class 2. The Asphalt (Class 1) and Brick (Class 6) land cover types
also show some confusion.

Table 5. Shows the confusion matrix obtained by the SVM method.

Ground Truth (Pixels)
Class Asphlt Meadow Tree Bare_Soil Bitumen  Brick Shadow

Asphalt 5953 19 1 23 303 205 6
Meadow 0 17,118 126 500 0 8 0
Classified Tree 14 272 2937 40 0 2 0
image Bare_soil 28 895 15 3867 0 44 0
(pixels) Bitumen 218 0 0 0 1071 0 0
Brick 159 24 1 17 6 3476 2

Shadow 61 0 0 2 0 0 912

Accuracy  89.10 93.96 87.65 77.70 80.95 91.91 91.11 92.25
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In addition to improvement of the classification accuracy, the proposed method also selects the
most informative data points from these classes. Compared to the results given by the two baselines,
TSVM provides higher overall accuracy. Among the ten common classes in the UOP data pair, classes 1,
2, 3,4, 6 are difficult to discriminate within a single image because the classes are comprised of mixtures.
Spectral changes and mixed spectral signatures make domain adaptation in these data pairs even more
difficult. The Class 2/Class 4 pair exhibits the most confusion. As shown in Figure 3, classes 2 and 4
from the source image (UOP) are very similar, and we can also observe that the spectral drifting of
Class 2 is evident. Thus, many samples of Class 2 from the target image (COP) are misclassified as
Class 4 when the training samples are only from the source image. The proposed method provides
a significant improvement in the classification accuracy of Class 2. Table 6 shows the confusion
matrix obtained by using the TSVM algorithm. This method eliminates the confusion among some
classes, and also exhibits a better accuracy in tree (Class 3), bare_soil (Class 4), bitumen (Class 5) and
shadow (Class 7).

Table 6. Shows the averaged confusion matrix obtained by the TrAdaBoost (SVM) method.

Ground Truth (Pixels)
Class Asphalt Meadow  Tree Bare_Soil Bitumen  Brick Shadow

Asphalt 5762 13 1 34 395 301 4
Meadow 3 16,546 193 601 0 6 0
Classified Tree 14 207 3015 24 1 4 0
image Bare_soil 17 526 12 4230 0 64 0
(pixels) Bitumen 205 0 0 0 1080 4 0
Brick 129 33 0 61 58 3388 0

Shadow 25 0 1 0 0 0 949

Accuracy  88.57 93.21 89.82 85.07 83.69 89.49 95.41 93.87

4. Conclusions

In this paper, we have proposed a novel framework method for knowledge transfer fusion by
boosting a basic learner. This algorithm is with high efficacy and accuracy and especially suitable to
the small sample and similar classes discrimination. The basic idea is to select most useful instances as
additional training data for predicting the labels. This method firstly finds the distribution of original
image training data, and then selects the most helpful out-date image-training samples as additional
training data. The methods, including SVMt and TSVM, show excellent performance as compared to
SVM on two data sets (KSC and BOT). Our experiments on two hyperspectral data also demonstrate
by using the method there will be a better transfer ability for similar classes discrimination than
traditional learning techniques. The overall accuracy has been improved, and important is the most
classes accuracies also have been improved. In addition to the concept level guidance, results show
notable improvements especially for critical classes without scarifying much of the overall performance.
TSVM further incorporates the informative analysis, thus performs the best.

Moreover, for case of small sample, this method exhibits a better performance than the benchmark
methods. This study could be expanded when more hyperspectral data are available, especially to
determine the effectiveness of the active learning based knowledge transfer framework when the
spatial/temporal separation of the data sets is increased systematically.
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