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Abstract: ZnO/graphene (ZnO-G) hybrid composites are prepared via hydrothermal synthesis with
graphite, N-methyl-pyrrolidone (NMP), and Zn(NO3)2·6H2O as the precursors. The characterizations,
including X-ray diffraction (XRD), thermogravimetric analyses (TGA), Raman spectroscopy, and
transmission electron microscopy (TEM) indicate the formation of ZnO-G. Gas sensors were fabricated
with ZnO-G composites and ZnO as sensing material, indicating that the response of the ZnO towards
acetone was significantly enhanced by graphene doping. It was found that the ZnO-G sensor exhibits
remarkably enhanced response of 13.3 at the optimal operating temperature of 280 ◦C to 100 ppm
acetone, an improvement from 7.7 with pure ZnO.
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1. Introduction

Chemical sensors play an important role in the areas of emissions control, environmental
protection, public safety, and human health [1]. It is well known that high sensitivity, fast response and
recovery, and selective detection are required for real-time monitoring of harmful gases and preventing
possible disasters due to toxic gas [2–4]. Among them, the detection of acetone vapor is very important
in daily life. Medical investigations have shown that the acetone concentration in exhaled breath
from a healthy human body is lower than 0.8 ppm, while that for a diabetic patient is higher than
1.8 ppm [5–7]. As an important chemical material, acetone vapor should be monitored, and kinds
of metal oxides have been applied. Zinc Oxide—as an n-type semiconductor material—has been
widely investigated as a field-effect transistor [7], optical device [8], dye-sensitized solar cell [9], and
solid-state gas sensor [10,11]. Recently, ZnO-based sensors have been investigated for the detection of
acetone vapor at various concentration levels [12–15].

Graphene, known as “the thinnest material in our universe”, with only one-atom thickness, has
attracted huge attention since its discovery. Because of its unique features of high surface area, light
weight, high electron mobility, and mechanical strength, graphene can make a highly promising
platform for gas detection. In order to improve the sensing performances of graphene-based sensors,
various sensitive materials have been selected to modify the graphene conductive network, and they
play important roles in improving the sensitivity and selectivity of resultant gas sensors [16–19]. To date,
the most popular method of preparing monolayer or multilayer graphene is the micromechanical
cleavage or chemical exfoliation of highly oriented pyrolytic graphite or graphite oxide [20–25].
Recently, exfoliated graphene was prepared directly from graphite with solvothermal method, offering
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another method for graphene preparation [26]. Meanwhile, to the best of our knowledge, the enhanced
acetone sensing performance of the ZnO/graphene (ZnO-G) composites prepared by this method has
yet to be reported.

Hence, we present a simple and economically attractive route for the synthesis of the ZnO-G
composites via a facile hydrothermal method on a large scale. Simultaneously, to improve the acetone
sensing performance, the graphene was exfoliated directly from graphite by solvothermal treatment.
Improved gas sensitivity and selectivity of ZnO-G towards acetone was achieved. The effects of
graphene doping on the response and response-recovery time at different operating temperatures and
gas concentration towards acetone were also investigated.

2. Materials and Methods

2.1. Chemicals

All chemicals were of analytical grade and were used as received without further purification.
Graphite and N-methyl-pyrrolidone (NMP) and Zn(NO3)2·6H2O, were supplied by Beijing Chemical
Corp, Ltd. (Beijing, China). The water used throughout all experiments was purified through a
Millipore system.

2.2. Exfoliation of Graphene

The exfoliation of Graphene has been proposed [27]. In a typical synthesis, 0.5 g of graphite was
dispersed in 35 mL of NMP solvent, which was then sealed into a 40 mL Teflon-lined autoclave and
solvothermally treated at 200 ◦C for 3 days. The autoclave was cooled naturally, and the as-obtained
sample was sonicated for 1 h in a sonication bath. After the removal of macroscopic aggregates and a
thick layer of graphene by centrifugation (5–7 krpm for 7–10 min), a dark suspension was obtained.
After a few minutes, a graphene film was formed at the interface.

2.3. Preparation of ZnO-G Composites

ZnO-G composite was prepared by in situ production of ZnO nanoparticles on the surface of
graphene. In a typical synthesis, 2.19 g Zn(NO3)2·6H2O and 6 mL of graphene of NMP resolution
(1 mg/mL) was introduced into 20 mL H2O, which was sonicated for 40 min. The aqueous dispersion
was transferred into a 40 mL Teflon-lined stainless-steel autoclave and heated at 180 ◦C for 12 h.
The black product was harvested by centrifugation and washed with water and ethanol several times,
and dried at 60 ◦C for several hours. For comparison, the pure ZnO was prepared by a similar method
without the addition of graphene.

2.4. Characterizations

Powder X-ray diffraction (XRD) data were recorded on a Rigaku D/Max-2550 diffractometer
with Cu-Kα radiation (λ = 0.15418 nm). The transmission electron microscopic (TEM) images were
taken with a JEOL JEM-3010 TEM microscope with an accelerating voltage of 200 kV. The sample for
TEM characterization was prepared by placing a drop of colloidal solution on a carbon-coated copper
grid and dried at room temperature. Thermogravimetric analyses (TGA) analysis was measured on
ATGAQ50 instrument from 25 ◦C to 800 ◦C. Raman spectra were obtained on Horiba-JY T64000 Raman
spectromer with 514.5 nm wavelength incident laser light.

2.5. Fabrication and Gas Sensing Measurements

The product was mixed with deionized water at a weight ratio of 4:1 to form a paste. The sensor
was fabricated by coating a ceramic tube with the paste to form a 1.5 mm sensing film. A pair of
gold electrodes was installed at each end of the ceramic tube before it was coated with the paste.
Each electrode was connected with two Pt wires. A Ni-Cr heating wire was inserted into the tube to
form an indirect-heated gas sensor. Figure 1a,b show a schematic image of the as-fabricated sensor
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and a photograph of the sensor on the socket, respectively. The Pt wires between two electrodes were
almost covered by the sensing material and could not contact target gas, and thus have no effect on the
sensing property. The gas sensing properties of the sensor were measured by a CGS-8 series Intelligent
Test Meter. The sensors were all heat-treated in 300 ◦C before gas sensing test to remove the solvent
from the sensing material. The response of the sensor is defined as the ratio of sensor resistance in a
target gas (Rg) to that in dry air (Ra) between 180 and 360 ◦C. The time taken by the sensor to achieve
90% of the total resistance change was defined as the response time in the case of adsorption or the
recovery time in the case of desorption.
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Figure 1. (a) A schematic image and (b) photograph of the ZnO/graphene (ZnO-G) sensor.

3. Results

3.1. Structural and Morphological Characteristics

The powder X-ray diffraction (XRD) pattern of the as-prepared product is shown in Figure 2.
All diffraction peaks can be indexed to wurtzite-structured (hexagonal) ZnO (JCPDS No. 75-0576).
No impurity phases were observed from the XRD pattern, which confirms the superb purity of the
product. No graphene peak was observed; this may be due to the low content of graphene in the
composite materials.
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(red line).

Figure 3 shows the TGA curves of ZnO and ZnO-G samples. The small weight loss observed in
ZnO was 0.47%, attributed to desorption of solvent molecules physically adsorbed on the materials.
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Comparably, the weight loss of ZnO-G from room temperature to 325 ◦C is attributed to the removal
of surface-bound water and NMP; the decomposition of the carbon framework started from 325 ◦C
and continued up to 600 ◦C [28,29]. Based on the above results, the content of ZnO in ZnO-G hybrids
is about 96.4%.
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Figure 3. Thermogravimetric analysis (TGA) of ZnO and ZnO-G samples.

Figure 4 shows the Raman spectra of graphene and pristine graphite. The two strong peaks of
the D peak (~1351 cm−1) and G peak (~1595 cm−1) were observed, corresponding to the diamondoid
and graphitic graphene structures, respectively. The obtained D peak of graphene is higher than
that of graphite, which indicates that the graphene that separated from the solvent may have more
defects than graphite. This can be explained as below: although graphene was directly exfoliated from
graphite, it will have some defects after exfoliation. However, the 2D lines (~2700 cm−1) of the two
samples are nearly the same, which illustrates that the graphene that is collected has a majority of
layered graphene [30].
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To observe the dispersions in NMP, TEM is employed by placing drops of the dispersions on
microgrids. Figure 5a shows TEM images of representative graphene prepared by solvothermal
treatment. Some flakes tend to crinkle or roll because of stress from the edges, and are similar to
those prepared without solvothermal treatment. A TEM image of ZnO-G (Figure 5b) exhibits a
typical morphology similar to graphene-based materials. Graphene with the size of about 3–4 µm
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is seen, and a few hexagonal ZnO nanoparticles with size 200–300 nm are decorated on the surface
of graphene, indicating the formation of ZnO-G hybrids. This reveals that hydrothermal treatment
of exfoliated graphene and Zn(NO3)2·6H2O solution is an effective method for the preparation of
ZnO-G nanocomposite.
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3.2. Acetone Sensing Properties

The responses of the sensors using pure ZnO and ZnO-G to 100 ppm acetone were measured at
various temperatures in order to find the optimum operating temperature. As shown in Figure 6, the
maximum response of the sensor based on pure ZnO was at 300 ◦C. Comparatively, the sensitivity of
the ZnO-G sensor reached 13.3 at 280 ◦C. The response increases with increasing operating temperature
up to 280 ◦C, since sufficient thermal energy is essential to overcome the activation energy barrier of
chemisorption and surface reaction. Beyond 280 ◦C, the sensor sensitivity decreases, which may be
due to the fact that the amount of adsorbed gas on the surface of the material has decreased, while the
desorption process becomes dominant with increasing operating temperature, leading to a reduction
in sensitivity. When the desorption rate of the gas becomes equal to that of adsorption, the maximum
loading of chemisorbed ions is reached at the optimum temperature, accelerating the oxidation of
acetone molecules and resulting in the highest sensitivity [31]. ZnO-G sensor exhibits relatively higher
sensitivity and lower optimum sensing temperature than that of pure ZnO.
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Figure 7 shows the response of the sensors based on ZnO and ZnO-G to acetone in the range of
10–10,000 ppm at 280 ◦C. The response of both sensors to acetone increases rapidly with the increasing
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of gas concentration below 5000 ppm, and increases slowly above 10,000 ppm. This indicates that its
adsorption tends to saturation, and the upper concentration limit for acetone detection is 5000 ppm.
Notably, the ZnO-G shows higher sensitivity to acetone in the entire range of detected concentration
compared to ZnO, which indicates that the sensor is very suitable for the detection of acetone in a
wide range of concentrations. This unsaturation phenomenon to relatively high acetone concentration
(<5000 ppm) may result from the high surface area of ZnO-G, providing abundant surface active sites
and absorbing a large amount of target gas molecules.

Sensors 2016, 16, 1876 6 of 10 

 

Notably, the ZnO-G shows higher sensitivity to acetone in the entire range of detected concentration 
compared to ZnO, which indicates that the sensor is very suitable for the detection of acetone in a 
wide range of concentrations. This unsaturation phenomenon to relatively high acetone 
concentration (<5000 ppm) may result from the high surface area of ZnO-G, providing abundant 
surface active sites and absorbing a large amount of target gas molecules. 

 
Figure 7. The responses of ZnO and ZnO-G sensors to different concentrations of acetone. The inset: 
the responses to acetone in the range of 10–100 ppm at 280 °C. 

It is well known that the response and recovery characteristics are important for evaluating the 
performance of gas sensors. To investigate the response and recovery behaviors of ZnO and ZnO-G, 
the sensor was sequentially exposed to 10, 20, 50 and 100 ppm acetone at 280 °C. As seen in Figure 8, 
compared to ZnO, ZnO-G exhibits faster response and recovery behaviors to acetone. The response of 
ZnO-G is about 2.80, 5.20, 9.79 and 13.30, while that of ZnO is 1.40, 3.90, 5.65 and 7.72 to 10, 20, 50 and 100 
ppm acetone, respectively (Figure 8a). To compare the response and recovery behaviors of ZnO and 
ZnO-G, an enlarged image of the gas sensing process to 10 ppm acetone is shown (Figure 8b). The 
response and recovery times of ZnO-G are about 1 and 2 s, and are 16 s and 22 s for ZnO, indicating 
the faster response and recovery behaviours of ZnO. The excellent response and recovery behavior 
can be explained by the high electron mobility of ZnO-G sensors.  

 
Figure 8. (a) Dynamic acetone sensing transients curve of the ZnO (black line) and ZnO-G (red line) 
sensor to 10–100 ppm acetone gases at 280 °C; (b) An enlarged image of the selected area of  
Figure 8a. 

Figure 9 shows the response of ZnO and ZnO-G sensors at 280 °C to 100 ppm of various 
interference vapours. The responses of the ZnO sensor to CHCl3, C4H10, NO, H2, CO and NH3 are 4.86, 
1.25, 1.52, 1.60, 2.05 and 1.26, respectively, and for ZnO-G are 6.75, 1.08, 2.40, 1.96, 2.98 and 1.39, 
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the responses to acetone in the range of 10–100 ppm at 280 ◦C.

It is well known that the response and recovery characteristics are important for evaluating the
performance of gas sensors. To investigate the response and recovery behaviors of ZnO and ZnO-G,
the sensor was sequentially exposed to 10, 20, 50 and 100 ppm acetone at 280 ◦C. As seen in Figure 8,
compared to ZnO, ZnO-G exhibits faster response and recovery behaviors to acetone. The response
of ZnO-G is about 2.80, 5.20, 9.79 and 13.30, while that of ZnO is 1.40, 3.90, 5.65 and 7.72 to 10, 20, 50
and 100 ppm acetone, respectively (Figure 8a). To compare the response and recovery behaviors of
ZnO and ZnO-G, an enlarged image of the gas sensing process to 10 ppm acetone is shown (Figure 8b).
The response and recovery times of ZnO-G are about 1 and 2 s, and are 16 s and 22 s for ZnO, indicating
the faster response and recovery behaviours of ZnO. The excellent response and recovery behavior can
be explained by the high electron mobility of ZnO-G sensors.
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Figure 9 shows the response of ZnO and ZnO-G sensors at 280 ◦C to 100 ppm of various
interference vapours. The responses of the ZnO sensor to CHCl3, C4H10, NO, H2, CO and NH3

are 4.86, 1.25, 1.52, 1.60, 2.05 and 1.26, respectively, and for ZnO-G are 6.75, 1.08, 2.40, 1.96, 2.98 and
1.39, indicating that graphene doping enhanced the selectivity of the ZnO-G sensor compared to the
ZnO sensor.
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Further tests for the reproducibility of the sensor based on ZnO-G is illustrated in Figure 10.
It is revealed that the sensor maintains its initial response amplitude without a clear decrease upon
three successive sensing tests to 100 ppm of acetone, albeit the swift response and recovery process,
indicating that the sensor has an outstanding stability throughout the cycle test.
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4. Discussion

According to literature [32,33], the most probable explanation for such behavior could be as
follows. The response of metal-oxide semiconductor sensors is mainly determined by the interaction
of a target vapor and the surface of the metal-oxide material. The following reactions may occur
in the surface reaction (Figure 11a) [34]. When acetone vapor (CH3COCH3) reacts with oxygen
species (O−) on the surface of a metal-oxide material, it is oxidized to carbon dioxide and water.
This liberates free electrons in the ZnO conduction band, leading to a decrease in the resistance of an
n-type semiconductor. Two reasons may account for the better performance exhibited by the ZnO-G
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compared to pure ZnO sensors. Firstly, due to the high specific surface area (2600 m2/g [35]) of
graphene, mixing graphene could increase the amount of surface active sites for the adsorption of
target gas, which contribute to the improvement of sensitivity and detection of acetone in a wide
range. Secondly, the introduction of ZnO-G could improve the electron-transfer rate due to the high
electron mobility of graphene and the increase in the surface area of the sensing materials due to the
two-dimensional structure. With the high charge carrier mobility, graphene provides direct conduction
paths for carriers to transport from the junction to the external electrode. I–V curves indicate that
the incorporation of graphene films into the ZnO particles significantly optimizes the material’s
conductivity (Figure 11b). For the ZnO-G sample, a relatively larger current (on the order of µA) passes
through the film. The calculated resistivity of the ZnO sample is higher than that of the ZnO-G sample.
Therefore, the electrical signals link closely and propagate rapidly, which accelerate the response and
recovery process of the ZnO-G based sensor.
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5. Conclusions

This paper describes a simple liquid phase separation method for the fabrication of exfoliated
graphene and a wet chemical synthesis route for ZnO-G composites. The effects of graphene doping on
the acetone sensing properties of ZnO-G have been investigated. Evaluation of gas-sensing properties
revealed that the sensor based on ZnO-G exhibits more outstanding selectivity, higher response, and
faster recovery behaviour toward acetone in contrast to those based on pure ZnO. A response of 13.3
to 100 ppm acetone is obtained at 280 ◦C. Our results indicate that graphene can significantly improve
the acetone sensing properties of ZnO, which has excellent potential applications in gas sensors.
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