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Abstract: Ultra-wideband (UWB) radar has been widely used for detecting human physiological
signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its
high penetrability and range resolution. In these applications, especially in rescue after disaster
(earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims
to be detected and rescued are the key issues of concern. Ample research has been done on the
first issue, whereas the identification and localization of multi-targets remains a challenge. False
positive and negative identification results are two common problems associated with the detection of
multiple stationary human targets. This is mainly because the energy of the signal reflected from the
target close to the receiving antenna is considerably stronger than those of the targets at further range,
often leading to missing or false recognition if the identification method is based on the energy of the
respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that
is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this
method is confirmed through experiments using different scenarios; the results indicate a discernible
improvement in the detection precision and identification of the multiple stationary targets.

Keywords: ultra-wideband radar; false positive and negative identification; multiple stationary
human targets; energy detection; cross-correlation

1. Introduction

Ultra-wideband (UWB) radar is a special type of radar that is widely used for the detection and
localization of people in critical situations and environments [1,2]. Owing to its good penetration
ability and high spatial resolution, it can detect vital signs like breath, heartbeat, and movement,
contactless through common materials (e.g., cloth, walls, rubble, and non-metallic obstacles) [3–6].
Hence, UWB radar is used for various applications such as detecting living persons trapped beneath
the ruins after an earthquake, identifying the indoor distribution of people before hostage rescue
in counter terrorism, and monitoring critical patients’ breath and heartbeat particularly, those for
whom wiring electrodes, sensors, etc., are unsuitable [7–9]. The UWB radar which is mainly used for
detecting breath, heartbeat and other biological signals is generally referred to as bio-radar. Owing to
its prospective and desirable advantages, the bio-radar has been the focus of several research groups
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who have proposed new algorithms and prototypes for detecting respiration and for locating the
position of the target precisely [10–12].

In the field of human detection via bio-radar, the number and location of the targets are the critical
issues of concern that are yet to be fully resolved. Some research aims at tracking moving human
targets behind the wall by extracting the doppler feature [13,14]. Owing to micro-Doppler effect,
changes in the properties of the echo signal reflected from the moving target is more than that reflected
from stationary one. The only body variations of stationary target are caused by the respiratory motion
and heartbeat. Because the heart motion is so weaker than respiratory motion that the detection of
heart motion is of less importance. The expansion and contraction of the chest cavity creates a visible
change in the range profile because the reflected fraction of the energy of the electromagnetic waves
incident on dry skin is approximately 72%, denoting the coefficient of reflectivity of the air-to-dry
skin interface for electromagnetic waves in the 300–900 MHz range [10]. Hence, respiratory motion
is used for detecting human targets [15]. Conventional methods of life detection are based on the
energy detection of the respiration response [16–19]. However, these methods include certain problems
that need to be resolved. It is difficult to identify human targets by the energy of the respiration
response, when the signal-to-noise-and-clutter ratio (SNCR) is low as a result of the low reflectivity of
the human body and the strong backscattered responses from the obstacles in the rubble [16]. Next,
when multiple stationary human targets exist in the detection area, the respiration energy of the closer
target is considerably stronger than that of the farther target, rendering the detection of the farther
target difficult. This is mainly attributed to two factors. First, the energy of electromagnetic waves
decreases with the increasing of the distance; hence, the energy of the electromagnetic waves reaching
the farther target is inevitably subtler than those reaching the closer target [20]. Further, a shadow
effect occurs when a farther target is located in the shadow, defined as the absence of radar illumination
owing to presence of a closer target within the illuminating radar beam [21]. The shadow behind the
target is caused by the reflection or absorption of the emitted radar waves by the target. It creates
an area, wherein, there is a high attenuation of the electromagnetic wave energy behind a human
target [22], rendering the other targets located in this area undetectable. In conclusion, the traditional
life detection method based on the energy of the respiratory response is only suitable for a high SNCR,
and the problems with the false negatives and positives are particularly significant when detecting
multiple stationary human targets. To solve this problem, a novel target detection and identification
method that does not rely on the energy of the respiratory response has been examined.

As previously known, the respiration signals in a radar echo have the following characteristics [23]:
(i) The geometrical changes in the chest during breathing are considerably smaller than the range
resolution of a convention radar; therefore, the response from the breathing target is displayed at
different phases of the respiratory motion. (ii) The distance between the radar and the target does
not change during detection regardless of body movement, i.e., the breathing always appears at
constant moment in the propagation time. (iii) Breathing appears in several neighboring cells for the
reasons that physical size of human body is not ignorable and the tailing effect exists. In conclusion,
if breathing appears at a certain moment in the propagation time, an area with a high correlation turns
up where the breathing appears. This correlation is closely related to the periodicity of breathing
instead of its energy. Even if noise or clutter exists at the same frequency as that of the breathing,
they are more likely to be random and independent, and correlation areas do not appear after them.
Cross-correlation is a standard method of estimating the degree of correlation between two series.
Some studies have reported the application of cross-correlation for human detection [24,25]. In [24],
two identical microwave systems are applied to receive echoes simultaneously and the results after
a cross-correlation analysis between the signals from the two receivers show that the noises are
suppressed, whereas, the energies of the vital signs of life are accumulated because the signals are
correlated and the noises are uncorrelated. The signal-to-noise ratio is improved. In [25], based on
the assumption that the respiration of a target detected from different channels are highly correlated,
and the correlation between the respiration of different targets and the noises are low among the
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channels, a correlation analysis is used to restrain the noises and distinguish the human targets. All the
above correlation processing has been done between the radar echoes from different channels; however,
correlation analysis between signals from a single channel have not yet been reported. A novel target
detection and identification method is proposed in this paper, mainly based on the property that there
is a high correlation area behind each target, and the count and location of the targets can be confirmed
by recognizing the correlation area. This method is applied for target detection and identification for
the first time. The problems of the false negatives and positives in a multiple stationary human target
detection scenario are resolved effectively. The performance of this new method will be proved by
experiments using different scenarios.

To solve the above described problem, a bistatic Impulse Radio(IR) UWB bio-radar system is
developed in Section 2. A pre-processing algorithm is implemented for improving the signal-to-noise
(SNR) of the echo from radar, as described in Section 3. After pre-processing, a method based on
cross-correlation is proposed for accurately identifying and locating different targets in Section 4.
Finally, the experimental results for different scenarios are presented and discussed in Section 5,
and the paper is concluded in Section 6.

2. Bio-Radar System

The bio-radar setup is shown in Figure 1. Bow-tie dipole antennas, commonly referred to as the
transmitter antenna and the receiver antenna, stuck on the wall using Velcro are employed for the
transmission and reception of the electromagnetic waves. Pulses generated by a pulse generator with a
pulse-repetition frequency (PRF) of 128 kHz are sent to the transmitter antenna for exciting the bow-tie
dipole antenna. The echo pulses are received by the receiver antenna with a center frequency and
bandwidth of 500 MHz each. Further, the echo pulses are input to a sampler and sampled at selective
ranges according to range gate generated by a delay circuit and a range gate generator. Note that the
transmitted pulses and the delay are produced by the same oscillator.
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The echo signals are then stored in the form of waveforms after amplification and integration
by a signal processor. A data matrix HM × N is generated, where M denotes the sampling point in
propagation time and N denotes the sampling point in observation time. The waveforms contain
M = 2048 sample points and the recorded profile is τmax = 60 ns long. The time-axis along each
received waveform is termed as the “fast-time” and denoted by τ that is in the order of nanoseconds
and on behave of range information. In practice, this time window is adjustable according to detection
range of the radar. The time interval between each successive received waveform is Ts = 7.8× 10−6 s.
The time-axis along the interval is termed as the “slow-time” and is denoted by t that is in the order
of seconds and on behave of time information. The commonly used monitoring time is T = 60 s
and the sampling frequency in the slow-time is Fs = 64 Hz, which is greater than the Nyquist
sampling rate for the respiration and heart signals, so the number of recorded waveform in slow-time is
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N = T× Fs = 3840. With the 500 MHz center frequency and 500 MHz band width, the range resolution
of the system depends on waveform sample points, recorded profile, and signal-to-noise-and-clutter
ratio (SNCR). When the waveform sample point M is selected as 2048, and the recorded profile τmax

is set as 60 ns (9 m in detect range), the theoretical range resolution will be up to 9/2048 = 4.4 mm.
Consider the noise and clutter, generally, the range resolution can achieve centimeter magnitude which
precise enough to detect the subtle motion of the human chest caused by respiration.Accordingly, the
sampling frequency in the slow-time is Fs =

1
Ts

= 64 Hz which is greater than the Nyquist sampling
rate for the respiration and heart signals. These values are stored in a matrix. The received waveforms
are measured at discrete time during the slow time, and the discrete-time sequences are sampled
during every sampling period in the fast time.

3. Signal Pre-Processing and Analysis

The targets detected in our experiments are generally stationary and are located behind an
obstruction such as a wall, and respiration is the primary information sensed by the bio-radar.
Therefore, the algorithms described below mainly focus on the detection of the respiration. They can be
divided into six steps: (i) The raw data, HM × N , is large in volume and time-consuming for a real-time
operation; hence, it is sampled and accumulated along the fast-time dimension to shorten the length of
the data. Generally, the raw data HM × N are compressed into H200×N . (ii) The respiration frequency
information is always accompanied by background clutter, comprising a multipath corresponding
to the stationary scatterers in the surrounding; the method that has been employed to eliminate the
background clutter involves the subtraction of the average of all the waveforms from each waveform,
working as a “motion-filter” that separates the motional scatterers from the stationary scatterers.
For the matrix H200×N , the mathematical expression of motion-filter is T(m, n) = H(m, n) −
1
N

N
∑

i=1
H(m, i). (iii) As the respiration signal is a low frequency narrowband signal, a finite impulse

response (FIR) filter is adopted along the slow-time dimension to suppress the high frequency noise.
(iv) The energy of each waveform averaged over t is computed and the results show that the energy at
the target location is larger than those at the other locations. Owing to the trailing effect, the energies
of the areas behind the target are also large to a certain extent; this will pose a problem if the targets are
located close to each other and a method of adaptive cancellation is applied to attenuate the trailing
interferences between the targets [26]. After the above processing, a new matrix, P200×N , is obtained
that can also be expressed as follows: P = (p1, p2 · · · p200), where pi denotes the row vector along the
slow-time dimension and i is the index in the fast-time dimension. (v) After accumulating the filtered
waveforms along the slow-time, the two-dimensional data including the range and time information
is compressed into a one-dimensional range profile and the energy estimation of the bio-radar data
has been obtained, indexing the fast-time bin indices. (vi) As the magnitude of the energy of the
respiration components in the bio-radar echo signal obtained using the previous steps is significant,
the target range needs to be located relying on distinguishing these maximum values in the energy
estimation. As described earlier, a farther target could not be detected in a multiple stationary human
target detection scenario owing to the shadowing effect.

As shown in Figure 2a, the farther target, B, is located in the shadowing area caused by the closer
target, A. In Figure 2b, as the energy of the reflected signal from B is considerably weaker than the
energy of the reflected signal from A, target B cannot be detected based on the energy detection of the
respiratory response. To solve this problem, a new target identification method is proposed in this
paper that does not rely on the energy of the reflected signal.
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Figure 2. (a) scenario with two targets A and B; and (b) energy of the data received from the scenario.

4. Cross-Correlation Analysis

As mentioned previously, breathing appears in several neighboring cells that have a high
correlation with each other in the radar response. The width of the correlation area depends on
the length of the impulse response of the antennas, the delay spread of the propagation path (rubble),
physical size of the body which is moved during the respiration activity, position of body and ruble
type, thickness and structure. For the single target in Figure 3a, there is a very obvious correlation area
in the target location in Figure 3b. In Figure 3c, it can be seen that the signal has a peak energy exactly
at the target location. The correlation coefficients between the signal with the peak energy and the
remaining signals is shown in Figure 3d; the correlations between the signal with the peak energy
and the signals in the correlation area are considerably larger than those of the others. In addition,
the correlation between the target signal and the signals behind the target is high.
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pi and pj denote the two received waveforms along the slow-time dimension, respectively. i and j
are the indices in the fast time. and can be represented as:

pi = si + ni (1)

pj = sj + nj (2)

si and sj are the target signals owing to the respiration; ni and nj are the zero mean additive white
Gaussian noises. Calculating the cross-correlation between pi and pj,

Rpi pj = E
[
pi pj

]
= E

[
(si + ni)

(
sj + nj

)]
= E

[
sisj
]
+ E

[
sinj
]
+ E

[
nisj
]
+ E

[
ninj

] (3)

As the signals are correlated and the noises are uncorrelated, we know that:

E
[
sinj
]
= E

[
nisj
]
= E

[
ninj

]
= 0 (i 6= j) (4)

Finally, we can deduce Rpi pj = E
[
sisj
]
, indicating that the degree by which pi and pj are correlated

depends largely on the correlation between si and sj. If si and sj arise from a single target, Rpi pj is large;
hence, it can be deduced that Rpi pj is generally large in the correlation area for the same origination.
To quantify the correlation between pi and pj, the correlation coefficient is calculated as follows:

R′pi pj =

∣∣∣∣∣∣ ∑N
t=1 (pi (t)− pi)×

(
pj (t)− pj

)√
∑N

t=1 (pi (t)− pi)
2
√

∑N
t=1
(

pj (t)− pj
)2

∣∣∣∣∣∣ (5)

R′pi pj takes an absolute value because we focus on the strength of the correlation rather than on a
positive or negative correlation. The correlation coefficients are computed between each row vector
and the remaining row vectors in the matrix, P and the results are placed in a matrix, V, called the
correlation coefficient matrix:

V (i, j) = R′pi pj (6)

Thus, the correlation between every two of the received waveforms in P is determined quantitatively.
The matrix, V, has two characteristics:

V1 1 V1 2 · · · V1 200

V2 1 V2 2 · · · V2 200
...

...
. . .

...
V200 1 V200 2 · · · V200 200

(7)

(1) It is a symmetric matrix, i.e.,
Vi j = Vj i (i j ∈ 1 · · · 200) (8)

(2) The elements of the main diagonal in matrix, V, are all unity, i.e.,

Vi j = 1 if i = j (9)

Considering the single target in Figure 3a as an example, Figure 4a is its correlation coefficient
matrix because the correlation coefficients in the correlation area are relatively large and the matrix
is symmetrical. The area wherein the target is present mainly appears in the form of a red square
along the diagonal line; as mentioned earlier, the signals are correlated and the noises are uncorrelated,
and we know that the correlation coefficient in the region of interest where target is located is larger
than those without a target nearby. If the area with the high correlation coefficients is recognized,
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the target identification problem can be resolved. In Figure 4a, we need to identify the red square
along the diagonal line.
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Two parameters are set to quantify the above requirement. The first is the width, W, of the region
of interest because we will focus only on the given correlation area behind the target location, and the
elements in the correlation coefficient matrix that are beyond the scope of the region of interest will be
set to zero. Therefore, it is equivalent to slide a cross-section of a square with a side length, W, from
one end to the other along the diagonal line, V; this is the cross-area that is intended to be reserved.
Following this step, a new correlation coefficient matrix, J, is obtained as follows:

W
200

=
T
D
⇒W =

⌊
200× T

D

⌋
(10)

Ji j =

{
Vi j |i− j|≤W

0 |i− j|> W
(11)

T is the approximate thoracic thickness of a normal adult, generally, T = 0.24 m; D is the time window
width. The second is the threshold that is employed for distinguishing a high correlation from a low
correlation. The threshold is set mainly based on experience; in the actual experiment, as the elements
of the main diagonal in the correlation coefficient matrix are all unity, representing the coefficients of
autocorrelation, they should not be considered. The procedure is as follows:

Ki j =

{
Ji j Ji j ≥ 0.75
0 Ji j < 0.75∪ i = j

(12)

As shown in Figure 4b, the elements in the correlation coefficient matrix that are not less than 0.75
in the correlation area are reserved. Except for those along the diagonal line, what remains is what we
are interested in.

Another problem that is to be addressed is that the region of interest is generally disconnected
from the image recognition. A method that is similar to the dilatation algorithm is adopted during
image processing to solve this problem. The all unity matrix, A4 × 4, is defined to traverse the matrix,
K, as follows:

Fx y =
1
G

x+3

∑
i=x

y+3

∑
j=y

Ki j (1 ≤ x ≤ 197, 1 ≤ y ≤ 197) (13)

G is the number of elements that are greater than or equal to 0.75 in the set, Z:

Z =
{

Ki j
∣∣x ≤ i ≤ x + 3, y ≤ j ≤ y + 3

}
(14)
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In the final cut-through image shown in Figure 4c, the target located 4 m away from radar can be
easily observed.

5. Experimental Results

This section presents the experimental results for the following three scenarios: no target,
two targets, and three targets. A 24 cm thick brick wall is present in all these scenarios. We mainly
focus on reducing the chances of false positives or false negatives that are common problems in
target detection.

In the first scenario, although there is no target in the detection area, as shown in Figure 5a,
Figure 5b shows that the energy at the location situated 5 m from the radar is obviously greater than
the other locations. The previous method of target identification based on the energy detection of the
respiratory response is likely to result in a wrong judgment, i.e., the noise or clutter may be mistakenly
considered a target. In Figure 5c that displays the correlation coefficients between the waveform at the
5 m location and the waveforms at other locations, we can find that the correlations are low, despite the
fact that the strongest energy is present at the 5 m location. It appears to be random and independent
as a correlation area does not exist at the 5 m location. Therefore, it is noise rather than breathing.
Figure 5d shows the final result of our processing based on the cross-correlation, indicating that there is
no target in the detection area because no red squares appear along the diagonal line of the correlation
coefficient matrix; hence, false positives do not occur in our end result.
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As mentioned previously in Figure 2b, as the energy of target B is considerably subtle compared
to target A, target B cannot be detected. This mainly because target B is located in the shadowing
area caused by target A. In Figure 6a,b, we can find only one target, situated 3 m away from the
radar, and the farther target at 6 m cannot be detected. The previous method based on the energy
detection of the respiratory response produces an incorrect result with a false negative. In Figure 6c,
the correlation coefficient matrix, we can find that the correlation coefficients of the region at 6 m are
also large, although their correlation is smaller than those at the 3 m location. In the final result is
shown in Figure 6d, there is an another obvious target at the 6 m location, besides the one at the 3 m
location; therefore, the problem of the false negative is resolved.
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An experiment for detecting three targets was also performed. The distribution of targets A, B,
and C is represented in Figure 7.

There is only one obvious correlation area in Figure 8a; according to its energy characteristics in
Figure 8b, the energy of target A at the 3 m location is considerably stronger than that of target B at
the 4 m location and target C at the 6 m location. This is mainly because target A is facing the radar
and is the closest. Though there is peak energy at the 4 m location also, it may be caused by target
A owing to the trailing effect; whether it is a human target needs to be confirmed. In the correlation
coefficient matrix shown in Figure 8c, we can roughly determine three targets located at 3 m, 4 m,
and 6 m separately. In the final result is shown in Figure 8d, the locations of targets A, B, and C are
immediately clear.
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The above-mentioned experiments have been performed for three scenarios: no target, two targets,
and three targets. The problem of the false positives and negatives encountered previously is well
resolved based on the cross-correlation method. This is mainly because this method does not rely on
the strength of the target energy. The farther targets can be identified after processing, even though
their energies are considerably subtle for detection.
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6. Conclusions

In this paper, a new target detection and identification method based on cross-correlation has
been presented for solving the problem of the false negative, when a farther target is located in the
shadowing area generated by a closer target. The previous detection method based on the energy
detection of the respiratory response could not find the farther target in this scenario because the
energy of the farther target is generally subtler by comparison. The characteristic of the correlation has
been investigated, while determining the presence of the correlation area. Based on the characteristic
found in the correlation coefficient matrix, a new algorithm was adopted for determining the final
region of interest.

Four scenario experiments have been performed, with no target, a single target, two targets,
and three targets. The single target scenario experiment was mainly used to extract the feature of
the correlation coefficient matrix that enables us to address the issue of the target identification by
searching for the high correlation region, i.e., the red square along the diagonal line of the correlation
coefficient matrix. In the other three scenario experiments, based on the cross-correlation method, the
problems of the false positives and false negatives could be solved effectively. The results indicate that
the precision of the detection and identification of multiple stationary targets has clearly improved.

Further work will focus on searching the area of interest automatically, rather than depending on
the threshold of 0.75 that was set based on experience.
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8. Nezirović, A.N. Trapped-Victim Detection in Post-Diadster Scenarios Using Ultra-Wideband Radar.
Ph.D. Theses, TU Delft, Delft, The Netherlands, 2010.

9. Jia, Y.; Kong, L.; Yang, X. A novel approach to target localization through unknown walls for through-the-wall
radar imaging. Prog. Electromagnet. Res. 2011, 119, 107–132. [CrossRef]

10. Staderini, E.M. UWB radar in medicine. IEEE AESS Syst. Mag. 2002, 17, 13–18. [CrossRef]
11. Li, C.; Cummings, J.; Lam, J.; Grave, E.; Wu, W. Radar remote monitoring of vital signs. IEEE Microw. Mag.

2009, 10, 47–56. [CrossRef]

http://dx.doi.org/10.2528/PIER09120302
http://dx.doi.org/10.2528/PIER09061004
http://dx.doi.org/10.1109/TGRS.2009.2016653
http://dx.doi.org/10.1109/TGRS.2010.2048572
http://dx.doi.org/10.1109/TGRS.2009.2030321
http://dx.doi.org/10.1002/mop.25539
http://dx.doi.org/10.2528/PIER11052402
http://dx.doi.org/10.1109/62.978359
http://dx.doi.org/10.1109/MMM.2008.930675


Sensors 2016, 16, 1793 12 of 12

12. Xu, Y.; Dai, S.; Wu, S.; Dang, Y.; Chen, J.; Fang, G. Novel detection method and parameters analysis of vital
signal for ultra-wideband radar. In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1822–1825.

13. Martone, A.; Ranney, K.; Innocenti, R. Automatic through the wall detection of moving targets using
low-frequency ultra-wideband radar. In Proceedings of the 2010 IEEE National Radar Conference, Arlington,
VA, USA, 10–14 May 2010; pp. 39–43.

14. Lubecke, V.M.; Boric-lubecke, O.; Host-Madsen, A.; Fathy, A.E. Through-the-wall radar life detection and
monitoring. In Proceedings of the 2007 IEEE/MTT-S International Microwave Symposium, Honolulu, HA,
USA, 3–8 June 2007; pp. 769–772.

15. Yarovoy, A.; Matuzas, J.; Levitas, B.; Ligthart, L. UWB radar for human being detection. IEEE Aerosp. Electron.
Syst. Mag. 2006, 21, 10–14. [CrossRef]

16. Nezirovic, A.; Yarovoy, A.G.; Ligthart, L.P. Signal processing for improved detection of trapped victims
using UWB radar. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2005–2014. [CrossRef]

17. Ossberger, G.; Buchegger, T.; Schimback, E.; Stelzer, A. Non-invasive respiratory movement detection
and monitoring of hidden humans using ultra wideband pulse radar. In Proceedings of the International
Workshop on Ultra Wideband Systems Joint with Conference on Ultrawideband Systems and Technologies,
Kyoto, Japan, 18–24 May 2004; pp. 395–399.

18. Baboli, M.; Ghorashi, S.A.; Saniei, N.; Ahmadian, A. A new wavelet based algorithm for estimating
respiratory motion rate using UWB radar. In Proceedings of the International Conference on Biomedical and
Pharmaceutical Engineering, Singapore, 2–4 December 2009.

19. Venkatesh, S.; Anderson, C.R.; Rivera, N.V.; Buehrer, R.M. Implementation and analysis of respiratory rate
estimation using impulse-based UWB. In Proceedings of the IEEE Military Communications Conference,
Atlantic City, NJ, USA, 17–20 October 2005; pp. 3314–3320.

20. Withington, P.; Fluhler, H.; Nag, S. Enhancing homeland security with advanced UWB sensors.
IEEE Microwave Mag. 2003, 3, 51–58. [CrossRef]

21. Gurbuz, S.Z.; Melvin, W.L.; Williams, D.B. Comparison of radar based human detection techniques.
In Proceedings of the 41st Asilomar Conference On Signals, System and Computer, Pacific Grove, CA,
USA, 4–7 November 2007; pp. 2199–2203.

22. Urdzik, D.; Zetik, R.; Kocur, D.; Rovnakova, J. Shadowing effect investigation for the purposes of person
detection and tracking by UWB radars. In Proceedings of the 2012 the 7th German Microwave Conference
(GeMic), IImenau, Germany, 12–14 March 2012; pp. 1–4.

23. Zaikov, E. UWB radar for detection and localization of trapped people. In Proceedings of the International
Radar Symposium, Vilnius, Lithuania, 16–18 June 2010; pp. 1–4.

24. Yan, S.; Kong, L.J.; Yang, X.B.; Zhou, Y.S. Life detection based on cross-correlation analysis. In Proceedings of
the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011; pp. 1346–1348.

25. Lv, H.; Liu, M.; Jiao, T.; Zhang, Y. Multi-target human sensing via UWB bio-radar based on multiple antennas.
In Proceedings of the TENCON 2013-2013 IEEE Region 10 Conference, Xi’an, China, 22–25 October 2013.

26. Li, Y.; Jing, X.; Lv, H.; Wang, J. Analysis of characteristic of two close stationary human targets detection by
impulse radio UWB radar. Prog. Electromagnet. Res. 2012, 126, 429–447. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MAES.2006.1624185
http://dx.doi.org/10.1109/TGRS.2009.2036840
http://dx.doi.org/10.1109/MMW.2003.1237477
http://dx.doi.org/10.2528/PIER12011908
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Bio-Radar System 
	Signal Pre-Processing and Analysis 
	Cross-Correlation Analysis 
	Experimental Results 
	Conclusions 

