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Abstract: A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably
influenced by ambient temperature. The effect of temperature should be eliminated during the
working period in expectation of linear output. To deal with this issue, an approach consists of
a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion
algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid
kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel
as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions
motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector
Machine. The temperature data from a calibration experiment is conducted to validate the proposed
method. With attention on algorithm robustness and engineering applications, the compensation
result shows the proposed scheme outperforms other compared methods on several performance
measures as maximum absolute relative error, minimum absolute relative error mean and variance of
the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach
lays a foundation for more extensive research.

Keywords: piezoresistive pressure sensor; temperature compensation; hybrid kernel LSSVM; chaotic
ions motion algorithm

1. Introduction

Due to some unsatisfied aspects in manufacturing processes, such as the inconsistent doping
concentration, mismatched thermal expansion coefficient among packaging materials, and electronics
performance being sensitive to the mutation of the ambient temperature, monocrystalline silicon
piezo-resistive pressure sensors suffer from nonlinear input–output characteristics as ambient
temperature changes [1].

In order to eliminate the crucial disturbance by temperature, a number of techniques were
presented. Among all methodologies, there are two dominant ways: hardware compensation from
measuring principle viewpoint and software compensation from algorithm viewpoint. The hardware
compensation regularizes circuit structure to approach the ideal input–output characteristics [2–4].
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The limitations of debugging difficulty in the actual manufacturing process, increased cost, and
limited compensation precision restrict the utilization of hardware compensation. The temperature
compensation, in a certain sense, is a function approximation problem. The software compensation,
in the context of which is mainly composed of conventional mathematical computation and artificial
intelligence. The conventional software compensation methods of look-up table, spline interpolation
and surface fitting are based on function fitting and interpolation [5–8]. The methods derived from
artificial intelligence include neural networks [9–12] and support vector machines [13–15]. Although
the conventional methods have a lower degree of difficulty when implemented in sensor circuits,
they may encounter some trouble, which would arise from data collection cost with the increasing
requirement of compensation precision or ill-conditioning problems in solving normal equations.
Generally, the neural networks are based on an empirical risk minimum (ERM) principle and deepest
gradient descent iteration, which may result in some defects such as dimension curse, local minimum,
under-fitting or over-fitting, requirement of an amount of training set data, etc. Vapnik [16] invented
a brand new machine learning theory known as support vector machines (SVM), which control the
model complexity by the Vapnik-Chevernenkis (VC) dimension. SVM mainly aims at resolving
classification and function approximation problems with relatively small samples. The structural risk
minimum (SRM) principle of SVM that considers both ERM and confidence intervals has more decent
learning and generalization ability than neural networks. To simplify and accelerate the solving process
of SVM, Suykens [17] introduced the least squares support vector machine (LSSVM), which converts
the inequality constraints in traditional SVM to linear equations in the framework of the regularization
theory. Although the LSSVM can perform regression with quite high precision, the kernel function and
hyper-parameters of it decide the actual outcomes. Consequently, a convex combination of different
valid kernels and a chaotic ions motion algorithm are put forward to identify a proper kernel function
and to customize the best hyper-parameters for LSSVM.

2. Temperature Effect on Piezoresistive Pressure Sensor

The operating principle of a piezoresistive pressure sensor is based on a piezoresistive effect that
converts physical pressure signal to electrical signal. The packaging of the piezoresistive pressure
sensor used in this article is shown in Figure 1. Generally, a symmetrical Wheatstone bridge consisting
of four resistances (R1 = R2 = R3 = R4 = R) is the configuration of the piezoresistive pressure sensor,
which is illustrated in Figure 2.

By analyzing the Wheatstone bridge in Figure 2, the output voltage can be expressed as in the
following [18]:

Uoutput = I f × ∆R = I f Rπσ, (1)

where I f is a constant current supplied by a steady current source, R is the value of resistance in each
bridge arm, π is the piezoresistive coefficient of silicon, and σ is the stress applied on the sensor.
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Ideally, Uoutput is linearly proportional to σ if R and π are both constants. Nevertheless,
the ambient temperature has a significant influence, namely the temperature effect, on R and π in
reality. The bridge arm resistance and the piezoresistive coefficient are denoted as in the following [19]:

R = R0 (1 + α∆T), (2)

π = π0 (1 + β∆T), (3)

where R0 and π0 are the resistance value and piezoresistive coefficient at room temperature, α and β

are temperature coefficients of R and π, and ∆T is the ambient temperature variation. An additional
stress will be generated between the support beam and substrate of the sensor when the ambient
temperature varies. The additional stress quantity can be represented as [20]:

∆σ =

(
αs − αg

)
E0∆T

1 + µ
, (4)

where αs and αg are the thermal expansion coefficients of silicon and glass, respectively, and E0

is the temperature coefficient of silicon at Kelvin temperature. Substituting Equations (2)–(4) into
Equation (1), it should take an offset item θ, which depicts the error among every bridge arm resistance
in fabrication process, and then the complete expression can be calculated as in the following:

Uoutput = I f R0π0 [1 + (α + β + αβ∆T)∆T]
[

σ +
αs − αgE0∆T

1 + µ
+ θ

]
. (5)

According to the above analysis, the output voltage is not linearly scaled with the ambient
temperature change. Additionally, some unavoidable reasons such as the asynchronously performance
change of electronics with ambient temperature mutation and the different doping concentration
in forming the bridge arm resistance, which directly determines α and β, also make the nonlinear
relationship between Uoutput and ∆T more complicated.

3. Hybrid Kernel LSSVM

3.1. LSSVM

Assuming a sample as (x1, y1), (xi, yi), (xm, ym) ∈ Rn × R (xi is input, yi is output) and these
data pairs are all generated from an independent and identical distribution. According to the Cover
theorem, inputs from a nonlinear separable space become more separable by mapping them into
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a higher dimensional space. LSSVM implements the work with a kernel trick as well as SVM, and the
discriminant function can be depicted as in the following [21]:

F =
{

f
∣∣∣ f (x) = ωT ·ϕ (x) + b, ω ∈ Rn

}
, (6)

where ω is a weight vector in hyperplane space, b is the bias and ϕ (x) is the kernel function that
satisfies the Mercer condition.

The regression problem in Equation (6) can be equally described as a convex optimization by
adding a regularization item:

min 1
2 ωTω + 1

2 C
n
∑

i=1
e2

i

s.t. yi = ωT ·ϕ (x) + b + ei, i = 1, 2, · · · , n.
(7)

Then, constructing a Lagrange function:

L (ω, b, ei, α) =
1
2

ωTω +
1
2

C ∑n
i=1 e2

i −∑n
i=1 αi(ω

T ·ϕ (x) + b + ei − yi). (8)

According to the Karush-Kuhn-Tucker (KKT) conditions, taking the derivative with respect of all
variables of the Lagrange function:

∂L
∂ω

= 0,
∂L
∂b

= 0,
∂L
∂ei

= 0,
∂L
∂αi

= 0. (9)

The results are represented as follows:

ω =
n
∑

i=1
αi ϕ (xi) ,−

n
∑

i=1
αi = 0,

αi = Cei, ωT ·ϕ (x) + b + ei − yi = 0.
(10)

From the vector calculation perspective, Equation (10) can be translated in a form of a system of
linear equations as: ∣∣∣∣∣ 0 I

I Ω + γ−1 I

∣∣∣∣∣ ·
∣∣∣∣∣ b

α

∣∣∣∣∣ =
∣∣∣∣∣ 0

y

∣∣∣∣∣, (11)

where I is a column vector with each element of it equals to one, and Ω is an n × n matrix constructed
by kernel mapping and data point:

Ωij = ϕ (xi)
T ϕ
(

xj
)
= K

(
xi, xj

)
, (i, j = 1, 2, · · · , n). (12)

Because A = Ω + γ−1 I is a symmetric positive definite matrix, the solution of Equation (12) can be
denoted as:

b =
ET A−1y
ET A−1E

, α = A−1 (y− bE) . (13)

Finally, the regression model of LSSVM is:

f (x) =
n

∑
i=1

αiK (x, xi) + b. (14)

3.2. Hybrid Kernel Function

Since the kernel function is one of the critical factors that contributes to approximation capability,
a reasonable choice of kernel function is necessary. Actually, existing useful kernel functions that meet
the Mercer kernel condition, namely admissible kernels, have various properties that differ from each
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other. Nevertheless, a majority of kernel functions belong to two types, namely local kernel function
and global kernel function. Local kernel function is of desirable learning ability for it merely affects
data points in the neighborhood of the test points. A typical local kernel function is the Radial Basis
Function (RBF) kernel, which is defined as:

KRBF = exp

(
−||x− xi||2

2σ2

)
, (15)

where the width σ is the only kernel parameter.
All test points in a global kernel function act as key points to determine the data points, and this

property is devoted to excellent generalization ability in the context of LSSVM. The polynomial kernel
function, a typical global kernel function, is defined as:

Kpoly = (x·xi + t)p, (16)

where t and p are the kernel parameters represent the bias and power of the polynomial, respectively.
Without any loss of generality, a convex combination of a radial basis function (RBF) kernel

marked as KRBF and a polynomial kernel marked as Kpoly is an admissible kernel holds the Mercer
kernel condition as well [22], which is defined as:

Kh = λKpoly + (1− λ)KRBF, (17)

where λ is a weight coefficient locates in the interval of (0, 1).

4. Chaotic Ions Motion Algorithm

4.1. Ions Motion Algorithm

Javidy [23] proposed a kind of population-based stochastic optimization methods called ions
motion algorithm that achieves a balance between the confliction of diversification and intensification
in the searching of optimal solution. Ions motion algorithm is inspired by the fact that ions with
similar charges tend to repel, whereas ions with opposite charges attract each other. Each ion in the
solution space stands for a candidate solution. The solution space is initialized randomly and divided
into two groups: anions and cations. The repulsion/attraction force drives all ions moving across
the solution space to find a better solution. To make the algorithm keep exploring and exploiting
the solution space continuously, two stages including liquid phase (diversification) and crystal phase
(intensification) are introduced.

The mathematical model of liquid phase is described as follows:

AFi,j =
1

1 + e−0.1/ADi,j
, (18)

CFi,j =
1

1 + e−0.1/CDi,j
, (19)

where ADi,j =
∣∣Ai,j − Cbestj

∣∣, CDi,j =
∣∣Di,j − Abestj

∣∣, i indicates the ion index, j is the jth dimension of
an individual ion, ADi,j is the distance between the ith anion and the best cation in jth dimension, CDi,j
is the distance between the ith cation and the best anion in jth dimension, and AFi,j and CFi,j denote
the attraction force of anions and cations separately. The force calculation is followed by a position
updating as follows:

Ai,j = Ai,j + AFi,j ×
(
Cbestj − Ai,j

)
, (20)

Ci,j = Ci,j + CFi,j ×
(

Abestj − Ci,j
)

, (21)

where i and j also indicates the ion index and the dimension index, respectively.
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According to Equations (18)–(21), ions in liquid phase always possess the exploring ability in the
inherent diversity in the searching space. However, the diversity is gradually decreased along with
iterations that would exactly lead the liquid phase to next phase, the crystal phase. The crystal phase
is a certain way to jump out of local optima found by the liquid phase, which is depicted as follows
(Algorithm 1):

Algorithm 1

if (CbestFit ≥ CworstFit/2 and AbestFit ≥ AworstFit/2)
if rand() > 0.5

Ai = Ai + Φ1 * (Cbest − 1)
else

Ai = Ai + Φ1 * Cbest
end
if rand() > 0.5

Ci = Ci + Φ2 * (Abest − 1)
else

Ci = Ci + Φ2 * Abest
end
if rand() < 0.05

Re - initialized Ai and Ci
end

end

The CbestFit and CworstFit are the fitness of the best and the worst cation, AbestFit and AworstFit
indicates the fitness of the best and the worst anion, φ1 and φ2 are random numbers in the interval of
[−1, 1], rand is a function that generates random numbers in [0, 1], and all random numbers used in
the position updating in crystal phase obey the uniform distribution.

4.2. Chaotic Initialization and Searching

Chaos is a nonlinear random-like deterministic bounded system, which is neither period nor
converging [24]. Moreover, a chaotic system depends on its initial parameter and condition sensitively.
The regular, random, ergodic and unpredictable essence of chaos makes it a reliable randomness
source [25]. Instead of generating random sequence from the uniform distribution, the chaotic sequence
provides a more effective searching plan for heuristic optimization algorithms [26]. The logistic map
adopted in this article to generate solution sequence is described as follows:

ci+1 = µ·ci (1− ci) , i = 1, 2, · · · , m, (22)

where µ is the control parameter, µ ∈ (2, 4], and i represents the iteration index. Suppose the initial
value c1 ∈ (0, 1) and c1 /∈ {0.25, 0.5, 0.75}, thus the chaotic behavioris ensured on the premise that
µ = 4.

The basic ideas of chaotic ions motion algorithm are described as follows:

(1) Chaotic initializationThe initialization of the ions group is one of the key points regarding whether
the convergence speed is acceptable and the final solution quality is pleased. Even though the
initial position of each ions is random in original ions motion algorithm, ions might be located far
away from the optimal ion. Chaotic initialization is for the purpose of increasing the diversity
among the population and accelerating the convergence speed.

(2) Chaotic searchingRestart with the last ion position in the latest generation and replace all other
ion positions by generating a new chaotic sequence. Continuing to generate new ion positions by
chaotic sequence rather than by probability distributions could avoid stagnation and speed the
convergence in the optimization searching process.
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4.3. Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM (CIMA-Hybrid-LSSVM)

After assigning the kernel function of LSSVM, the remaining part that determines the temperature
compensation’s performance is the hyper-parameters set of C, t, p, σ and λ. Parameter C determines
the penalty of estimation errors. A large C not only assigns more penalties to errors but also
allows higher generalization, while a small C has the opposite effect. Parameters t and p control
the polynomial kernel function smoothness and fitness with given data. Similarly, parameter σ

is responsible for the smoothness and fitness of RBF kernel function. Parameter λ weights the
contribution of each kernel of the hybrid kernel function. All parameters are set in an empirical range:
C ∈ (0.001, 10000) , t ∈ (0.01, 200) , p ∈ [1, 5] , λ ∈ (0, 1).

The details of the proposed temperature compensation are as follows:

(1) Chaotic initialization

• Chaotically distribute the seeds according to the dimension number of an ion by logistic
map within the range of (0, 1).

• Calculate the chaotic sequence with chaotic seeds until the chaotic sequence length reaches
the ions population size.

• Transform the chaotic sequence members into every parameter’s range, and take the
transforming of C as an example:

Ci = Cmin + Chaosi· (Cmax − Cmin), (23)

where i is the index of the chaotic sequence, Cmin is the lower limitation of C, and Cmax is the
upper limitation of C.

(2) Generate the initial ion population by Equation (23) and divide it randomly into an anion group
and a cation group at the same size.

(3) Evaluate each ion in liquid phase and rank them in terms of fitness. Record the best fitness
and position of anion group, cation group and the ion population. If the best fitness of the ion
population can neither satisfy the predetermined estimation precision nor reach the maximum
searching generation number, then go to Step 4.

(4) Take the last seed of the chaotic sequence generated by Step 1 and repeat the procedure as in
Step 1 to obtain a new chaotic sequence. Compute each ion fitness according to the rules stated in
crystal phase with the new chaotic sequence. The computation comes to an end as the best fitness
satisfies the predetermined estimation precision or reaches the maximum searching generation
number. If the stop criterion can not be met, then take the last ion position as the chaotic seed
and go back to Step 1.

The flowchart of the chaotic ions motion algorithm optimized hybrid kernel least squares support
vector machine (CIMA-LSSVM) is illustrated in Figure 3.
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5. Data Calibration Experiment and Result Analysis

5.1. Data Calibration

A calibration experiment was performed on a grade of 0.065% pressure sensor without
compensation [27] to provide data for modeling LSSVM. The measurement range of the pressure
sensor used in this calibration is from −40 kPa to 40 kPa, and the working temperature range is from
−20 ◦C to 70 ◦C. The measured temperature and the sensor output are converted by an analog-digital
(A/D) converter, which were marked as TAD and UAD. The standard input pressure denoted as
P is specified with a step of 5 kPa from −40 kPa to 40 kPa and exerted by a CPC6000 pressure
calibrator. Data calibration is made of eleven different temperature preservation processes at different
temperature levels of −20 ◦C, −10 ◦C, 0 ◦C, 10 ◦C, 20 ◦C, 27 ◦C, 35 ◦C, 40 ◦C, 50 ◦C, 60 ◦C and 70 ◦C.
Each temperature preservation process includes a temperature regulation process in temperature
control chamber from present temperature to specified temperature and a thermal equilibrium process
in the packaged sensor. Every temperature preservation process lasts about 3 h. One of six packaged
sensors is chosen to accomplish the temperature compensation modeling. The experiment setup is
demonstrated in Figure 4.

The calibration data obtained from the experiment is tabulated as Table 1. As shown in Figure 5,
the sensor’s output performance without compensation varies notably, since it is influenced obviously
by temperature variation. Furthermore, the maximum value of all relative errors (Err) are depicted in
Figure 6, which reaches 4.75% with respect to the sensor’s output at the benchmark temperature of
27 ◦C. The analysis consequence of calibration data, therefore, forces sensor users to develop an efficient
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temperature compensation scheme, which could alleviate and even eliminate the dramatic temperature
effect to satisfy the application requirement.
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Table 1. Data calibration.

P (Pa)

T (◦C)

−20 −10 0 10 20 27 35 40 50 60 70

TAD

46113 45715 45268 44875 44445 44066 43834 43559 43255 42833 42449

UAD

−40000 225163 229882 235926 240350 245293 249365 251904 254585 257738 261883 265502
−35000 258948 263075 268467 272361 276787 280403 282638 285002 287807 291422 294694
−30000 292891 296416 301166 304587 308434 311591 313534 315581 318035 321166 324036
−25000 326975 329900 334016 336931 340227 342921 344579 346307 348415 351061 353526
−20000 361190 363517 367004 369421 372163 374394 375763 377152 378937 381095 383158
−15000 395535 397260 400131 402004 404232 406003 407086 408178 409595 411274 412937
−10000 429974 431111 433352 434705 436398 437712 438518 439281 440352 441555 442817
−5000 464508 465059 466694 467572 468680 469525 470046 470503 471221 471962 472818

0 499132 499093 500112 500490 501053 501453 501666 501827 502188 502462 502916
5000 533794 533200 533579 533466 533475 533419 533347 533205 533214 533028 533077

10000 568569 567362 567163 566524 566019 565509 565185 564690 564373 563699 563370
15000 603351 601564 600769 599619 598591 597628 597024 596217 595555 594429 593697
20000 638130 635788 634383 632731 631170 629766 628882 627762 626757 625174 624052
25000 672932 670020 668039 665862 663787 661936 660781 659345 657996 655939 654454
30000 707712 704235 701674 699016 696402 694107 692600 690934 689248 686760 684868
35000 742451 738421 735281 732121 728999 726261 724565 722513 720489 717537 715282
40000 777129 772552 768840 765221 761560 758380 756415 754060 751701 748336 745668
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5.2. Data Preprocessing

Features in the calibration experiment have mismatched levels of magnitude, which would give
rise to difficulties in modeling and generate an undesirable result. Thus, the experiment sample should
be normalized into [−1, 1] according to the form as:

x̂i =
xi − (ximax − ximin) /2
(ximax − ximin) /2

, (24)

where xi is the ith variable of a data point, and ximax and ximin are the upper limitation and lower
limitation of ith variable, respectively. After normalizing the experiment data, a training set and
a testing set should be partitioned before modeling. From the algorithm robustness viewpoint,
a training set should be comprised of one-third of data points that are randomly selected from the
sample, and the rest of the sample should construct the corresponding testing set. In the context of
engineering, a training set may consist of all standard pressure values at several temperature levels
and rest of the sample forming the testing set. These two sample partition strategies are both discussed
in this article.
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5.3. Modeling Temperature Compensation and Result Analysis

In order to validate the effectiveness of the proposed algorithm, several methods include SVM
with RBF kernel [28], particle swarm optimization optimized RBF kernel SVM (PSO-RBF-SVM) [29],
particle swarm optimization optimized RBF kernel LSSVM (PSO-RBF-LSSVM) [30], particle swarm
optimization optimized hybrid kernel LSSVM (PSO-Hybrid-LSSVM), and ions motion algorithm
optimized hybrid kernel LSSVM (IMA-Hybrid-LSSVM) are investigated. Because optimization
techniques discussed in this article are all population-based algorithms, the hyper-parameters set
(C, t, p, σ, λ) is defined as an individual in any population. The fitness of each algorithm is the mean
squared error (MSE) of all fitting errors between the ideal pressure values and the compensated
pressure values. The parameters of each algorithm are demonstrated in Table 2. The whole coding
is implemented by developing the LS-SVMlab toolbox and libsvm toolbox on the MATLAB (2015b)
platform (The Mathworks, Inc., Natick, MA, USA) [31,32]. Each algorithm is performed on 50 runs to
avoid compensation results of chance and cross validation is adopted to prevent overfitting [33].

Table 2. Parameters setting of algorithms.

Parameters PSO [29] PSO [30] IMA

swarm size 50 50 50
maximum iteration number 30 30 30

fitness MSE MSE MSE
maximum weight 0.9 0.9
minimum weight 0.4 0.4

social factor [1, 3] 2
cognitive factor [1, 3] 2

PSO-particle swarm optimization; IMA-ions motion algorithm.

5.3.1. Random Partition of the Sample

A training set and a testing set are obtained on the basis of the random partition strategy. A typical
searching process of the best population fitness (Fitnessb) during the training period is demonstrated
in Figure 7. Some conclusions can be drawn from the observation of Figure 7; firstly, the PSO-RBF-SVM
algorithm converges faster than PSO-RBF-LSSVM, but the latter has a more desirable final best fitness
than the former. This phenomenon indicates that, even with the same kernel function and identical
optimization algorithm, the simplicity of LSSVM still provides more searching operations than SVM
within the same time limit; secondly, it can be noted that the comprehensive advantage of hybrid
kernel enables PSO-Hybrid-LSSVM to have a better final best fitness than PSO-RBF-LSSVM; thirdly,
the performance of PSO-Hybrid-LSSVM and IMA-Hybrid-LSSVM is similar to each other whether on
the convergence speed or the achieved final best fitness, this seems that any optimization algorithm
devotes almost equally to the searching ability when employed the identical kernel function and
fitting model. The randomness and the ergodic quality of the chaotic searching process guarantee the
exploring and exploiting ability in the chaotic ions motion algorithm optimized hybrid kernel LSSVM
(CIMA-Hybrid-LSSVM); thus, it can achieve the most satisfied searching performance; lastly, the best
fitness at first iteration shows that the compensation model with hybrid kernel function offers a more
elegant performance than those without it.

The validation standard of the compensation algorithm is the absolute relative error, which takes
the form of:

eir =

∣∣∣∣P′i − Pi

PFS

∣∣∣∣× 100%, (25)

where i is the standard pressure index, P′ is the compensated pressure, P is the real standard pressure,
and PFS is the full scale of the sensor.
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results over all runs. Five performance indices as minimum (min), maximum (max), mean (mean), 
variance (var) of the averaged training set errors (eir), and the mean training time during training 
period (MTT) are presented to evaluate the averaged performance of every approach, and the details 
are summarized in Table 3. As the compensation results, the first four indices of testing errors are 
summarized in Table 4. By analyzing the data in Tables 3 and 4, it can be inferred that SVM and PSO-
RBF-SVM can only provide a really limited improvement of the sensor performance; however, by 
utilizing algorithms within the framework of LSSVM, the compensation model can achieve a more 
satisfactory performance. Furthermore, optimization methods with hybrid kernel hold both good 

Figure 7. Best fitness of training set by random partition in 30 generations. (a) Best fitness obtained by
particle swarm optimization optimized RBF kernel SVM (PSO-RBF-SVM), particle swarm optimization
optimized RBF kernel LSSVM (PSO-RBF-LSSVM) and particle swarm optimization optimized hybrid
kernel LSSVM (PSO-Hybrid-LSSVM); and (b) best fitness obtained by particle swarm optimization
optimized hybrid kernel LSSVM (PSO-Hybrid-LSSVM), ions motion algorithm optimized hybrid
kernel LSSVM (IMA-Hybrid-LSSVM) and chaotic ions motion algorithm optimized hybrid kernel
LSSVM (CIMA-Hybrid-LSSVM).

Because the optimal hyper-parameters obtained on every run are different from each other,
averaged values of training set error and testing set error are considered to balance the compensation
results over all runs. Five performance indices as minimum (min), maximum (max), mean (mean),
variance (var) of the averaged training set errors (eir), and the mean training time during training
period (MTT) are presented to evaluate the averaged performance of every approach, and the details
are summarized in Table 3. As the compensation results, the first four indices of testing errors are
summarized in Table 4. By analyzing the data in Tables 3 and 4, it can be inferred that SVM and
PSO-RBF-SVM can only provide a really limited improvement of the sensor performance; however,
by utilizing algorithms within the framework of LSSVM, the compensation model can achieve a more
satisfactory performance. Furthermore, optimization methods with hybrid kernel hold both good
learning and generalization ability. The presented method takes full advantage of chaotic searching,
hybrid kernel and LSSVM framework to achieve the most desirable compensation results at the lowest
time cost.
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Table 3. Compensation results of training set by random partition.

Temperature Compensation Methods eir (min) eir (max) eir (mean) eir (variance) MTT (s)

SVM 4.814 × 10−3 5.026 × 10−3 4.973 × 10−3 2.237 × 10−9 1.499 × 10−2

PSO-RBF-SVM 5.550 × 10−4 1.334 × 10−3 9.673 × 10−4 3.385 × 10−9 2.107 × 102

PSO-RBF-LSSVM 2.199 × 10−4 3.556 × 10−4 2.703 × 10−4 1.080 × 10−9 1.200 × 10−2

PSO-Hybrid-LSSVM 2.586 × 10−4 3.588 × 10−4 3.126 × 10−4 4.996 × 10−10 1.478 × 10−2

IMA-Hybrid-LSSVM 1.593 × 10−4 2.401 × 10−4 1.933 × 10−4 3.776 × 10−10 1.418 × 10−2

CIMA-Hybrid-LSSVM 1.353 × 10−5 4.413 × 10−5 2.497 × 10−5 5.258 × 10−11 1.392 × 10−2

Table 4. Compensation results of testing set by random partition.

Temperature Compensation Methods eir (min) eir (max) eir (mean) eir (variance)

SVM 2.106 × 10−1 3.197 × 10−1 2.648 × 10−1 5.562 × 10−4

PSO-RBF-SVM 5.924 × 10−4 2.187 × 10−3 1.235 × 10−3 1.085 × 10−7

PSO-RBF-LSSVM 2.422 × 10−4 6.706 × 10−4 4.011 × 10−4 6.286 × 10−9

PSO-Hybrid-LSSVM 2.733 × 10−4 5.165 × 10−4 3.687 × 10−4 1.494 × 10−9

IMA-Hybrid-LSSVM 1.841 × 10−4 3.424 × 10−4 2.517 × 10−4 9.659 × 10−10

CIMA-Hybrid-LSSVM 1.155 × 10−4 2.559 × 10−4 1.770 × 10−4 1.104 × 10−9

5.3.2. Fixed Partition of the Sample

In order to reduce the considerable engineering calibration time cost, data at four temperature
levels including −20 ◦C, 10 ◦C, 40 ◦C and 70 ◦C are adopted as training sets in fixed partition strategy.
The parameter settings of all algorithms are the same as the random partition strategy. A typical
searching process of the best population fitness (Fitnessb) of all compensation methods during the
training period is demonstrated in Figure 8. It may be observed that the characteristics of compensation
performance among all six algorithms are similar to the analysis mentioned in random partition
strategy, but the convergence values of the best fitness are improved to a certain extent for the fixed
partition strategy may provide more topology information about the training set.

The relative errors of the fixed partitioned training set and testing set are also averaged after
50 runs. The training results are summarized in Table 5. By comparing with the data in Table 3, it can
be seen that all indices of compensation approaches in the framework of LSSVM with hybrid kernel
do not change a lot, while other compensation approaches appear to have an obvious mutation, which
proves the robustness of LSSVM. It can be also noted that the mean training time of PSO-RBF-SVM
reduces from 210.7 s to 10.71 s for the training data topology formed by fixed partition is more suitable
for PSO-RBF-SVM than by random partition.

Table 5. Compensation results of training set by fixed partition.

Temperature Compensation Methods eir (min) eir (max) eir (mean) eir (variance) MTT (s)

SVM 3.272 × 10−4 5.220 × 10−3 4.722 × 10−3 1.227 × 10−6 1.507 × 10−2

PSO-RBF-SVM 4.343 × 10−5 3.248 × 10−4 1.850 × 10−4 5.467 × 10−9 10.71 × 101

PSO-RBF-LSSVM 8.946 × 10−6 1.111 × 10−3 1.927 × 10−4 3.692 × 10−8 2.448 × 10−2

PSO-Hybrid-LSSVM 1.085 × 10−4 1.564 × 10−4 1.251 × 10−4 1.159 × 10−10 2.549 × 10−2

IMA-Hybrid-LSSVM 4.095 × 10−7 6.063 × 10−5 1.444 × 10−5 1.844 × 10−10 2.641 × 10−2

CIMA-Hybrid-LSSVM 9.921 × 10−6 6.401 × 10−5 2.029 × 10−5 1.210 × 10−10 2.568 × 10−2

The testing data compensation results are listed in Table 6. The reason for the difference between
the compensation results of two partition strategies is that random partition intrinsically acquires more
prior knowledge about the model by covering sample space more uniformly than fixed partition does.
It also confirms that the formation of the training set is critical for the modeling in comparison with
random partition strategy.
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Table 6. Compensation results of testing set by fixed partition.

Temperature Compensation Methods eir (min) eir (max) eir (mean) eir (variance)

SVM 3.414 × 10−4 5.003 × 10−1 2.647 × 10−1 2.387 × 10−2

PSO-RBF-SVM 7.647 × 10−5 1.154 × 10−3 3.290 × 10−4 6.368 × 10−8

PSO-RBF-LSSVM 1.953 × 10−5 1.338 × 10−3 3.549 × 10−4 7.548 × 10−8

PSO-Hybrid-LSSVM 1.082 × 10−4 1.074 × 10−3 3.555 × 10−4 5.374 × 10−8

IMA-Hybrid-LSSVM 1.831 × 10−6 1.038 × 10−3 3.007 × 10−4 6.565 × 10−8

CIMA-Hybrid-LSSVM 1.224 × 10−5 1.066 × 10−3 3.056 × 10−4 6.427 × 10−8
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Figure 8. Best fitness of training set by fixed partition in 30 generations. (a) Best fitness obtained by
particle swarm optimization optimized RBF kernel SVM (PSO-RBF-SVM), particle swarm optimization
optimized RBF kernel LSSVM (PSO-RBF-LSSVM) and particle swarm optimization optimized hybrid
kernel LSSVM (PSO-Hybrid-LSSVM); and (b) best fitness obtained by particle swarm optimization
optimized hybrid kernel LSSVM (PSO-Hybrid-LSSVM), ions motion algorithm optimized hybrid
kernel LSSVM (IMA-Hybrid-LSSVM) and chaotic ions motion algorithm optimized hybrid kernel
LSSVM (CIMA-Hybrid-LSSVM).

The compensation results of all averaged testing data, marked as er, are illustrated in Figure 9.
The temperature compensation errors of algorithms with hyper-parameter optimization show some
randomness, which means that these compensation approaches fit the actual input–output model
of the piezoresistive pressure sensor appropriately. The maximum compensation error occurs at
−10 ◦C, as low temperature makes the characteristics of the packaged sensor more complex. Except
for the maximum er of the presented compensation method being slightly higher than that of
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the IMA-Hybrid-LSSVM, the absolute relative errors (er) on the rest points in the test set are the
smallest. The modeling results of the experiment data with either random partition or fixed partition
sufficiently prove the superiority of the proposed compensation method and also its satisfactory
engineering capability.
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Figure 9. Compensation results on averaged testing set by fixed partition. (a) Compensation
results obtained by SVM; (b) compensation results obtained by PSO-RBF-SVM; (c) compensation
results obtained by PSO-RBF-LSSVM; (d) compensation results obtained by PSO-Hybrid-LSSVM;
(e) compensation results obtained by IMA-Hybrid-LSSVM; and (f) compensation results obtained
by CIMA-Hybrid-LSSVM.

6. Conclusions

A temperature compensation approach within the framework of LSSVM is presented in this
research. Taking the full advantage of both local kernel and global kernel, a hybrid kernel function is
constructed to balance the learning ability and generalization ability. The chaotic ions motion inspired
algorithm is applied to search for the optimal hyper-parameters of LSSVM. Sample data for modeling
LSSVM is acquired through a calibration experiment. The presented temperature compensation
scheme avoids the restricted character of the single kernel function and refines the hyper-parameter
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searching procedure. The compensation results indicate that it is a highly effective compensation
method both in the context of the algorithm robustness and engineering.
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