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Abstract: Micro and nano electromechanical resonators have been widely used as single or
multiple-mass detection sensors. Smaller devices with higher resonance frequencies and lower
masses offer higher mass responsivities but suffer from lower frequency stability. Synchronization
phenomena in multiple MEMS resonators have become an important issue because they allow
frequency stability improvement, thereby preserving mass responsivity. The authors present an array
of five cantilevers (CMOS-MEMS system) that are forced to vibrate synchronously to enhance their
frequency stability. The frequency stability has been determined in closed-loop configuration for
long periods of time by calculating the Allan deviation. An Allan deviation of 0.013 ppm (@ 1s
averaging time) for a 1 MHz cantilever array MEMS system was obtained at the synchronized
mode, which represents a 23-fold improvement in comparison with the non-synchronized operation
mode (0.3 ppm).
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1. Introduction

Nano and micro electromechanical systems (M/NEMS) have been widely used for single
or multiple mass detection due to their small effective masses and high resonance frequencies.
Ultimate limits in mass sensing have been reported with NEMS-based resonators [1]. In dynamic or
resonant mode, one of the main characteristics that limits the mass resolution is the stability of the
resonance frequency of the M/NEMS resonator. This limitation comes from multiple sources of noise,
which become more important with the size reduction to the nanoscale of the NEMS devices as has
been recently reported [2].

Synchronization is described as an adjustment of rhythms of oscillating objects due to their weak
interaction [3]. From the first work of Huygens [4] until the present day, there has been great effort to
provide a comprehensive theoretical basis to synchronization [5] and, derived from studies involving
collective systems, mathematical techniques to extract from the data the pure synchronous behavior
from heterodox phenomena [6]. Recently, synchronization phenomena have become an interesting
issue in a wide range of scientific fields [7-9]. In the field of M/NEMS, synchronization phenomena are
rising in importance and a lot of scientific works have appeared using a few synchronized elements [10],
a lot of them [8], or using synchronization to enhance the mass detection performance of MEMS-based
sensors [11].

Special efforts have focused on studying synchronization based on different methods of interaction
between MEMS and its influence on frequency stability [12]. There are important works related to this
phenomenon dealing with mechanical interactions [11] or electrical interaction between MEMS [13,14],
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new sensing strategies like localized modes [15], or stiffness change [16]. In addition, there is a parallel
effort to enhance the sensors’ performance, trying to use non-linear phenomena to overcome noise
limitations [17-19].

We have focused our study on trying to take advantage of a synchronized MEMS system in a
closed-loop oscillator to enhance the frequency stability over time using a fully integrated CMOS
system, with electrical and mechanical interaction between resonating elements. An example of
the utility of synchronization is that it allows for obtaining a higher performance single or multiple
mass sensor.

This paper is organized as follows: Section 2 describes the design of the system (based on five
cantilevers that are mechanically connected), the fabrication method (based on CMOS technology),
and the electrical characterization of the system. In this Section 2, the modal frequencies of the five
cantilevers (obtained in an open-loop configuration), as well as the frequency at which the system
vibrates at closed-loop configuration with its stability in time, are provided. From these results the
mass sensitivity of the system (in a closed-loop configuration) is computed. Section 3 is devoted to
characterizing the stability of the frequency in time in a closed-loop configuration when the system is
forced to synchronously vibrate using an external force. The authors present two different ways to
force the synchronization, the first one acting over one individual cantilever at its modal frequency
and the other one acting over the same cantilever but at the frequency at which the system vibrates in
a closed-loop configuration. In this section, the authors also present results of the frequency stability
over time and the lower limit of mass resolution. Section 4 is devoted to the synchronization process
itself, computing the Arnold tongue for both synchronization methods and including a discussion of
the mass sensing limitations working synchronously. Finally, Section 4 also presents a short discussion
of the possible implications of the synchronization phenomena with noise.

2. Materials and Methods

2.1. CMOS-MEMS System Design and Fabrication

The CMOS-MEMS system is fully integrated using Austria MicroSystems (AMS) 0.35 pm
CMOS technology [20]. The whole system is shown in Figure 1, which comprises five cantilevers
electrostatically sensed and actuated out of plane and a CMOS transimpedance amplification
circuitry [21]. The cantilevers were fabricated using the Metal 4 layer of AMS technology, clamped
together, and mechanically connected through an overhang (see Figure 1a). Each cantilever is 26 um
long, 1.45 uym wide and 0.925 pm thick; the overhang is 6 pm wide and has the same thickness as the
cantilevers. Read-out drivers were fabricated using the Metal 3 layer of AMS technology, 1 um below
Metal 4 layer, which will be the gap distance between cantilevers and read-out or actuation drivers.
There is one common read-out driver (CD) connected to the transimpedance amplifier to sense the five
cantilevers at the same time. This common driver is placed at the tip of the cantilevers (see Figure 1c).
There is also one individual driver (ID) for each cantilever, connected directly to our characterization
setup without amplification, which allows the individual actuation/sensing. There is a surrounding
shield for all drivers connected to the ground, which is made of a Metal 3 layer, in order to minimize
the external noise (frame wrapping common and individual drivers, see Figure 1c).

The definition of the MEMS cantilevers is completely done in the AMS foundry. An in-house
releasing process of the MEMS movable parts is done on the received bare chips, which require only
one post-processing step in order to eliminate the sacrificial oxide surrounding the structural metal
parts of the MEMS resonator (in our case, the five cantilevers). This post-processing step consists of
immersing the chip in buffered hydrofluoric acid (BHF) and then rinsing it with deionized water and
isopropyl alcohol to avoid stiction between the cantilevers. The engraving time has to be carefully
calibrated to avoid undesirable under-etching, taking into account that the deeper the layer, the
longer the engraving time. The chips are protected by the CMOS passivation layer and, since a
window is opened in the passivation layer over the multicantilever system, obtaining in this way a
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pool-like structure, BHF engraves only the chip zones where the multicantilever system is, releasing
the MEMS system.

Overhang
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Figure 1. (a) Optical image of the five released cantilevers (26 um long, 1.45 um wide, 0.925 um thick)
in which the overhang can be seen (6 um wide, 0.925 um thick). The five cantilevers are numbered to
reference them in the main text; (b) Optical image of the whole system, including the cantilever array
and CMOS transimpedance amplifier; (c) Image of the layout of the drivers with the individual drivers
(ID) and common driver (CD) and their access. CD common driver is below the tip of the cantilevers
and the ID individual drivers are between the middle and near-to-anchor part of the cantilevers.

The releasing post-process step and the dimension tolerances from the CMOS technology used
add some sort of anisotropy to the modal frequencies of the cantilevers (providing a different
resonant frequency for each of the cantilevers). In fact, the materials around the system and
the pool-like structure break the symmetric surrounding of the five cantilevers under the BHF
releasing process, varying the dimensions of each cantilever in relation to its neighbors and, therefore,
producing a dispersion of modal frequencies. This inconvenience could be overcome by tuning the
resonance frequency by applying DC voltage at the individual drivers, taking advantage of the spring
softening effect.

2.2. CMOS-MEMS System Electrical Characterization

All the measures have been performed in vacuum conditions. To characterize the natural
resonance frequency of each cantilever, we have measured the thermomechanical noise at the common
driver, applying a DC voltage of 24 V at the system anchor and using Keysight N9030A signal analyzer
with 10 Hz of IF bandwidth. Five different frequency peaks corresponding to the five cantilever
MEMS resonators have been obtained (see Figure 2) and an additional one is due to external noise.
Applying a DC voltage at each individual driver (see Figure 1), we can use the spring softening effect
to relate each peak to the corresponding cantilever. Peak number 5 (Figure 2) is a sum of the peak
corresponding to cantilever number five and the parasitic external noise (demonstrated by measuring
the thermomechanical noise at 0 V of DC effective voltage), resulting in a higher magnitude peak
compared with the others.

In order to characterize the frequency stability of the system, we performed closed-loop
measurement, taking the signal from the transimpedance amplifier (TIA) connected to the common
driver, adding DC voltage of 24 V through a bias-tee, and driving this signal to the anchor of the system
(see Figure 3a). In this configuration, the system is self-oscillating (see Figure 3b). The frequency
was acquired using a Hewlett Packard 53131A frequency counter (Keisight Technologies, Santa Rosa,
CA, USA).

We can see in Figure 4a the stability of the frequency of oscillation, taking measurements for two
hours (each measure is taken every 0.1 s), in which we can appreciate a long time drift (corresponding
to a linear drift of 0.1 Hz/s). The system auto-oscillates at the frequency corresponding to peak
number 3 of Figure 2. The corresponding Allan Deviation from time measurements every 0.1 s, shown
in Figure 4b, has a value below 1 ppm at 1 s of averaging time.
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Figure 2. Thermomechanical noise measured at the common driver applying a DC voltage of 24 V
at the system anchor. We flag the five peaks to identify each one with its corresponding cantilever
(shown in Figure 1a). Peak number 5 is enhanced by the parasitic noise peak. Inset: parasitic noise

peak measured at 0 V of DC voltage.
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Figure 3. (a) Schematic of the closed-loop setup, showing the capability of additional stimuli at
individual drivers and an optical image of the five-cantilever array; (b) Time response of the closed-loop

oscillation (applying a DC voltage of 24 V).

1.1023 4

1.1022 4

1.1021 4

-

-

o

N

(=]
1

1.1019 1
1]

Frequency (MHz)

1.1018 -

1.1017 4

1.1016 T T T T

v
0 20 40 60 80
Time (min)

(a)

T
100

T
120

140

Allan Deviation (ppm)

100.0 4

10.0 4

-
o
!

0.1 1 10 100 1000

Averaging time (s)

(b)

Figure 4. (a) Frequency stability measured in closed-loop configuration for 120 min. There is a clear
long term drift; (b) Allan deviation in ppm for the closed-loop measurements with Vdc =24 V and

taking measures every 0.1 s. The minimum Allan deviation is near 1 s of averaging time.
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2.3. CMOS-MEMS System Mass Resolution

Following the same procedure as [21], we can calculate the mass sensitivity using the standard
Equation (1), where myy is the effective mass of the system, f( is the resonance frequency in
auto-oscillation mode, and Af is the dispersion of frequencies, Af = fy-0, where o is the Allan Deviation
for the specific averaging time. For our system under self-oscillation conditions, fo = 1.102 MHz,
Mg =1.1 X 10710 kg and the frequency dispersion is Af = 0.3 Hz, which corresponds to o = 3.5 x 1077
(at an averaging time of 1s). Consequently, the minimum achievable mass detection, or mass resolution,

is 60 ag (attograms).
Am — 2mef f

fo

3. Characterization of the Cantilever Array under Synchronization

Af ¢y

As is reported in the works mentioned above (see [13], for example), one of the special features of
the synchronized state is the enhanced frequency stability. In our CMOS-MEMS system, the frequency
dispersion between the individual cantilevers due to the post-process and dimensions tolerance of
the fabrication is too high to allow for natural synchronization. For natural synchronization it is
mandatory to have a commensurable relationship n:m, where n and m are integers, between resonance
frequencies of the oscillators to be synchronized [3]. Measuring the closed-loop oscillation with our
five-cantilever array CMOS MEMS system, we are not able to observe synchronization. Despite the
fact that the system oscillates (at closed-loop configuration) at one individual frequency (and not five),
the fluctuations of it and the long time drift are high enough to discard a synchronized state. Due to
this inconvenience, we changed our measurement procedure.

We used the closed-loop configuration for the following measurements, in order to have a
self-sustained system (a system that oscillates taking energy from a source, in our case, a DC voltage) [3].
We achieved synchronization by applying an external electrical force (stimulation) through a sinusoidal
signal (from the function generator, Agilent 81150A, (Keisight Technologies, Santa Rosa, CA, USA)
to an individual driver (ID, see Figure 1). We used two of the five cantilevers, numbers 2 and 4 (see
Figure 1a), as candidates for this external forced synchronization.

We used two methods; one is based on applying an external force to one of the individual drivers
using the same frequency as the modal frequency of the corresponding individual cantilever. In this
case the external force induces the cantilevers’ synchronization (see Section 3.1). The other method
is based on applying this force, also on an individual driver, but with the same frequency as the
self-oscillation state has. In this case the external force synchronizes with our self-sustained system
(see Section 3.2). A discussion of these two methods of external excitation is presented in Section 4.

3.1. Using an External Force Applied to One of the Individual Cantilevers, at the Same Frequency as the Modal
Frequency of the Corresponding Cantilever

The external force is applied (as we said before) on one individual driver (ID) at the same frequency
as the corresponding cantilever modal frequency with different amplitudes. The time-dependent
signal of the system response is acquired, in a closed-loop configuration, at the common driver,
for an applied DC voltage of 18 V and for different stimulation amplitudes. In Figure 5a we can see
the time domain response for different stimulation amplitudes at the cantilever number 4 (and at
its modal frequency) acquired with the oscilloscope Agilent DSC-X 3054A. We have a sum of two
signals with different frequencies resulting in a pulsed time-dependent signal, until the amplitude
reaches 500 mV (peak-to-peak), where the signal stabilizes at a single frequency, which corresponds
to the modal frequency of the stimulated cantilever (number 4). If we analyze the signal (using
Fourier transform) at 500 mV of excitation amplitude, we obtain a single peak at the modal frequency
of the stimulated cantilever, which is a signature of synchronized state. On the other hand, if we
analyze the pulsed signal (using Fourier transform) we conclude that the pulse is due to the sum
of two signals, one at 1.076 MHz, corresponding to the modal frequency of cantilever number 4
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(frequency of stimulation), and another signal with a frequency of 1.108 MHz, corresponding to
the self-oscillation frequency of the system without additional stimuli (both applying a DC voltage
of 18 V). Based on these measurements, we decided to use a stimulation of 650 mV of amplitude to
ensure, as much as possible, a single value of the frequency for the read-out signal. Figure 5b, in an
open-loop configuration, shows the effect on thermomechanical noise when applying an excitation
to the corresponding cantilever (row A corresponds to the pure thermomechanical noise, without
excitation; row B corresponds to the thermomechanical noise plus excitation of cantilever number 4
and rows C and D to cantilever number 2).
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Figure 5. (a) Time response signal of the closed-loop self-oscillation of the system with stimulation on
cantilever number 4 with DC voltage of 18 V and using different amplitudes peak-to-peak: A, 350 mV;
B, 450 mV; C, 500 mV; D, 600 mV; (b) Thermomechanical noise plus excitation with DC voltage of 24 V
in open-loop configuration: A, without excitation; B, excitation on cantilever number 4 at its modal
frequency with 650 mV of amplitude, where we can see that peak number 4 stands above the others;
C, excitation on cantilever number 2 at its modal frequency with 650 mV of amplitude, where we can
see that peak number 2 stands above the others; D, excitation on cantilever number 2 at the modal
frequency of cantilever number 3, where we can see that the five peaks remain and a large and sharp
peak appears as number 3.

Figure 5b shows that, when we apply an excitation over an individual cantilever at its modal
frequency (Figure 5b, rows B and C), the peaks corresponding to the other cantilevers disappear and
only the one corresponding to the excited cantilever remains; moreover, this peak has higher power
than in the case without excitation (for example, we can compare peak number 2 of rows A and C or
peak number 4 in rows A and B of Figure 5b). We deduce that, in this case, the system is synchronized
and oscillates at the modal frequency of the excited cantilever. When the excitation is applied to
the cantilever but at a different frequency, the five peaks remain and no traces of synchronization
appear. An example of this is shown in row D on Figure 5b, where excitation is applied over cantilever
number 2 but at the frequency corresponding to cantilever 3; we can see the five individual peaks as
in row A of Figure 5b (except a sharper peak coming from the excitation itself), contrary to row C on
Figure 5b, in which only peak number 2 remains.

Following the same steps mentioned in Section 2 but now using stimulation, we measured the
frequency stability of the system for 120 min. The procedure was as follows: we stimulated one
cantilever, number 2 or number 4, applying the signal at its own individual driver and at its own
modal frequency; the closed-loop was done as previously, taking the signal from the transimpedance
amplifier connected to the common driver and driving this signal to the anchor of the system adding,
through a bias-tee, a DC voltage of 24 V. We observed that, when the stimulation is at the modal
frequency of the corresponding stimulated cantilever, the whole system oscillates at this frequency;
otherwise the system oscillates at the frequency of cantilever number three (as without stimulation),



Sensors 2016, 16, 1690 7 of 15

as we can see in Figure 6 for both cantilevers. To discard the possible effect of the stimulus over the
common driver, which could produce a read-out signal directly from the signal generator instead
of the cantilevers system, we performed stimulus at the modal frequency and at two frequencies
near the modal, one above and another below it. Only when the stimulus is at the modal frequency
does the read-out signal have this frequency; otherwise, it has the frequency of the closed-loop
without stimulus. Added to this fact, there is another and more important effect: the high frequency
stabilization obtained when the stimulus is at the modal frequency of the corresponding cantilever.
For instance, from Figure 6a, the time frequency stability corresponding to case A is around 0.05 Hz/s;
for case B it is 0.005 Hz/s and for case C it is only 5 x 10~7 Hz/s. In Figure 7, we have adjusted the
graphics of Figure 6 to highlight this effect, scaling the frequencies to the frequency of the starting
point. When the stimulus is at a different frequency than the modal, the frequency stabilization does
not occur.
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Figure 6. (a) Closed-loop frequencies for stimulus at cantilever number 2 (modal frequency,

fo2 = 1.0549 MHz) with different frequencies: A, at 1.06 MHz (above f(;,); B, at 1.04 MHz (below
fo2); C, at 1.0549 MHz (exactly at fp); (b) Closed-loop frequencies for stimulus at cantilever number 4
(modal frequency, fos = 1.07348 MHz) with different frequencies: A, at 1.08 MHz (above fy4); B,
at 1.06 MHz (below f4); C, at 1.07348 MHz (exactly at f(4).
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Figure 7. (a) Closed-loop frequency scaled at the starting point for the case of stimulus at cantilever
number 2 with different frequencies: A, at 1.06 MHz; B, at 1.04 MHz; C, at 1.0549 MHz; (b) Closed-loop
frequency scaled at the starting point for the case of stimulus at cantilever number 4 with different
frequencies: A, at 1.08 MHz; B, at 1.06 MHz; C, at 1.07348 MHz.

Once we measured the closed-loop frequency with an applied stimulus, the next step was to
evaluate the frequency stability calculating the Allan deviation (with measures every 0.1 s) under the



Sensors 2016, 16, 1690 8 of 15

same conditions. We can see in Figure 8 that cases A and B present similar behavior to that found
without synchronization (Figure 4b), and that case C improves the Allan deviation by almost two
orders of magnitude (@ 1 s of averaging time). Due to the fact that the stability of the frequency is very
good for a long time, i.e., there is no frequency drift (see case C in Figures 6 and 7), the Allan deviation
decreases continuously and, in our measurement time window, we are not able to observe the Allan
deviation limit due to the Flicker noise (Flicker floor). In addition to that and further supporting our
claim that there is no direct effect between stimulus and read-out, the Allan deviation for stimulus
at different frequencies is at the same order of magnitude as for the self-oscillation without stimulus
(see Figure 8).
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Figure 8. (a) Allan deviation in ppm stimulating the cantilever number 2, taking measures every 0.1 s
and for stimulus frequencies of: A, at 1.06 MHz; B, at 1.04 MHz; C, at 1.0549 MHz; (b) Allan deviation
in ppm stimulating the cantilever number 4, taking measures every 0.1 s and for stimulus frequencies
of: A, at 1.06 MHz; B, at 1.08 MHz; C, at 1.07348 MHz.

From Figure 8a, the frequency stability at an averaging time of 1 s, for the case of the stimulus
applied at cantilever number 2 (at its modal frequency), is Af = 0.016 Hz (o = 1.5 x 10~8), more or less
the same value as for the stimulus applied at cantilever number 4. Using Equation (1), for the stimulus
at cantilever number 2 or 4, we achieve a minimum detectable mass of 3 ag. We can further decrease
the final mass resolution using a higher averaging time. For instance, with an averaging time of 100 s,
the frequency dispersion is Af = 0.0011 Hz, and consequently the minimum achievable mass is 0.2 ag.
In summary, from this synchronization technique, using forced cantilevers with stimulation at their
own modal frequency, we can achieve a minimum detectable mass 300 times lower than in the case
without stimulus with a long averaging time.

These minimum achievable masses are calculated using Equation (1). Due to the fact that we have
a synchronized system through the presence of an external force, these minimum achievable masses
have to be taken as a lower limit of achievable masses. See the discussion of this fact in Section 4.2.

3.2. Using an External Force Applied to One of the Individual Cantilevers at the Self-Oscillating Frequency of
the System

The synchronization phenomenon is not restricted to an interaction between oscillators; it is
possible to synchronize an external force with a self-sustained system through a weak interaction as
well [3]. The previous sub-section shows that, applying an external force to the cantilevers (at their
own individual driver), they can change the self-oscillation frequency to the modal frequency of the
actuated cantilever; otherwise, no changes are measured. This is not proper synchronization with an
external force.

To achieve synchronization with an external force, we proceed in a similar way to that used in the
previous sub-section. We apply a stimulus to one of the individual drivers but, in this case, at the same
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frequency as the self-oscillation frequency;, i.e., at the frequency of the peak number 3 (see Figure 2).
We present the results in the case of stimulating the cantilever number 2 (although similar results were
obtained with the stimulus applied to cantilever number 4). Figure 9 depicts the frequency evolution
over time, showing stabilization only when the stimulus is at the same frequency as the self-oscillation
(curves A and B in Figure 9a). For instance, from Figure 9a, the time frequency stability corresponding
to case A is around 0.003 Hz/s; for case B it is 0.08 Hz /s and for case C itis 4.6 x 10~ Hz/s. This fact
is highlighted in Figure 9b, scaling the frequencies by the starting point.

bl 1.0000 ' c
1.1040
gt 5 A
2 1039 s
> B T 0.9999-
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Figure 9. (a) Closed-loop frequency for stimulus at cantilever number 2 for different frequencies:
A, at 1.04 MHz; B, at 1.06 MHz; C, at 1.103552 MHz; (b) Scaled frequencies by the starting point for the
same cases than in (a).

In Figure 10 we can see the Allan deviation acting over cantilever number 2 with different
frequencies corresponding to the modal frequency of each of the five cantilevers. When the frequency
of the stimulus takes the same value as the self-oscillation frequency or the modal frequency of
the corresponding cantilever, the Allan deviation has the minimum value (curves A and B of
Figure 10). If we measure the frequency dispersion for 1 s of averaging time for the stimulation
at the self-oscillation frequency (curve A in Figure 10), we obtain Af = 0.013 Hz, and using Equation (1)
we obtain a minimum detectable mass of 2.6 ag. As we said previously, the minimum detectable mass
calculated here (using Equation (1)) is a lower limit (see Section 4.2 for more details).

10.000 E
E c
& 1.000
c
°
o
& 0.100
>
[}
a
c
§ 00104 B
<
A
0.001 -
MR | T LR | T T rorrrnr T T rorronr T LR AL
0.1 1 10 100 1000

Averaging time (s)

Figure 10. Allan deviation, exciting cantilever number 2 at different frequencies corresponding to
the different peaks of Figure 2a: A, peak number 3 (1.10355 MHz); B, peak number 2 (1.05494 MHz);
C, peak number 1 (1.06473 MHz); D, peak number 4 (1.0733 MHz); E, peak number 5 (1.09819 MHz).
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Table 1 summarizes the frequency dispersion considering the different synchronization techniques.
Note that the synchronization allows a 23-fold increase in the frequency dispersion for 1 s of
averaging time.

Table 1. Frequency dispersion for different averaging times.

Measure Type Frequency D}sper§10n atls Frequency Dls.perm.on at 100 s
Averaging Time Averaging Time
Without stimulation 0.3 Hz 6.8 Hz

St1mulat}on at cantilever number 2 0.016 Hz 0.004 Hz

at its modal frequency
Stlmula’qon at cantilever number 4 0.017 Hz 0.0011 Hz

at its modal frequency
Stimulation at cantilever number 2 0.013 Hz 0.0013 Hz

at the self-oscillation frequency

4. Discussion

4.1. Considerations about Synchronization Using an External Force

In this work, we present two ways of synchronizing the cantilevers: (a) exciting one of the
cantilevers at its modal frequency and (b) exciting it at the self-oscillation frequency (the frequency in
which the system oscillates without external stimulus on cantilevers). In both schemes we achieve the
synchronization state using an external force.

We discuss in this section the role of the external force as an agent for promoting synchronization
due to the possibility that this external force can be synchronized with the system. Normally, one of the
ways to study the synchronization between a self-sustained system and an external force is through the
so-called Arnold tongue [3]. The Arnold tongue shows the region of frequencies in which the system
is synchronized with the external force by plotting AF versus f, where AF is the difference between
the frequency of the self-sustained system in the presence of the external force and the frequency of
the external force, and f is the frequency of the external force. When the synchronization is achieved,
a plateau appears, centered at the frequency of the self-sustained system without the presence of the
external force. This plateau is wider as higher is the power of the external force. A 3D plot of AF versus
f and versus power of the external force is the Arnold tongue (see, for example, [10]). Our second
method of excitation (method (b)) can be represented using the Arnold Tongue, as can be seen in
Figure 11. Figure 11a shows the synchronized zone, a shaded grey zone, which is a plateau that widens
with the increasing of the excitation power (excitation amplitude in the y-axis of Figure 11). Figure 11b
is a 2D representation of the Arnold Tongue that clarifies the effect of the excitation power over the
synchronized zone. Red squares represent synchronized states and blue squares unsynchronized ones.

Figure 12a shows a different representation of the Arnold tongue, adapted to our first method
to achieve the synchronization (method (a)) at different amplitudes of the external force. To do this
representation, we have done the measures using a frequency counter and applied the excitation
(in Figure 12 the excitation is applied at cantilever number 4) at different frequencies. The z-axis
represents the measure of the frequency counter. When we apply the external force with the same
frequency as the modal frequency of the cantilever, the self-oscillation frequency changes from that
corresponding with peak number 3 (at which frequency the system oscillates without external forcing;
see Figure 2) to the modal frequency of the individual cantilever. In Figure 12a the synchronization
zone appears as a plateau with the ratio between self-oscillation and excitation frequency equal to 1,
and a different value for the out-of-synchronization zone (which corresponds to the ratio between
the frequency of peak number 3 (self-oscillation frequency) and the frequency of the external force).
The synchronization zone is centered at the modal frequency of cantilever number 4 and the range of
excitation frequencies in which we have a synchronized state widens when the amplitude of excitation
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grows. Importantly, in the case of Figures 11a and 12a, using 350 mV of excitation amplitude there is a
thin synchronized zone. When we performed our first measures to obtain the time response signal
(see Figure 5a), we obtained a modulated signal at 350 mV of excitation amplitude, which does not
correspond to a synchronized state. This discrepancy is due to the fact that the time response signal
measures were performed by applying 18 V DC at the closed-loop configuration, but in the last case
the applied voltage was 24 V—more energy than in the first case, which caused the early appearance
of the synchronized state.

Figure 12b represents the widening of the synchronization zone in a more intuitive manner,
capturing the synchronized zone with red squares and the non-synchronized zone with blue squares.
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Figure 11. (a) The Arnold tongue, corresponding to excitation at the same frequency as the
self-sustained (method (b)). The shaded gray zone is the synchronized zone, which widens when the
amplitude of excitation grows; (b) A 2D representation of the Arnold tongue, in which the red squares
represent the minimum difference between self-oscillation frequency and excitation frequency.
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Figure 12. (a) Ratio between self-oscillation and excitation frequencies (fself /fexc) for different
amplitudes of the excitation and 24 V DC of applied voltage. Here, the excitation is applied at
cantilever number 4. The synchronized zone appears as a plateau for which the ratio fself /fexc takes
the unit value (shaded gray zone); (b) A 2D representation of the previous figure, in which the red
squares represent the minimum ratio of fself /fexc and the blue ones the maximum. We can see that the
rage of excitation frequencies into the synchronized zone widens with the amplitude of the excitation.

In the case of applying the external force with the same frequency at which the self-sustained
system oscillates (the frequency of the self-oscillation in a closed-loop configuration), we conclude
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that the external force synchronizes with the system following the usual way [10] i.e., we are on the
Arnold tongue plateau. This synchronization drives our system to a more stable oscillation frequency
system than without the applied external force. We have to take into account that, when we use the
closed-loop configuration, the frequency of oscillation of the system is unique, corresponding to the
frequency of peak number 3 (see Figure 2); we do not have multivalued frequency as is measured in
thermomechanical noise. It is important to emphasize that the external force is synchronized with the
whole system.

When we apply an external force at the individual modal frequency of one of the five cantilevers,
in our opinion, the way to achieve synchronization is not the same as in the previous case. In this
configuration, the self-sustained system oscillates at a frequency (1.10355 MHZz) that is very different
to the modal frequency of one of the actuated cantilevers (for example, 1.07348 MHz for cantilever
number 4). If we excite the system with an external force with the modal frequency of the corresponding
actuated cantilever, we are exciting our system with a frequency far from the self-oscillation one, that is,
we are out of the Arnold tongue plateau (showed in Figure 11a), which corresponds to synchronization
to an external force and, consequently, a synchronization state between external force and self-sustained
system should not be achieved. However, as we see, the whole system changes its self-oscillation
frequency from 1.103 MHz to, for example, 1.073 MHz (if we excite cantilever number 4) and we obtain
a synchronized system with an Arnold tongue (like the one depicted in Figure 12a), but shifted to the
modal frequency of the excited cantilever. As we can see in Figure 2, the fabrication process produces
a system with five cantilevers with enough differences between their modal frequencies to disallow
the mutual synchronization. In our opinion, the role of the external force using the same frequency
as the modal of the individual cantilever is helping the mutual synchronization between cantilevers.
When the external force is applied at the modal frequency of the actuated cantilever, the whole system
oscillates at this frequency (see Figure 6). This fact drives us to discard the direct influence of the force
on the frequency of oscillation but to assert an indirect influence only when its frequency and the
modal one of the cantilevers matches.

4.2. Considerations about Mass Sensor Performance

Even though this synchronizable system could work with different purposes, we want to analyze
it for mass sensing applications. We have introduced two ways to achieve synchronization with the
purpose of achieving higher frequency stability. However, there are some considerations to be taken
into account, directly related to the fact that, in synchronous operation, the system is locked with an
external force. The Arnold tongue shows as a plateau the region in which the system frequency and
the external force frequency are locked. It is important to state that, in order to use this synchronized
system as a mass sensor measuring frequency change, the added mass should be able to shift the
frequency by more than half of the width of the Arnold tongue plateau. Consequently, working
with the minimum achievable power of the external force compatible with synchronization, i.e.,
the narrower zone of the Arnold tongue, is needed for mass sensing.

In the case of an external force applied on one of the individual cantilevers, at the same frequency
as the modal frequency of the corresponding cantilever, the spatial identification of the deposited mass
over the five cantilevered array is achieved as is discussed below.

Imagine we have a system vibrating synchronously at the same frequency as the modal of one
of the cantilevers, forced by an external force (the case described in Section 3.1). When we deposit
mass over this cantilever, its modal frequency changes in direct relation to the amount of mass and
then a mismatch between the modal frequency of the cantilever and the frequency of the external
force appears. Consequently (if the intensity of the external force is not too high), the synchronization
disappears (the system moves out of the Arnold tongue). Based on this fact, we will be able to identify
which of the cantilevers has the added mass exciting sequentially each cantilever at its corresponding
modal frequency, while deciding if the system works synchronously or not. The cantilever for which
this procedure does not lead the system to work synchronously will be the cantilever where the mass
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has been deposited. This is an advantage due to the fact that we can perform a spatial detection of
mass deposition. For instance, this method can be useful for profiling a flux of particles. Moreover, this
method will allow the chemical identification of the deposited mass if we use a different and specific
chemical functionalization of each cantilever in the array (for example, viruses caught by antigens sited
at the corresponding cantilever, which will be spatially determined by losing the synchronization state).
The disadvantage of this method of achieving synchronization is that, directly, we cannot measure the
mass deposited because we cannot measure the shift of frequency (i.e., Equation (1) is not applicable
in this case). To know the mass we have to perform another step. Centered at the identified cantilever
(the cantilever with the added mass), we have to change the frequency of the external force until the
system returns to a synchronous state. The difference between this new frequency and the previous
one (the modal frequency of the cantilever without added mass) will determine the mass deposited at
the cantilever. It is important to state that if we want to achieve the minimum detectable mass, we have
to use the minimum external force to have the minimum range of synchronous state (the narrower
zone of the Arnold tongue). This procedure requires a previous calibration of the system and two steps
of excitation detection.

4.3. Towards a Thermomechanical Noise Limit?

Recently there has been an exhaustive review of the frequency stability of micro and
nanomechanical resonators [2]. This review states that the frequency stabilities of the NEMS resonators
studied are far from the thermomechanical limit and none of them attain this limit. The authors
discard the idea that this discrepancy between measurements and thermomechanical limit is due to
the measurement system; rather, it originated in the mechanical domain of the device. The authors
also disagree with the idea that the difference between the measured frequency fluctuations and
the thermomechanical limit is due to temperature variations and another known mechanisms and
conclude that there is a need for studying new microscopic mechanisms, which might be the origin of
these discrepancies. According to this paper, the measured frequency fluctuation is on average two
orders of magnitude (100-fold) greater than the thermomechanical frequency fluctuation limit.

We can evaluate in the same terms as [2] our CMOS-MEMS cantilevered array’s ability to compare
stability with a synchronized operation mode and without. For our system the thermomechanical
Allan deviation limit is computed to be 4.6 x 10~? with 1 s averaging time (see the supplementary
information in [2] for how to compute it). From Figure 10, the Allan deviation is 3.5 x 10~/ (@ t=1s)
without synchronized operation, which represents a factor 80x greater than the thermomechanical
frequency stability in accordance with predictions and results in [2]. On the other hand, the Allan
deviation becomes 1.3 x 1078 (@ T = 1 s) in a synchronized mode of operation, which represents an
increase of only 2.6x in comparison with the equivalent thermomechanical limit, surpassing in this
way the expected frequency stability for the majority of NEMS resonators. This opens the way to
further push the limits for hig- performance mass sensors. Additionally, in our opinion, synchronized
systems are revealed as a good strategy to attain the thermomechanical limit, and this fact must be
taken into account to face the research concerning the new microscopic mechanism proposed by the
authors in [2].

5. Conclusions

We present here a multicantilevered system with enhanced frequency stabilization of the
self-oscillation frequency through synchronization. We have concluded that the frequency stability
improves by around two orders of magnitude using synchronization phenomena. We present two
ways to synchronize the cantilevers, both using an external force: one of them is to use this external
force as a way to overcome the difficulties related to the dispersion of dimensions of the cantilevers
due to the fabrication process, acting on an individual cantilever at its modal frequency and driving
the whole system to oscillate at this frequency; the other is synchronizing the external force with the
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self-sustained system. For both synchronization methods we have presented the advantages and
disadvantages using this system as a mass sensor.
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