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Abstract: The connecting rod is a critical part inside the marine engine. The inspection of its important
parameters is directly related to the assembly and quality of the marine engine. A coordinate
measuring machine (CMM) is a conventional choice to measure the parameters of a connecting
rod. However, CMM requires significant resources in time and cost, which leads researchers into
in-situ measurement. This article presents a fast and in-situ measuring method by using a laser-based
measuring head. Two measuring strategies are adopted in the inspection process. For positional
measurements (such as the hole–center distance), whose accuracy requirement is generally low,
the coordinate system of the numerical control (NC) machine is combined with the measuring head
to acquire the positional parameters. For dimensional measurements (such as inner diameters),
whose accuracy requirement is rather high, the NC machine is used just as transportation. Note that
the measuring head has the ability to perform the dimension inspection independently. The accuracy
of the measuring head is high enough to meet the dimensional accuracy requirements. Experiments
are performed to validate the proposed method. The measuring error of the inner diameters is from
5 µm to 7 µm. The measuring error of hole–center distance is within 15 µm. The measurement of all
these parameters can be done within 1 min.

Keywords: in-situ measurement; laser triangulation sensor; the connecting rod

1. Introduction

Two processes are generally involved when manufacturing a workpiece. One is the machining
process, which is carried out to machine the parts; the other is the inspection process, which is
performed to check whether the part is machined according to the requirements. For the fabrication of
marine engines, an inspection process usually takes more time than a machining process. Therefore,
it is necessary to develop a fast measuring method to improve the time efficiency.

A coordinate measuring machine (CMM) is a general choice for dimension inspections due to its
accuracy and flexibility [1]. In the case of the fabrication of marine engines, however, the time cost
generated by transferring these large workpieces onto a CMM is the primary barrier to this method [2,3].
In addition, given this consideration, in-situ measurement seems a promising solution that is able to
machine and measure simultaneously [4]. Inspired by CMM, some companies [5,6] embedded trigger
probes [7] into numerical control (NC) machines for in-situ measurement. Nevertheless, the trigger
probes are easily broken and large-scale machine tools are hard to control subtly. Non-contact
measuring methods have also drawn much attention because they are fast and much safer than
contact methods. Ito et al. [8] used a laser displacement sensor (LDS) to measure the surface form
of ceramics parts. Due to the limitation of its accuracy, however, this kind of method is commonly
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used for form measurement but not dimension inspection, such as in [9–12]. The main reason is
understandable as the coordinates offered by the NC machines are less accurate, and thus the final
measuring accuracy is not comparable to that of the CMM yet.

Research has been carried out on the error compensation of NC machines. Ibaraki et al. [13]
formulated the geometric errors of machines by using a LDS. Similar research achievements have also
been published in [14–16]. Hong et al. [17] developed a non-contact R-test device for calibrating the
NC machines. Janusiewicz et al. [18] analyzed the impact of the theoretical error when performing
an in-situ roundness measurement. The aforementioned methods offer a possible direction for precise
in-situ measurement, but most compensation methods are time-consuming and need to be executed
each time before measurements. These drawbacks become an obstacle to practical use.

The connecting rod is a critical part inside the marine engine [19]. As shown in Figure 1,
a connecting rod is composed of three portions: the con-rod big end, the middle rod, and the con-rod
small end. The machining quality of a connecting rod is directly related to the assembly of the marine
engine [20]. Hence, the crucial parameters of the connecting rod, which determine its final quality,
should be inspected seriously before assembly. By using a laser-based measuring head, a fast and
in-situ measuring method is proposed in this article for the measuring the parameters of the connecting
rod, including the two inner diameters of the con-rod ends (D1, D2) and the hole–center distance
(|O1O2|). The main contributions in this paper include:

(1) Different from the probes in [5,6], the developed measuring head is able to measure inner
diameters independently. Its installation position and the movement accuracy of the machines
have no effect on the measurement results.

(2) The measuring head can also be used to measure the position parameters of the connecting rod
with the help of the NC system. Compared with such measuring heads in [5,6,12], the developed
head does not need on-machine calibration. In brief, the head supports “plug-and-measure”.

(3) The data processing system is free from the NC system. Hence, it is easy to integrate the measuring
head into diverse NC systems, regardless of the compatibility problem.

(4) The measuring data are transmitted through wireless communication. In addition, this makes it
possible to realize remote control.

This article is organized as follows. The measuring principle is introduced in Section 2. In Section 3,
the mathematical measurement models are described in detail. The error discussion on practical
applications is analyzed in Section 4. The proposed method is validated by experiments in Section 5.
The conclusion is finally given in Section 6.
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In this article, a laser-based measuring head is developed to measure these crucial parameters.
The structure of the measuring head is shown in Figure 2. The joint rod is used to install it on NC



Sensors 2016, 16, 1679 3 of 12

machines. The LDSs are mounted in the internal circumference of the bore gauges at equal intervals.
Data samples can be obtained by these LDSs. The lower bore gauge is used to measure the con-rod
small end whereas the upper bore gauge is used to measure the con-rod big end. The sizes of the
bore gauges are designed in accordance with the measured holes. The measuring information is
preliminarily organized by the data processing module, and then transmitted to the upper computer
through Bluetooth.
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Two measuring strategies are adopted according to diverse accuracy requirements. For position
parameters, whose accuracy requirement is generally low, the position accuracy of NC machines is
high enough to deal with this situation [21]. Hence, the coordinate system of NC machines can be
employed to measure the position parameters. For dimension parameters, the machining requirement
is usually extremely strict. In this case, NC machines are used just for delivery and transportation,
and their coordinates have no impact on the measurement results. Note that the developed measuring
head is capable of measuring inner diameters independently. Its measuring accuracy can sufficiently
meet the exact demand.

In the following section, the measurement model of inner diameters and the hole–center distance
are described in detail.

3. The Mathematical Measurement Model

3.1. Measuring of Inner Diameter

The measurement model of the inner diameter is shown in Figure 3. O is the center of the
measured hole. S1, S2, S3 are the emitting points of the measuring lasers. A, B, C are the measured
points. To establish the relationship between the measured diameter (assumed as R) and the measuring
head, the coordinate system xH-oH-yH is introduced, where OH is the center of the circumcircle of
triangle S1S2S3 and S1 is on the positive yH axis. Then, A(x1, y1), B(x2, y2), C(x3, y3) can be expressed as:{

x1 = d1 · sinθ3

y1 = r + d1 · cosθ3

{
x2 = −[r · cosθ1 + d2 · cos(θ1 + θ4)]

y2 = −[r · sinθ1 + d2 · sin(θ1 + θ4)]

{
x3 = r · cosθ2 + d3 · cos(θ2 + θ5)

y3 = −[r · sinθ2 + d3 · sin(θ2 + θ5)]
(1)

where θ1 is the angle between the negative xH axis and OHS2; θ2 is the angle between the positive xH

axis and OHS3; θ3 is the angle between the positive yH axis and S1A (clockwise rotation is positive);
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θ4 is the angle between OHS2 and S2B (clockwise rotation is negative); θ5 is the angle between OHS3

and S3C (clockwise rotation is positive); r denotes the radius value of the circumcircle; d1 denotes the
value of |S1A|; d2 denotes the value of |S2B|; d3 denotes the value of |S3C|. To better describe this
measurement model, {θ1, θ2, θ3, θ4, θ5, r} are defined as the intrinsic parameters of the measuring head.
Based on Equation (1), the sides of triangle ABC can be written as:



a = |BC| =
√
(x2 − x3)

2 + (y2 − y3)
2

=
√
[r · cosθ1 + d2 · cos(θ1 + θ4) + r · cosθ2 + d3 · cos(θ2 + θ5)]

2 + [r · sinθ1 + d2 · sin(θ1 + θ4)− r · sinθ2 − d3 · sin(θ2 + θ5)]
2

b = |AC| =
√
(x1 − x3)

2 + (y1 − y3)
2

=
√
[d1 · sinθ3 − r · cosθ2 − d3 · cos(θ2 + θ5)]

2 + [r + d1 · cosθ3 + r · sinθ2 + d3 · sin(θ2 + θ5)]
2

c = |AB| =
√
(x1 − x2)

2 + (y1 − y2)
2

=
√
[d1 · sinθ3 + r · cosθ1 + d2 · cos(θ1 + θ4)]

2 + [r + d1 · cosθ3 + r · sinθ1 + d2 · sin(θ1 + θ4)]
2

(2)
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As shown in Figure 3, the measured hole is the circumcircle of triangle ABC. Hence, the measured
diameter can be expressed as below:

R =
a · b · c√

(a + b + c) · (a + b− c) · (a + c− b) · (b + c− a)
(3)

By substituting Equation (2) into Equation (3), Equation (4) can be deduced.

R = f1(θ1, θ2, θ3, θ4, θ5, r, d1,i, d2,i, d3,i) (4)

where i is the group number of measurements; f 1(·) is defined as the function to express the relationship
between the measured diameter and the intrinsic parameters. In addition, the center of the measured
hole (labeled as point O in Figure 3) can be written as: xH

0 =
(x2

1−x2
2+y2

1−y2
2)·(y1−y3)−(x2

1−x2
3+y2

1−y2
3)·(y1−y2)

2·(y1−y3)·(x1−x2)−2·(y1−y2)·(x1−x3)

yH
0 =

(x2
1−x2

2+y2
1−y2

2)(x1−x3)−(x2
1−x2

3+y2
1−y2

3)(x1−x2)
2·(y1−y2)(x1−x3)−2·(y1−y3)(x1−x2)

(5)

where (xH
0 , yH

0 ) represents the coordinates of point O. By inserting Equation (1) into Equation (5),
Equation (6) can be deduced:{

xH
0 = f2(θ1, θ2, θ3, θ4, θ5, r, d1,i, d2,i, d3,i)

yH
0 = f3(θ1, θ2, θ3, θ4, θ5, r, d1,i, d2,i, d3,i)

(6)

Furthermore, |OOH| can be calculated from Equation (7).

|OOH| =
√
(xH

0 )
2
+ (yH

0 )
2
=

√
[ f2(·)]2 + [ f3(·)]2 = f4(θ1, θ2, θ3, θ4, θ5, r, d1,i, d2,i, d3,i) (7)
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where f 4(·) is defined as the function to express the distance between point O and point OH.
Consequently, the diameter of the measured hole can be calculated from Equation (4). Given

several groups of measurements ({d1i, d2i, d3i}), the intrinsic parameters can also be calibrated through
Equation (4). The contribution of this measurement model is that the inner diameter can be immediately
obtained as soon as the measuring head is put inside the measured hole. The movement mechanism of
NC machines has nothing to do with the measurement results.

3.2. Measuring of Hole–Center Distance

As analyzed above, the position relationship between the measuring head and the hole–center
distance can be obtained by Equation (7). To measure the hole–center distance, generally speaking,
the relative position between the measuring head and the NC machine tools should also be formulated.
To clarify this, the coordinate system xM-yM-zM is introduced as the coordinate system of NC machines
(CSNC). The coordinate system xH-yH-zH is defined as the coordinate system of the measuring head
(CSMH). Then xW-yW-zW is the world coordinate system (WCS). As shown in Figure 4, when the
measuring head is moved by the motion mechanism of NC machines, the relationship between CSNC
and CSMH remains the same. Assume that

→
OHOM = (xM − xH , yM − yH , zM − zH) = (l, m, n) (8)

where (xM, yM, zM) denotes the spindle coordinate in the CSNC; (xH, yH, zH) represents the origin
coordinate of the CSMH in the WCS. Once the measuring head is installed onto the spindle of NC

machines,
→

OHOM will be the inherent parameter in the measuring system and will not change.
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If the measuring head moves from Position 1 to Position 2, the moving distance can be
expressed as: ∣∣∣O1
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where (x1
H , y1

H , z1
H) represents the origin coordinate in the WCS at Position 1; (x2

H , y2
H , z2

H) denotes the
origin coordinate in the WCS at Position 2. By inserting Equation (8) into Equation (9), Equation (10)
can be deduced:∣∣O1
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where (x1
M, y1

M, z1
M) is the spindle coordinate in the CSNC at Position 1; (x2

M, y2
M, z2

M) is the spindle
coordinate in the CSNC at Position 2. Note that the spindle coordinates of the CSNC can be directly read
from the NC system. The moving distance of the measuring head can be calculated from Equation (10).
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From Equations (7) and (10), we can come up with two important deductions:

Deduction 1 The distance between the measuring head and measured hole–center distance can be
calculated from Equation (7).

Deduction 2 When the measuring head moves from Position 1 to Position 2, its moving distance can
be acquired by the coordinate change of the CSNC.

The deductions above offer some necessary information about measuring distances. Nevertheless,
no deductions about measuring angles have been obtained yet. As a result, it is difficult to calculate
the hole–center distance simply by the two deductions above. For example, as shown in Figure 5,
the shape of quadrangle DEFG is not fixed if we merely give the lengths of its four sides (|DE|, |EF|,
|FG|, and |GD|). However, the quadrangle’s shape will be fixed under an extra condition that the
length of |EG| is given. Under this condition, |DF| can be calculated by

|DF| =
√
|DG|2 + |FG|2 − 2 · |DG| · |FG| · cos∠DGF (11)

where 
∠DGF = ∠DGE +∠EGF

∠DGE = arccos |DG|2+|EG|2−|DE|2
2·|DG|·|EG|

∠EGF = arccos |EG|2+|FG|2−|EF|2
2·|EG|·|FG|

(12)

From Equations (11) and (12), we can come up with another deduction:

Deduction 3 If two triangles have a common side and all the sides’ values are given, the distance
between the two non-adjacent vertexes is unique and can be calculated by Equations (11)
and (12).
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In what follows, the hole–center distance will be calculated by these three deductions.
As shown in Figure 6, O1 is the center of measured hole 1 whereas O2 is the center of measured

hole 2. When the measuring head is put at position M, |O1M| can be obtained by Deduction 1.
The radius of circle M is |O1M|. In the nature of things, O1 should be on circle M. In a similar way, O1

should also be on circle N and circle P, whose radiuses are, respectively, |O1N| and |O1P|. As a result,
O1 can be determined by the unique common point of circle M, circle N, and circle P. Likewise, O2 can
also be fixed by circle Q, circle S, and circle T. Triangle O1MP and triangle QMP have a common side,
MP. Based on Deduction 3, |O1Q| can be calculated by Equation (13).

|O1Q| =
√
|O1M|2 + |MQ|2 − 2 · |O1M| · |MQ| · cos∠O1MQ (13)
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where 
∠O1MQ = ∠O1MP +∠PMQ

∠O1MP = arccos |O1 M|2+|MP|2−|O1P|2
2·|O1 M|·|MP|

∠PMQ = arccos |MP|2+|MQ|2−|PQ|2
2·|MP|·|MQ|

(14)

Triangle O1MP and triangle MPS have a common side MP. Based on Deduction 3, |O1S| can be
acquired by

|O1S| =
√
|O1M|2 + |MS|2 − 2 · |O1M| · |MS| · cos∠O1MS (15)

where 
∠O1MS = ∠O1MP +∠PMS

∠O1MP = arccos |O1 M|2+|MP|2−|O1P|2
2·|O1 M|·|MP|

∠PMS = arccos |MP|2+|MS|2−|PS|2
2·|MP|·|MS|

(16)

In a similar way, |O1O2| can be deduced between triangle QO1S and triangle QO2S.

|O1O2| =
√
|O1Q|2 + |QO2|2 − 2 · |O1Q| · |QO2| ·∠O1QO2 (17)

where 
∠O1QO2 = ∠O1QS +∠SQO2

∠O1QS = arccos |O1Q|2+|QS|2−|O1S|2
2·|O1Q|·|QS|

∠SQO2 = arccos |SQ|2+|QO2|2−|SO2|2
2·|SQ|·|QO2|

(18)

Based on Deduction 1, |O1M|, |O1N|, |O1P|, |O2Q|, |O2S| and |O2T| are known quantities.
Based on Deduction 2, |MP|, |MQ|, |PQ|, |MS|, |PS|, and |QS| are also known quantities.
As a result, the hole–center distance |O1O2| can be calculated from Equation (17). The contribution of
this measurement model is that the measuring head does not need in-situ calibration and the inspection
process can be immediately carried out as long as the head is installed onto the NC machines.Sensors 2016, 16, 1679 8 of 13 
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Figure 6. The measurement model of the hole–center distance.

4. The Error Discussion on Practical Application

4.1. Data Sample for Calibrating Intrinsic Parameters

As in the analysis in Section 3.1, the intrinsic parameters can be calibrated by Equation (4). As the
number of the intrinsic parameters is six, we need at least six groups of measurements ({d1i, d2i, d3i}).
By changing the relative position between the measuring head and measured hole, plenty of groups of
measurements ({d1i, d2i, d3i}) can be acquired. To clarify the influence of the group number i on the
measurement results, the simulation is performed as shown in Figure 7. In the simulation analysis,
the errors of the measurements ({d1i, d2i, d3i}) are assumed as 0.1%. The relative positions are chosen
randomly. Two inner diameters of 150 mm and 275 mm are taken as examples. From Figure 7 we can see
that, the measurement uncertainty firstly decreases as the number of points increases. The reason for
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this is that the measurement accuracy improves with increasing the measurement information. Then,
the measurement uncertainty increases as the number of points sequentially increases. The reason is
understandable as the errors of measurements ({d1i, d2i, d3i}) reduce the final accuracy. In Figure 7a,
the measurement uncertainty reaches the minimum value when i is approximately 30. In Figure 7b,
the measurement result contains the least error when i is about 50. From the simulation we can know
that i should be chosen as 30 while measuring the 150 mm diameter whereas i should be given as 50
when measuring the 275 mm diameter.
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Figure 7. The number selection of calibration points. (a) The diameter of the measured hole is 150 mm;
(b) The diameter of the measured hole is 275 mm.

4.2. Actual Measurement of a Connecting Rod

As discussed in Section 3.2, the measured hole–center distance is the common point of the three
circles. In practice, the three circles may not have any common point because of the measurement errors
of the head and the coordinate errors caused by NC machines. As shown in Figure 8, the common point
in theory may be converted into the crossed regions as shown by Details 1 and 2. Since the crossed
regions are really small, their shapes can be deemed as triangles. In this case, the measured hole–center
distance is regarded as the barycentric coordinate of the triangle. For example, the barycenter of
triangle IJK in Detail 1 can be expressed as:

xO1 =
xI+xJ+xK

3
yO1 =

yI+yJ+yK
3

zO1 =
zI+zJ+zK

3

(19)

where (xO1, yO1, zO1) is the coordinate of O1; (xI, yI, zI) denotes the coordinate of point I; (xJ, yJ, zJ)
represents the coordinate of point J; (xK, yK, zK) is defined as the coordinate of K.
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5. The Experiment

As shown in Figure 9, the intrinsic parameters are calibrated by using standard ring gauges.
The inner diameter of the small ring gauge is 150 mm and the inner diameter of the big ring gauge
is 275 mm. The data samples for calibrating the lower bore gauge are collected at 30 measuring
positions. The data samples for calibrating the upper bore gauge are gathered at 50 measuring
positions. The intrinsic parameters (the definition was given behind Equation (1)) are finally shown
in Table 1. The estimated values of the intrinsic parameters can be calculated through the JADE
algorithm [22]. The JADE algorithm, proposed by Zhang and Sanderson, is successfully applied to
solve numerous optimization problems in diverse fields. It offers great flexibility, robustness and
precision with respect to various types of functions. JADE is a mature algorithm and its application
detail can refer to [22].
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Table 1. The intrinsic parameters.

The Lower Bore Gauge (◦, mm)

θ1 θ2 θ3 θ4 θ5 r
29.832 29.316 1.283 −1.119 1.938 71.3320

The Upper Bore Gauge (◦, mm)

θ1 θ2 θ3 θ4 θ5 r
29.727 29.576 −0.345 1.461 1.618 70.9794

The in-situ measurement of a connecting rod is shown in Figure 10. The measurement procedure
is described as below:

Step 1 The measuring head is installed onto the spindle of the NC machine.
Step 2 The lower bore gauge of the measuring head is put inside hole 1 (the smaller hole).

The measurement data are transmitted to the data processing system through Bluetooth.
Step 3 The relative positions between the measuring head and the measured hole are changed

three times and the measurement data with their corresponding coordinates in the CSNC
are recorded.

Step 4 In a similar way, the bigger hole can be measured by the upper bore gauge of the
measuring head.

Step 5 The measuring data are finally computed by the data processing system and shown on the
liquid-crystal display.

The measuring results are show in Table 2. The value of the measurement error can be calculated
by the following equation:



Sensors 2016, 16, 1679 10 of 12

Measuring error = Standard value −Measured value (20)

The standard values are provided by a high-accuracy CMM. The verification experiments for the
proposed method show that the measurement errors of the dimension parameters are within 10 µm
and the measurement error of the position parameter is within 15 µm. Consequently, the proposed
method can meet the requirements of the assembly of marine engines. The measurements for these
parameters can be done within 1 min.
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Table 2. The critical parameters of the measured connecting rod.

Inner Diameter of
Smaller Hole

Inner Diameter of
Bigger Hole

Hole–Center
Distance

Measured value (mm) 150.0172 275.0231 350.0063
Standard value (mm) 150.0227 275.0292 350.0185
Measuring error (µm) 5.5 6.1 12.2

Note that each time when the measuring head is installed onto the spindle of NC machines,
the installation pose cannot be the same. To test the influence of the head’s installation on the
measurement results, the head is installed and uninstalled to measure the critical parameters 10 times.
The measurement results are shown in Figure 11. From Figure 11a, it can be seen that the measurement
uncertainties are all within 10 µm. These data show that the installation parameters do not have
obvious effects on the measurements of the inner diameters. It should also be found from Figure 11b
that the installation pose does not have a clear relationship with the measurement accuracy.
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6. Conclusions 

A fast and in-situ measuring method is presented in this paper for the parameters of a 
connecting rod. Based on the proposed method, a novel measuring head is developed by using 
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6. Conclusions

A fast and in-situ measuring method is presented in this paper for the parameters of a connecting
rod. Based on the proposed method, a novel measuring head is developed by using several LDSs.
The measurement model and key measuring factors are discussed in detail. The experiment results
show that the measuring error of dimensional parameters is within 10 µm, while the measuring error
of the positional parameter is within 15 µm. Hence, the method proposed is proved to have acceptable
accuracy and reliability. It provides an effective way for in-situ quality control of the dimensional and
positional parameters.
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