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Abstract: Cognitive radio sensor networks are one of the kinds of application where cognitive
techniques can be adopted and have many potential applications, challenges and future research
trends. According to the research surveys, dynamic spectrum access is an important and necessary
technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access
are based on spectrum holes and they have some drawbacks, such as low accessibility and high
interruptibility, which negatively affect the transmission performance of the sensor networks.
To address this problem, in this paper a new initialization mechanism is proposed to establish
a communication link and set up a sensor network without adopting spectrum holes to convey
control information. Specifically, firstly a transmission channel model for analyzing the maximum
accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid
spectrum access algorithm based on a reinforcement learning model is proposed for the power
allocation problem of both the transmission channel and the control channel. Finally, extensive
simulations have been conducted and simulation results show that this new algorithm provides
a significant improvement in terms of the tradeoff between the control channel reliability and the
efficiency of the transmission channel.
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1. Introduction

Cognitive radio (CR) is a promising technology which can fully use the spectrum by dynamically
accessing the primary network. Consequently, dynamic spectrum access technology plays a very
significant role and has become a hot research topic. As illustrated in Figure 1, dynamic spectrum access
strategies can be classified into three models, e.g., the dynamic exclusive use model, the open sharing
model, and the hierarchical model. Among those models, the hierarchical model is a hierarchical
access structure for primary users (PUs) and secondary users (SUs), and is the most promising and
effective one for current spectrum access policies [1]. The basic idea of the hierarchical model is that
the SUs can use the licensed spectrum of PUs, as long as they can limit any interference perceived
by PUs. Furthermore, there are two models of the spectrum sharing between PUs and SUs, namely
spectrum underlay and spectrum overlay.

Spectrum underlay introduces severe constraints on the transmission power of the SUs, therefore,
it spreads the transmitted signals over a wide frequency band. The SUs can achieve low data rates
with very low transmission power. If the PUs transmit in all the time-slots, the spectrum underlay
does not need to detect and perceive the spectrum of the PUs.
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Figure 1. The dynamic spectrum access models . 
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Spectrum overlay, first presented by Mitola, can be also regarded as opportunistic spectrum access
(OSA). Compared to the spectrum underlay, this model needs to detect and perceive the spectra of
the PUs. It finds spatial and temporal spectrum white space for SUs to use, which is also termed as
the spectrum holes (SHs). Therefore, this model does not need to obey the severe transmission power
constraints of the SUs, and the SUs can achieve high date rates with high transmission power.

In most cases, the spectrum overlay and underlay models are used separately. In this paper,
a hybrid spectrum access model is proposed to use both the overlay and underlay methods
simultaneously to further improve the current spectrum efficiency.

The spectrum hole (SH) is a part of the licensed spectrum which is not being used by the owner
during a period of time [1]. Among key technologies in CR, the design of the control channel is
essential because the SUs need a control channel to coordinate and they have no licensed spectrum to
carry the control information. The vulnerabilities resulting from utilizing a dedicated control channel
have been well studied. Existing studies of the control channel have shown that using SHs to convey
control information is only a basic approach and many shortcomings have been pointed out [2–6].
Firstly, the SUs may not have a common SH as control channel which would lead to low connectivity
of the SUs. Secondly, the arrival of PU is unknown which causes interruptions in the use of the
control channel.

As the SUs communicate only in the SHs, the SUs need information about those unused bands
in which the PUs are inactive. Each SU should maintain a list of SHs which probably will differ
from one to another. The SUs can communicate with each other if there is a common SH in their
lists. Consequently, there should be a way to pass information about the lists between SUs during the
initial communication.

Most of the existing MAC protocols of CR sensor networks are focused on avoiding common
control channels. However, in this paper, a new method of spreading the power spectrum density in
a control channel over an ultra-wide bandwidth is proposed to exploit the underused (gray) spectral
regions. Like underlay spectrum sharing, the SUs can always access to the spectrum as long as the
interference causing by SUs at the PU receiver can satisfactorily meet the threshold constraint [7].

According to the above analysis and considering the low power spectrum density of underlay
waveforms, we propose to design a control channel to convey a small amount of control information,
which is termed as SUCCH. At the same time, the spectrum overlay waveform is adopted to exchange
a large amount of date, which is named as SUTCH. Our study is based on a spectrum sharing
system consisting of two different waveforms. The first one is the Direct Sequence Code Division
Multiple Access (DS-CDMA), which is defined as the underlay waveform used to convey control
information. The second one is the Non-Contiguous Orthogonal Frequency Division Multiplexing
(NC-OFDM), which is defined as the overlay waveform used to convey data information. The spectrum
of NC-OFDM-based SUs is shared with the PUs which utilize DS-CDMA. Spreading Gain of DS-CDMA
provides the required anti-jamming capability for the interference which may be caused by the SUs.
In the meantime, based on the properties of the non-continuous power spectrum of NC-OFDM, it is
more flexible for the SUs to access the SHs which are discontinuous in the frequency spectrum [8]. It is
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of great significance to discuss and study this issue, since the existing DS-CDMA is anticipated to be
one of the spectrum sharing applications used in the future [9].

In order to set up the hybrid spectrum access model, several questions should be answered.
The first one is the procedure for network setup between two SUs. The second one is the maximum
access capacity of the SUTCH with different strategies. The third one is the reliability of the SUCCH.
The fourth one is the power allocation strategies of the SUs between the SUTCH and SUCCH. In the
rest of this paper, the above questions will be answered in detail. Specifically, Section 2 builds
application scenarios and proposes a mechanism for establishing the CR sensor networks. In Section 3,
a transmission channel model for analyzing the maximum access capacity for different polices with
different objectives in the fading environment will be discussed. In Section 4, the reliability of the
SUCCH is analyzed, and a hybrid spectrum access algorithm based on reinforcement learning model is
proposed for the power allocation problem of the SUTCH and the SUCCH. Finally, Section 5 presents
our simulation results and Section 6 concludes the paper.

2. Application Scenarios

In this section the application scenario is described as below. As shown in Figure 2, there are four
active PUs and each one is authorized to use a certain frequency band to communicate. The different
types of circles represent the interference ranges of each PU, and six SUs are shown in Figure 2. In this
paper there is a channel which is termed a SH and a SU that can communicate in this channel because
it is a channel whose authorized PU is currently inactive or the SU is beyond the interference range of
that PU.
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Figure 2. The SUs among four PUs.

A SU can establish the connection with another SU as long as they both have a shared SH in
their respective lists of SHs, so it is important for a SU to identify its neighbors during the initial
communication used to set up CR sensor networks. In order to fully utilize the primary spectrum and
maximize the efficiency of spectrum, underlay and overlay transmissions, which exploit the white and
grey spaces respectively, should be used together [1,10,11]. However, for spectrum underlay, the SUs
need to transmit at low power to avoid any interference with the PUs, whereas the PUs will cause
interference with SUs [12]. In consideration of the low power spectrum density of underlay waveforms,
the control channel is designed to convey a small amount of control information, which is named as
SUCCH, while the spectrum overlay waveform is used to exchange a large amount of data, which is
named as SUTCH. Considering the perspective of a SU, the current spectrum usage is depicted in
Figure 3.
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Figure 3. Spectral occupancy of the hybrid access.

Before explaining the protocol used to set up CR sensor networks, it is necessary to discuss the
capabilities of the SUs and define some terms that will be used in the coming discussion. A SU can
switch between spectra autonomously and sense the spectrum. Each SU identifies itself by using
a different Orthogonal Variable Spreading Factor (OVSF) [12] over spectrum underlay. The number of
the SUs in the current CR sensor networks is a priori information available to all the SUs.

The proposed protocol is firstly discussed under a distributed architecture scenario, which is
also called Multi-Hop Architecture. Each SU initially starts to send beacons in different OVSF over
spectrum underlay to indicate its presence. At the mean time every SU monitors the spectrum underlay
by randomly selecting a form of OVSF while initially starting a timer which counts to TS seconds.
If none of those beacons is captured during the TS seconds, the SU will change to another form of
OVSF in the next time slot. If a beacon is received by selecting the current form of OVSF, the SUs
will sent a response in the same form which is considered as the task of carrying on the negotiations.
After exchanging the control information with each other, the common SH in the two SUs will start to
provide service. The procedure is simply illustrated in Figure 4.
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In Figure 4, “Request to Send (RTS)” and “Clear to Send (CTS)” exchange messages to reserve
a channel for communications in a similar manner that the IEEE 802.11 Distributed Coordination
function (DCF) designs the MAC protocol [13]. RTS or CTS carries information about SUs’ lists of SH
and accesses SUs states.

3. Subchannel Selection Policies

Suppose the wireless channel is a frequency-selective Additive White Gaussian Noise (AWGN),
the bandwidth is B Hz, and the power spectral density is N0. In this paper, it is divided into N Rayleigh
fading subchannels, and the subchannel coherence bandwidth is ∆f Hz. Therefore, B = N∆f. These
subchannels are indexed by i = 1, 2, . . . , N, and the gains of every subchannel are independent and
identically distributed (i.i.d).

Active PUs use DS-CDMA technology to access the spectrum band with spreading gain G.
According to the Central Limit Theorem, the interference process in the receiver of the SUs caused
by a large number of PUs is considered a Gaussian approximation. Furthermore, according to the
second-order statistics, the interference process is a white process [14]. Therefore, in each subchannel,
the average interference introduced by the PUs at the receiver of the SUs is (K − 1)N0∆f, K ≥ 1, where
K is a system parameter related to the characteristics of PUs network [15].

As shown in Figure 4, the SUs utilize NC-OFDM to access the SUTCH which is indexed by
j = 1, 2, . . . , M, 0 ≤M ≤ N. The SUs spread their SUCCH power spectrum density over an ultra-wide
bandwidth to exploit the underused (gray) spectral. Q is defined as the interference threshold of the
PUs, which is the maximum allowable temporal interference in the receiver of the PUs caused by
concurrent activity of the SUs in the same subchannel. As mentioned in Figure 4, the protocol to set up
CR sensor networks is based on the time-slot structure. Therefore, in order to satisfy the interference
threshold constraint, the power of the SUs accessing the SUTCH should be controlled in each time-slot.

In this paper, the structure of the accessing system is depicted in Figure 5. For subchannel j,
the instantaneous gain between the transmitter and receiver of the SU is defined as gj

ss, and the
instantaneous gain between the transmitter of the SU and the receiver of the PU is defined as gj

ps.

Subscripts s and p refer to the secondary and the primary user, respectively. The gj
ss and gj

ps are
assumed as the stationary and ergodic independent distributed random variables with unit-mean.
Their Probability Density Functions (PDFs) are defined as f j

ss(gj
ss) and f j

ps(gj
ps), respectively. Channel

gains gj
ss and gj

ps are i.i.d., j = 1, 2, . . . , M. In this paper, we suppose the perfect Channel Side

Information (CSI) pair (gj
ss, gj

ps) can be available in the transmitters. Here, the CSI contains the
probability distribution of the channel gain, as well as the actual value at a certain time-slot. Actually,
the CSI pair can be estimated by a spectral coordinator or proper signaling. Note that, the result
derived from this assumption is an upper-bound in the case without a perfect CSI pair.
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In this paper, we focus on the maximum achievable spectrum capacity of SUTCH, which is
studied [16,17]. Since more than one SUs will compete to access to the underused frequency band.
The SUs’ total available spectrum capacity is upper-bound by the case of only one SU, which is due to
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the fact that SUs will impose interference on each other. Therefore, the discussion of the individual SU
can also be used as the upper-bound of the total spectrum capacity of all SUs.

At a given time-slot, the power allocation policy of SUTCH is defined as ρψ, which is based on
a selection criterion ψ(,..,), and set:

µj
∆
= ψ

(
gj

ps, gj
ss

)
(1)

For the observing random variables µj, j = 1, . . . , M, the selection sequence γM is defined
as follows:

γM = (µr1 , µr2 , . . . , µrM )
∆
= ρψ (µ1, µ2, . . . , µM) (2)

The M-tuple selection sequence is arranged, so that its first element is the most suitable subchannel
for SUTCH based on the selection criteria in Equation (1). The probability distribution function of
random variable γj is defined as kj(γ), j = 1, . . . , M. It is important to note that if j1, j2 are entities
in γM and j1 < j2, then it can be considered that compared to the choice j2, the SUs can get a better
performance by choosing subchannel with index j1.

Suppose ψ(gj
ps, gj

ss) is constant, which means subchannels are considered equally. The SUs will
randomly choose M out of N subchannels without any a priori information. This selection strategy
is defined as the uniform subchannel selection, whereas, if the prior information of the subchannel
obtained by cooperation or other techniques is −1, the SUs will choose the corresponding value of
ψ(gj

ps, gj
ss). This selection strategy is defined as the non-uniform selection strategy.

The transmission power of the SUTCH in the subchannel j is referred to Psj. Ps(Ps1, . . . , PsM)
is defined as the transmission power vector of SUTCH over M subchannels. Suppose that SUTCH
accesses to the chosen subchannel j with the transmission power of Psj, and the corresponding
interference at the receiver of the PUs is Qj, where:

Qj = gj
psPsj (3)

Since the PUs utilize DS-CDMA with spreading gain G, therefore, the narrow-band interference
Qj spreads over the whole bandwidth and manifests itself as an equivalent wide-band interference
equal to G−1Qj at the receiver of the PUs. Suppose the SUTCH transmits with the transmission power
vector Ps(Ps1, Ps2, . . . , PsM) in M accessible subchannels. Correspondingly, an equivalent narrow-band
interference vector Q = (Q1, Q2, . . . , QM) will be imposed on the receivers of the PUs. Meanwhile,
the SUCCH transmits with the transmission power vector Psc(Psc1, Psc2, . . . , PscN). Therefore, in order
to comply with the interference threshold Q of the PUs, the constraint function is as follows:

1
G

(
M

∑
j=1

gj
ssPsj +

N

∑
i=1

gi
psPsci

)
≤ Q (4)

In this paper, the objective is to achieve the maximum capacity of SUTCH. As discussed above,
the transmitting power of SUTCH in each accessible subchannel should be optimally allocated.
Meantime, the interference threshold constraint should also be considered. Consequently, according to
selection policy ρψ, for a given Q and for M accessible subchannels, the maximum capacity of SUTCH
is defined as Cψ

M, which can be obtained by the following constrained optimization problem:

Cψ
M = max

Ps

M
∑

j=1
∆ f

∫
gj

psgj
ss

log
(

1 +
gj

ssPsj

KN0∆ f+gj
ssPscj

)
× f j

ss

(
gj

ss

)
f j
ps

(
gj

ps

)
dgj

ssdgj
ps

s.t. 1
G

(
M
∑

j=1
gj

psPsj +
N
∑

i=1
gi

psPsci

)
≤ Q

M
∑

j=1
Psj +

N
∑

i=1
Psci ≤ Ps

(5)
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where, Q is the interference threshold of the PUs, which is the maximum allowable temporal
interference in the receiver of the PUs caused by concurrent activity of the SUs in the same subchannel.
Ps N0 is the power spectral density, ∆f is the subchannel coherence bandwidth. K is a system parameter
related to the characteristics of PUs network [15] within the range of 2–8. Equation (5) is derived from
Shannon’s Capacity formula with the SUs power vector Ps and Psc. Equation (6) is the constraint
function of interference threshold of the PUs and maximum transmitting power of the SUs.

Actually, in contrast to the constraint of maximum transmitting power of the SUs, the constraint
function of interference threshold of the PUs is much tighter [18]. Therefore, in this paper, the constraint
of maximum transmitting power of SUs is not considered. At the same time, as mentioned above,
the SUCCH spreads over an ultra-wide bandwidth to exploit the underused spectrum with a very
low PSD, therefore, the interference caused by SUCCH is very low. In this paper, in order to simplify
the analysis, the effect of SUCCH will not be considered, and Equation (5) will be further simplified
as follows:

Cψ
M = max

Ps

M
∑

j=1
∆ f

∫
gj

psgj
ss

log
(

1 +
gj

ssPsj
KN0∆ f

)
× f j

ss

(
gj

ss

)
f j
ps

(
gj

ps

)
dgj

ssdgj
ps

s.t. 1
G

(
M
∑

j=1
gj

psPsj

)
≤ Q

(6)

Suppose ψ
(

gj
ps, gj

ss

)
= 1, thus the SUs will randomly choose M out of N subchannels without any

priori information by ρ1, which is a uniform subchannel selection policy. Consequently, substituting
Psj = Qj/gj

ps, j = 1, . . . , M and defining θQj , Qj/KN0∆ f Equation (6) can be simplified as follows:

Cρ1
M = max

Q

M
∑

j=1
∆ f
∫
νj

log
(

1 + νjθQj

)
hj
(
νj
)
dνj

s.t.
M
∑

j=1
Qj = GQ, 0 ≤ Qj ≤ GQ

(7)

where vj , gj
ss/gj

ps, 0 ≤ vj ≤ ∞, vj is the reward factor of the subchannel j. θQj is defined as the
spectrum sharing load factor of the subchannel j.

Suppose the statistics characteristics of
√

gj
ps,
√

gj
ss is i.i.d. Rayleigh random variables, gj

ps and

gj
ss are exponentially distributed random variables with unit-mean, therefore, the PDF of vj can be

converted into [17]:

hj(νj) = d
dvj

∫ ∞
0

∫ gj
psvj

0 e−gj
ps e−gj

ss dgj
psdgj

ss

=
∫ ∞

0 gj
pse−gj

ps e
−gj

ps
gj

ss
gj

ps dgj
ps

=
∫ ∞

0 gj
pse−gj

ps(1+νj)dgj
ps

= − 1
1+νj

{[
gj

pse−gj
ps(1+νj)

]∣∣∣∣∞
0
−
∫ ∞

0 e−gj
ps(1+νj)dgj

ps

}
= − 1

(1+νj)
2

[
e−gj

ps(1+νj)
]∣∣∣∣∞

0
= 1

(1+νj)
2 0 < νj < ∞

(8)

Substituting Equation (9) into Equation (7), and integrating by part, Equation (10) can be gotten
as follows, which is the simplified optimization problem of Cρ1

M:
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Cρ1
M = max

θQ

M

∑
j=1

∆ f
θQj

θQj − 1
log
(

θQj

)
s.t.

M

∑
j=1

θQj = GNθQ, 0 ≤ θQj ≤ GNθQ

(9)

where, θQ is defined as the spectrum sharing load factor, and θQ = (θQ1 , θQ2, . . . , θQM) is defined as
the spectrum sharing load vector:

θQ
∆
=

Q
KN0N∆ f

=
Q

KN0B
(10)

Furthermore, the following pseudo linear approximation is used to get an approximate solution
for Equation (10) [16]:

x
x− 1

log(x) ≈ −1.2015− 0.0052x + 1.0772× log (3.0262x + 308829) (11)

Substituting Equation (12) into Equation (10), the Lagrangian function of the optimization problem
Equation (10) is shown as follows [19,20]:

L(θQ, λ) =
M
∑

j=1
−1.2015 +−0.0052× θQj + 1.0772× log

(
3.0262× θQj + 3.8829

)
−λ

(
M
∑

j=1
θQj − GNθQ

) (12)

where λ is the Lagrangian coefficient. The derivative with respect to the θQj on Equation (13) is taken,
and then it is equal to zero, the following formula can be obtained:

θ∗Qj
=

1.0772
λ∗ + 0.0052

− 3.8829
3.0262

. (13)

Substituting Equation (14) into Equation (10), the following formula can obtained:

M

∑
j=1

[
1.0772

λ∗ + 0.0052
− 3.8829

3.0262

]
= GNθQ (14)

Equivalently, Equation (16) can be derived from Equation (15):

λ∗ = −0.0052 +
1.0772

GNθQ
M + 3.8829

3.0262

. (15)

Eventually, substituting Equation (16) into Equation (14) gives:

θ∗θj
=

GNθQ

M
, j = 1, 2, . . . , M (16)

Note that Equation (17) suggests that for given G, N, M and θQ, the maximum capacity is achieved
by dividing the total acceptable interference GNθQ into equal portions for M accessible subchannels.
Actually, it is a direct consequence of selecting M out of N subchannels without any prior knowledge.
Furthermore, according to Equation (3) and θQj , Qj/KN0∆ f , the optimal transmitting power vector
P∗s can be obtained as follows:

P∗s =

(
1

g1
ps

GQ
M

,
1

g2
ps

GQ
M

, . . . ,
1

gM
ps

GQ
M

)
(17)
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Equation (18) suggests that the interference share for each accessible subchannel j, θQj is mapped

to the corresponding transmission power Psj, proportional to 1/gj
ps. So, if gj

ps is large, then the SUs
will creates a large interference in the receivers of Pus. In this case, Equation (18) suggests a lower SUs
transmission power in accessible subchannel j.

Equivalently, substituting Equation (18) into Equation (10), Equation (19) can be derived:

Cρ1
M ≈ M∆ f

GNθQ

GNθQ −M
log
(

GNθQ

M

)
(18)

In a practical case, Q = G−1N0B and M < N, the spectrum sharing load factor can be obtained
from Equation (17) as θθj = N/KM, which is much higher than unity.

As mentioned above, ρ1 randomly choose subchannels, which ignores the fact that it is more
reasonable for the SUs to allocate higher transmission power to certain subchannels because of their
corresponding CSIs, so it is essential to discuss the non-uniform selection policy for SUTCH with
a prior knowledge of CSIs pair (gj

ss, gj
ps), since it will lead to a larger capacity or a smaller interference

on the PUs.
Actually, an appropriate selection policy should consider the interference of the PUs receivers

caused by SUs transmission. Such policy should select the lower subchannel gain of gj
ps, because it

will create a lower interference in the receivers of the PUs. Therefore, a lower gj
ps will give the SUs the

flexibility of allocating a higher power, which will result in a higher capacity. Such a selection policy is
named as SU-PU-based selection policy, which is simplified as ρps. In order to implement ρps, the SUs

requires gj
ps during each time-slot. Therefore, a signaling channel between the receivers of the PUs and

the transmitters of the SUs is required.
Similar to ρps, another selection policy can be derived. It will select those subchannels which

achieve the highest capacity corresponding to allocating the transmitting power of SUs. Such policy
selects the subchannel with the higher gj

ss, because it will create a higher power in the receivers of the
SUs. Such selection is name as SU-SU-based selection policy, which is simplified as ρss. In order to
implement ρss, the SUs requires gj

ss during each time-slot. Therefore, a signaling channel between the
receivers of the SUs and the transmitters of the SUs is also required. In the following, the maximum
capacity is derived with different selection policy ρps and ρss.

Considering ρps, the selection criteria can be assumed as follows:

ψ
(

gj
ps, gj

ss

)
= gj

ps (19)

Consequently, µj = gj
ps and based on µj, j = 1, 2, . . . , M, the selection sequence is defined

as follows:
γM = (µ1, µ2, . . . , µM)

∆
= ρps (µ1, µ2, . . . , µM) (20)

where µ1 ≤ µ1 ≤ . . . ≤ µM. Using order statistics [21], the probability distribution function of µj, ∀j is
shown as follows:

k j(µ) = NjF
j−1
µ (µ)

[
1− Fµ (µ)

]N−j fµ (µ) (21)

where:
Nj

∆
=

N!
(j− 1)!(N − j)!

, (22)

and fµ(µ), Fµ(µ) are the probability density function and probability distribution function of µ.
Assuming the same assumption as discussed above in Equation (9) we obtain:

fµ(µ) = e−µ, Fµ(µ) = 1− e−µ. (23)
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Equivalently:
k j(µ) = Nj(1− e−µ)

j−1e−µ(N−j+1). (24)

Using a binomial expansion to replace (1 − e−µ)j−1 in Equation (25) gives:

k J(µ) = Nj

j−1

∑
l=0

Fj−1
l e−µ(N−l), (25)

where, Fj−1
l ,

(
j− 1

l

)
(−1)j−1−l .

Thus, the optimization problem of maximizing the capacity of SUTCH, while satisfying the
tolerable interference constraint of the PUs with selection policy ρps is shown as follows:

C
ρps
M = max

θQ

M
∑

j=1

j−1
∑

l=0
∆ f NjF

j−1
l

θQj
log
[
(N−l)θQj

]
(N−l)θQj

−1 ,

s.t.
M
∑

j=1
θQj = GNθQj , 0 ≤ θQj ≤ GNθQ.

(26)

However, in practice, M < N, thus, NθQj � 1. Therefore, Equation (27) can be approximated by
Equation (28):

C
ρps
M ≈ max

θQ

M
∑

j=1

j−1
∑

l=0
∆ f

Nj F
j−1
l

N−l log
[
(N − l) θQj

]
,

s.t.
M
∑

j=1
θQj = GNθQj , 0 ≤ θQj ≤ GNθQ.

(27)

The Lagrange multiplier algorithm can be used to solve the optimization problem in
Equation (28) [19]:

L(θQj , λ) =
M
∑

j=1

j−1
∑

l=0

Nj F
j−1
l

N−l log
[
(N − l) θQj

]
−λ

(
M
∑

j=1
θQj − GNθQ

) (28)

where, λ is the Lagrangian coefficient.
Taking the derivative with respect to the θQj on Equation (29) and setting it equal to zero gives:

θ∗Qj
=

1
λ∗

υj, (29)

where, vj , ∑
j−1
l−0 NjF

j−1
l /N − l. Substituting Equation (30) into Equation (28):

λ∗ =
1

GNθQ

M

∑
j=1

υj. (30)

Substituting Equation (31) into Equation (30):

θ∗Qj
= GNθQ

υj
M
∑

j=1
υj

. (31)

Furthermore, according to Equation (3) and θQj , Qj/KN0∆ f , the optimal transmitting power
vector P∗s with selection policy ρps can be obtained as follows:
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P∗s =
GQ
M
∑

j=1
υj

(
υ1

gj
ps

,
υ2

gj
ps

, . . . ,
υM

gj
ps

)
(32)

Equivalently, substituting Equation (33) into Equation (28) yields the approximated maximum
achievable capacity of the SUTCH with selection policy ρps, which is shown in Equation (34):

C
ρps
M ≈

M

∑
j=1

j−1

∑
l=0

∆ f NjF
j−1
l

N − l
log

(N − l) GNθQ
υj

M
∑

j=1
υj

 (33)

Considering ρss, the selection criteria can be assumed as follows:

ψ
(

gj
ps, gj

ss

)
= gj

ss (34)

Consequently, µj = gj
ss and based on µj, j = 1, 2, . . . , M, the selection sequence is defined

as follows:
γM = (µ1, µ2, . . . , µm)

∆
= ρss(µ1, µ2, . . . µm). (35)

where µ1 ≥ µ2 ≥ . . . ≥ µM. Using order statistics [21], the probability distribution function of µj, ∀j is
shown as follows:

k j(µ) = NjF
N−j
µ (µ)

[
1− Fµ(µ)

]j−1 fµ(µ), (36)

Using a binomial expansion to replace (1 − e−µ)N−j in Equation (37) one obtains:

k J(µ) = Nj

N−j

∑
l=0

FN−j
l e−µ(l+j), (37)

where FN−j
l ,

(
N − j

l

)
(−1)l .

Thus the optimization problem of maximizing the capacity of the SUTCH while satisfying the
tolerable interference constraints of the PUs with selection policy ρps is shown as follows:

Cρss
M = max

θQ

M
∑

j=1

N−j
∑

l=0
∆ f

Nj F
N−j
l

l+j

θQj
l+j

θQj
l+j −1

log
(

θQj
l+j

)
s.t.

M
∑

j=1
θQj = GNθQj , 0 ≤ θQj ≤ GNθQ.

(38)

Utilizing the following approximation for small values of θQj /l + j, l = 0, 1, . . . , N − j as:

θ∗Qj
= GNθQ

χ2
j

M
∑

j=1
χ2

j

(39)

where:

χj
∆
=

N−j

∑
l=0

Nj
FN−j

l

2(l + j)3/2 (40)

Furthermore, according to Equation (3) and θQj , Qj/KN0∆ f , the optimal transmitting power
vector P∗s with selection policy ρss can be achieved as follows:
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P∗s =
GQ
M
∑

j=1
χ2

j

(
χ2

1

gj
ss

,
χ2

2

gj
ss

, . . . ,
χ2

M

gj
ss

)
(41)

Equivalently, substituting (41) into (39) yields the approximated maximum achievable capacity of
the SUTCH under SU-SU-based selection policy is shown as follows:

Cρss
M ≈

M

∑
j=1

N−j

∑
l=0

∆ f
NjF

N−j
l

(l + j)3/2

GNθQ
χ2

j
M
∑

j=1
χ2

j


1/2

(42)

4. Reinforcement Learning for Improving Performance

In Section 3, the maximum achievable capacity of the SUTCH is analyzed. In Section 4,
the reliability of the SUCCH is taken into consideration by the Bit Error Rate (BER). Suppose the
signal waveform of the SUCCH is as follows:{

s1(t) =
√

εb
s2(t) = −

√
εb

(43)

Suppose the two signal waveforms in Equation (45) are transmitted with the same probability.
Since the SUCCH spreads its power spectrum density over an ultra-wide bandwidth to exploit
the underused (gray) spectral regions, the interference process caused by the PUs and the
SUCCH can be considered as a Gaussian approximation. If the SUCCH transmits s1(t), after the
despread-demodulation algorithm at the receiver of the SUCCH, the received signal is as follows:

r =
√

εb +
1

GSUCCH

(
n +

Y

∑
y=1

σPU +
M

∑
j=1

σSUCCH

)
(44)

where n is additive Gaussian white noise with mean zero, variance N0/2 and σPU, σSUCCH represent
the interference caused by the PUs and the SUTCH. GSUCCH is the spreading gain of the SUCCH.
The receiving signal of the SUCCH is compared with the threshold zero, which is as follows:

r

S1
≥
<
s2

0. (45)

Suppose the PUs and the SUCCH are i.i.d. random processes, then two probability density
functions of r are given as follows:

p (r|s1) =
1√√√√ 2π

GSUCCH

(
N0
2 +

Y
∑

y=1
σ2

pu+
M
∑

j=1
σ2

SUTCH

) e−(r−
√

εb)
2/N0

p (r|s2) =
1√√√√ 2π

GSUCCH

(
N0
2 +

Y
∑

y=1
σ2

pu+
M
∑

j=1
σ2

SUTCH

) e−(r+
√

εb)
2/N0

(46)

Consequently, the average error probability of the SUCCH is as follows:
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Pe = 1
2 [P (e|s1) + P (e|s2)]

= 1
2

[
0∫
−∞

p (r|s1)dr +
+∞∫
0

p (r|s2)dr

]

= Q

√√√√ GSUCCHεb
N0
2 +

Y
∑

y=1
σ2

PU+
M
∑

j=1
σ2

SUCCH


(47)

Suppose the control information of the SUCCH consists of 8 bits. According to Figure 4,
the transmitter and receiver of the SUs need to coordinate access to the spectrum three times. Therefore,
the probability of successful establishment for the SUCCH can be concluded. Furthermore, the total
interference caused by the SUs is divided into two parts: QSUTCH and QSUCCH. QSUTCH represents the
interference caused by the activity of the SUTCH, while QSUCCH represents the interference caused by
the activity of the SUTCH. The loading factor Г is defined as the radio of QSUTCH and QSUCCH, which
is as follows:

Γ ∆
=

QSUCCH

QSUTCH
, 0 < Γ < 1 (48)

In consideration of the link access protocol design described above and the probability of
successful establishment for SUCCH, the lower PSD of SUCCH means it may take more time to
complete the setup procedure for the SUs. In other words, accessible subchannels will remain idle
for a long period of time, which will lead to spectrum resource waste. However, increasing the
transmitting power of the SUCCH will decrease the transmitting power of the SUTCH, because of the
total interference constraint caused by the SUs is certain at a time-slot. Lower transmitting power of
the SUTCH will lead to reduce the capacity of data. Therefore, it’s a trade-off, which is essential to
choose the appropriate transmitting power of SUTCH according to the characteristic of the activity of
the PU. For this purpose, a hybrid access method based on Reinforcement Learning model is proposed
to solve this problem. The most prominent feature of Reinforcement Learning model is its autonomous
learning and online learning ability. By trial and error, Reinforcement Learning model can get a better
strategy based on the subchannel environment.

The Cross model [22] is now widely recognized as one of the Reinforcement Learning models
with memory-less characteristics, which means the learning process is a Markov Decision Process
(MDP). The basic idea is to follow the rules of “Results” [23], namely, if system is rewarded by choosing
a strategy, then the next period will get higher probability of choosing such strategy. On the contrary,
if it is punished, the next period will reduce the probability of choosing such strategy.

Bush and Mosteller [24] introduced the Bush-Mosteller model in 1955 [25]. Afterwards, Roth
and Erev improved this model and introduced the Roth-Ever model. Nowadays, as two models of
reinforcement learning, both of them [26] are widely adopted. They are easy to realize and have very
low computation complexity, which fit for the real-time applications. Therefore, in this paper, these
two models are introduced and some necessary modifications are adopted for the application, so the
model of MDP Cross and Statistical Mean are proposed.

As mentioned above, the process of connection setup is defined as the time-slotted. The optional
strategies for the SUs are defined as follows:

Asu = (Γ1, Γ2, . . . , Γn, . . . , Γn′ , ΓR) (49)

where Asu is the vector of optional strategies, R the number of the strategy, n is the chosen strategy and
n′ are not chosen strategies in a certain time-slot.

Consequently, during the time-slot k to access the initial stage, the SUs can update the probability
of choosing strategy n and n′ by the following formula:
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pn (k + 1) = pn (k) + R [u (k)]× (1− pn) n = Asu (k)
pn′ (k + 1) = pn′ (k)− R [u (k)]× pn′ (k) n′ 6= Asu (k)
R [u (k)] = α× u (k) + β

(50)

where Asu(k) is the accessible strategy of the SUs at the time-slot k, which can be seen the action of
MDP. pn(k) is the probability of the accessible strategy n of the SUs at time-slot k, pn(k) is the probability
of the unused strategy n′ of the SUs at time-slot k, which can be seen as the state of MDP. u(k) is the
reward function of the accessible performance of the SUs, which can be seen as the reward of MDP.
α and β are the adjustment factors, which can be used to determine the updating rate of u(k). R[u(k)] is
defined as the monotone function of u(k), which is −1 < R[u(k)] < 1. When the SUTCH successfully
accesses idle subchannels, it obtains the reward, which is defined as follows:

∂1 I (k)CSUTCH (k) T (k) (51)

where, T(k) is the transmission duration of the SUs in time-slot k and ∂1 is a weighting factor and I(k) is
indicator function, which is defined as follows:{

I (k) = 1 SUTCH successfully access at time-slot k
I (k) = 0 SUTCH fail to access at time-slot k

(52)

When the SUTCH fails to access the idle subchannels, it wastes the opportunity for transmission
and pays the cost, which is shown as follows:

− ∂2 I (k)CSUTCH (k) T′ (k) (53)

where, T′(k) is the access duration of the SUs and ∂2 is also a weighting factor.
Equivalently:

u (k) = ∂1 I (k)CSUTCH (k) T (k)− ∂2 I′ (k)CSUTCH (k) T′ (k) 0 ≤ ∂i ≤ 1, i = 1, 2 (54)

In order to weaken the impact of weighting on updating the probability of the choosing strategy,
Equation (52) can be further defined as follows:

pn (k + 1) = pn (k) + ε× [1− pn (k)] n = Asu (k) , u (k) > 0
pn (k + 1) = pn (k)− ε× pn (k) n = Asu (k) , u (k) < 0

pn′ (k + 1) = pn′ (k) + ε×
[
1− pn′ (k)

]
n′ 6= Asu (k) , u (k) < 0

pn′ (k + 1) = pn′ (k)− ε× pn′ (k) n′ 6= Asu (k) , u (k) > 0

(55)

where, ε = R[u(k)] = α × u(k)+ β. The solution to update the probability of choosing strategy is the
model of MDP Cross. If the u(k) > 0, which means the accessible strategy n is fit for the current
subchannel environment. Therefore, the pn(k + 1) should be increased, while the pn ′ (k + 1) should be
decreased. However, if the u(k) < 0, which means the accessible strategy n is not fit for the current
subchannel environment, therefore, the pn(k + 1) should be decreased, while the pn ′ (k + 1) should
be increased.

In practice, the probability of choosing a strategy is usually not only dependent on the latest result,
it also takes the “system history” into account. “System history” presents users with more information
about the status of environment. In order to incorporate the “system history”, the Statistical Mean is
proposed, in which the reward function is modified as follows:

pn
suc (k) = Fn

suc (k) /Fn
access (k)

pn
f ail (k) = Fn

f ail (k) /Fn
access (k)

u (k) = ∂1 pn
suc (k)− ∂2 pn

f ail (k)
(56)
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where, Fn
suc (k) represents the amount of data traffic which SUTCH has transmitted based on strategy n

at time-slot k, Fn
access (k) and Fn

f ail (k) are the idea and wasted amount, respectively.
Therefore the probability of choosing a strategy in the Statistical Mean is shown as follows:

pn (k + 1) = pn (k) + ε× [1− pn (k)] n = Asu(k), ∀j, j 6= n, un (k + 1) > uj (k + 1)
pn (k + 1) = pn (k)− ε× pn (k) n = Asu(k), ∃j, j 6= n, un (k + 1) ≤ uj (k + 1)

pn′ (k + 1) = pn′ (k) + ε×
[
1− pn′ (k)

]
n′ 6= Asu(k), un (k + 1) ≤ un′ (k + 1)

pn′ (k + 1) = pn′ (k)− ε× pn′ (k)
)

n′ 6= Asu(k), un (k + 1) > un′ (k + 1)

(57)

5. Simulation Study

In this section, the achievable spectrum efficiencies with different subchannel selection policies
are compared. Here, the spectrum sharing load factor is θQ =−30 dB and the number of subchannels is

N = 40. The mean values of random variables gj
ps, gj

ss are denoted by λps, λss, respectively. The achieved
spectrum efficiency is defined as follows:

Cρψ
= C

ρψ

M /M∆ f (58)

Here, in order to facilitate the comparison, Cρ1 is defined as the achieved spectrum efficiency
with uniform subchannel selection, Cρss is defined as the achieved spectrum efficiency with the
SU-SU-based selection policy, Cρps is defined as the achieved spectrum efficiency with the SU-PU-based
selection policy.

In the first simulation, suppose the interference threshold is a constant and λps = λss, and the Cρψ

is analyzed by increasing M, which is depicted in Figure 6.
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Figure 6. Achieved spectral efficiency of the SUTCH with three selection policies with M.

As depicted in Figure 6, Cρ1 is lower than that of Cρss and Cρps , therefore, it indicates that ρ1

has a poorer performance compared to ρss and ρps. For M = 1, the gap between Cρ1 and Cρss is large.
However, with the increase of M, the gap is reduced. This result is reasonable because the tap is related
to the M/N ratio, and the larger M/N, the lower the tap is. The reason is that for a larger M/N, the set
of M subchannels accessible by Cρ1 and Cρss probably has a large overlap.

With the increase of M, the rate of decrease of ρps is reduced with the slowest rate. This is mainly
due to the fact that the total interference threshold of the receivers of the PUs is a constant. At the
same time, ρps selects these subchannels with the lower gj

ps, which enables the SUs transmitters to
send the maximum transmitting power, without generating high interference on the receivers of the
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Pus and satisfying the constraint of the interference threshold of the PUs. According to Figure 6,
for a large number of accessible subchannels with constant interference constraint, ρps achieves
a better performance.

In the second simulation, the influence of the number of subchannels N is analyzed. Suppose
M = 1, λps = λss, the Cρψ is analyzed by increasing N. The result is depicted in Figure 7.Sensors 2016, 16, 1675 17 of 23 
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Figure 7. Achieved spectral efficiency of the SUTCH under three selection policies with N.

As seen in Figure 7, for all the different subchannel selection policies, the Cρψ increases with
the increase of N. This is because that the probability of selecting proper subchannels for SUTCH is
increasing with N. Furthermore, it is interesting to find that the gap between these three selection
policies also increases with the increase of N and ρss outperforms the others in this simulation.

In the third simulation, both the influences of gps and gss are evaluated. Suppose N = 40, M = 1.
The Cρψ is analyzed with λps/λss for different θQ values. The simulation result is depicted in Figure 8.
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Figure 8. Achieved spectral efficiency of the SUTCH under three selection policies with λps/λss.
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As depicted in Figure 8, it is clearly observed that the Cρψ of the SUTCH decreases with the
increase of λps/λss. Meantime, the Cρψ of the SUTCH decreases with the decrease of θQ. This is due
to the fact that with the increase of λps/λss, the attenuation of gps is decreased while that of gss is
increased. Consequently, the Cρψ of SUTCH is lower with the same transmitting power. On the other
hand, with the decrease of θQ, the power allocated to each selected subchannel is bound to be reduced,
which will lead to the deterioration in the Cρψ of the SUTCH.

Compared comprehensively, the Cρψ of the SUTCH with ρ1 has the lowest value, since it
just ignores any a priori knowledge of subchannel’s status. However, under different conditions,
the performance of the ρss and ρps are different. When the ratio of M/N is small, the best subchannel
selection policy is ρss. However, if the ratio of M/N is large, the best subchannel selection policy is ρps.

In the fourth simulation, as mentioned above, in Equation (49), the BER of SUCCH is derived.
Therefore, Monte Carlo Simulation is used to prove its rationality. The simulation parameters are
shown in Table 1. Suppose σ2

PU = σ2
SUTCH.

Table 1. Simulation parameters.

Parameter Value

N 40
Number of active PUs and SUs [1, 40]

GSUCCH 2048
Loading factor Г [1/160, 1/200, ..., 1/400]

Random test times for each Г 750,000

In Figure 9, the Simulation BER is calculated by Monte Carlo Simulation Experiment, while the
Theoretical BER is calculated by Equation (49). As depicted in Figure 9, the simulation BER follows the
Theoretical BER very closely.
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Figure 9. Theoretical and simulation BER versus different Г.

As mentioned in Section 4, the trade-off problem between the reliability of the SUCCH and the
efficiency of the SUTCH is discussed. Here, suppose the arrival rate of the authorized PUs accessing to
the subchannels follows a Poisson distribution. Simulation parameters are shown in Table 2. Suppose
λ

j
m represents the arrival rate of the PUs in accessible subchannels.

In the fifth simulation, the achieved spectral efficiency, achieved data traffic and unused data
traffic are used to compare the accessible performance of the three different selection policies. Here,
achieved spectral efficiency represents the proportion between data traffic and unused data traffic.
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Data traffic is the total amount of unit data traffic when the SUTCH has successfully accessed to the
idle subchannel, while unused data traffic is the achievable amount of unit data traffic during the time
cost in establishing the connection.

Table 2. Simulation parameters.

Parameters Values

N 40
M [0, 6]

Number of the active PUs 34
Number of the SUs 1

λps, λss 1, 1
λ

j
m, j = 1, 2, . . . , 6 [80, 160]

Q 0.0001 W
QSUCCH/Q [0.01, 0.02, ..., 0.1]

θQ −30 dB
G 128
e 0.01 and 0.05

∂1, ∂2 0.005, 0.005
R 10

Pn(k), n = [1, R] [1/R]
Learning time 100 (times of SUs access)

In Figures 10–12, the different performances of the three strategies are shown in detail. Random
strategy has the worst accessible performance, because it simply chooses the loading factor Г randomly
without proper accessible strategies. Meanwhile, the accessible performance of MDP Cross is
better than that of Statistical Mean. Furthermore, the fluctuation of performance curve of MDP
Cross is lower than that of Statistical Mean. It is due to the fact that, in the simulation, suppose
λ

j
m, j = 1, 2, . . . , 6 ∈ [80, 160] the state parameters of the accessible subchannel are changing very

fast, therefore, it is a quick-changing subchannel environment. In the quick-changing subchannel
environment, the history state information of subchannel environment is changing very fast. However,
Statistical Mean will use a lot of history information, so the fast-changing of history information will
make a bad influence on choosing the optimal allocation strategy of Г. Therefore, the accessible strategy
of MDP Cross fits better in the quick-changing subchannel environment.
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Figure 10. Achieved spectral efficiency of the SUTCH under three strategies with learning time.
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Figure 11. Achieved data traffic of the SUTCH under three strategies with learning time.
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Figure 12. Unused data traffic of the SUTCH under three strategies with learning time.

In the sixth simulation, different performances of the three strategies under constant application
scenarios are shown in Figures 13–15. Suppose λ

j
m is defined as constant, which is shown as follows:[

λ1
m, λ2

m, λ3
m, λ4

m, λ5
m, λ6

m

]
= [1/90, 1/100, 1/110, 1/120, 1/130, 1/140]
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Figure 13. Achieved data traffic of the SUTCH under three strategies with learning time.
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Figure 15. Unused data traffic of the SUTCH under three strategies with learning time.

As shown in these figures, the Random strategy still has the worst accessible performance.
Meanwhile, the accessible performance of Statistical Mean is better than that of MDP Cross.
Furthermore, the fluctuation of the performance curve of Statistical Mean is lower than that of MDP
Cross. It is due to the fact that, in a slow-changing subchannel environment, the slow-changing
of the history information will have a good influence on choosing the optimal allocation strategy
of Г. Therefore, the accessible strategy of Statistical Mean fits better in the slow-changing
subchannel environment.

In addition, as shown from Figure 10 to Figure 15, both Statistical Mean and MDP Cross can learn
and adapt to the subchannel environment, and converge to a stable state in a short time. Meanwhile,
they have the same rate of convergence. According to the analysis in Section 4, both Statistical Mean
and MDP Cross have low computation complexity. Therefore, they can be adopted in practice.

6. Conclusions

Dynamic spectrum access is an important and necessary technology for future cognitive sensor
networks. This paper identified and discussed a new mechanism to set up CR sensor networks without
using spectrum holes to convey control information. A transmission channel model was discussed for
analyzing the maximum access capacity of different policies and objectives in the fading environment.
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The maximum achievable capacity of the SUTCH under ρ1 achieves the poorest performance, since it
totally ignores any prior knowledge of the subchannel’s status. When M/N is small, the best policy for
subchannel selection is ρss. In contrast when this ratio is higher, ρss is better.

To solve the trade-off between transmitting power of SUTCH and SUCCH’s capacity, a hybrid
access method based on Reinforcement Learning model of MDP Cross and Statistical Mean is also
proposed. Both of them outperform the Random strategy, which verified the effectiveness of the
proposed methods. In addition, Statistical Mean is more suitable for slow variation application
scenarios while MDP Cross performs better in fast variation scenarios.

As is well known, there are many standard structure and policy of reinforcement learning, such as
Q-learning and greedy algorithm. Therefore, in the next research, the different learning function
and policy should be discussed, which can make a better trade-off between the performance and
computation complexity.
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