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Abstract: This study introduces the One-Class K-means with Randomly-projected features Algorithm
(OCKRA). OCKRA is an ensemble of one-class classifiers built over multiple projections of a dataset
according to random feature subsets. Algorithms found in the literature spread over a wide range
of applications where ensembles of one-class classifiers have been satisfactorily applied; however,
none is oriented to the area under our study: personal risk detection. OCKRA has been designed
with the aim of improving the detection performance in the problem posed by the Personal RIsk
DEtection(PRIDE) dataset. PRIDE was built based on 23 test subjects, where the data for each user
were captured using a set of sensors embedded in a wearable band. The performance of OCKRA
was compared against support vector machine and three versions of the Parzen window classifier.
On average, experimental results show that OCKRA outperformed the other classifiers for at least
0.53% of the area under the curve (AUC). In addition, OCKRA achieved an AUC above 90% for more
than 57% of the users.

Keywords: behavior analysis; classifier ensemble; personal risk detection; one-class classification;
wearable sensor

1. Introduction

Personal risk detection [1] has been defined as the timely identification of when someone is
in a dangerous situation, such as a health crisis or car accident or other events that may endanger
a person’s physical integrity. To structure this problem, Barrera-Animas et al. [1] suggested that people
usually behave according to the same behavioral and physiological patterns or small variations of
them. A risk-prone situation should produce sudden and significant deviations in these user patterns,
and the changes can be captured by a group of sensors, such as an accelerometer, gyroscope and
heart rate monitor, which are normally found in current wearable devices. The problem posed in [1]
is an anomaly detection problem, where the aim is to distinguish an unusual condition (possibly
a risk-prone situation) from a normal behavior. One-class classification mechanisms have proven
effective in this context. Indeed, Barrera-Animas et al. reported in [1] that a one-class support vector
machine (ocSVM) achieved the best performance and best average ranking compared with other
classifiers in tests.

Techniques for combining one-class classifiers aim to improve the classification performance
provided by single classifiers. Additionally, a promising approach for enhancing an ensemble involves
training one or several classifiers of the ensemble with different features of the dataset, where the
most common techniques are random feature selection methods, such as the random subspace method
(RSM, which is also called attribute bagging) and random partitions, subspace clustering, projection
methods, bagging and rotation forest [2–13].
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In this regard, Tax and Duin [2] and Nanni [4] used feature selection in order to train every single
classifier in an ensemble. The results obtained in both studies demonstrated that combining features is
more effective than combining different classifiers and, in general, produces better results than the
individual classifier counterpart.

Juszczak and Duin [3], Biggio et al. [5] and Medina-Pérez et al. [13] aimed to improve the
accuracy of classification by employing ensembles based on several instances of the same base
classifiers. The techniques used in [3,5] for feature subspace partition included fixed combining rules,
RSM and bagging. Juszczak and Duin successfully minimized the number of classifiers considered
for the ensemble, whereas Biggio et al. and Medina-Pérez et al. obtained improvements in both
the classification accuracy and robustness when they compared their ensemble approaches with
state-of-the-art classifiers.

Alternatively, Cheplygina and Tax [6] proposed applying pruning to an RSM of one-class
classifiers; they demonstrated that the performance could be noisy using RSM, and pruning
inaccurate classifiers from the ensemble was more effective than using all of the available classifiers.
Recently, Krawczyk in [8] proposed a technique for producing efficient one-class classifier ensembles
by combining a pruning algorithm with a weighted fusion module that controls the influence of the
selected classifiers on the final ensemble decision. The experimental results demonstrated that in
most cases, this method outperformed the state-of-the-art pruning algorithms for selecting one-class
classifiers from an ensemble.

Therefore, one-class classifier ensembles combined with classifier pruning and random feature
selection have the ability to outperform state-of-the-art one-class single classifiers in most cases.
In general, the ensembles exhibit robustness and diversity, which allow them to obtain better
classification accuracy.

Table 1 presents a summary and a brief comparison of the methods used by the studies reviewed
in this work. As can be noted, a wide range of applications has been considered, where ensembles of
one-class classifiers were applied satisfactorily, but none were used in our area under study: personal
risk detection.

Table 1. Summary and comparison of the related research.

Reference Feature
Selection

Object
Selection

Ensemble Type
Pruning
Technique Application Domain

Tax and Duin [2]
√

× C1 and C2 × Handwritten recognition
Juszczak and Duin [3]

√
× C1 × Missing feature values

Nanni [4]
√

× C1 and C2 × Online signature verification system
Biggio et al. [5]

√
× C1 × Adversarial classification task

Cheplygina and Tax [6]
√

× C1
√

Improvement of one-class classifiers
Krawczyk [8]

√
× C1

√
Improvement of one-class classifiers

Medina-Pérez et al. [13] ×
√

C1 × Masquerader detection
OCKRA

√ √
C1 × Personal risk detection

Note: C1 denotes an ensemble built from multiple instances of the same base classifier; C2 denotes an ensemble
built from multiple instances of different base classifiers or different single classifiers.

The aim of this study is to improve the accuracy of the detection results reported by
Barrera-Animas et al. [1]. To accomplish this, a new algorithm is proposed and its applicability to the
personal risk detection problem demonstrated. The proposed algorithm called One-Class K-means
with Randomly-projected features Algorithm (OCKRA) is an ensemble of one-class classifiers, built
over multiple projections of the dataset according to random subsets of features. OCKRA comprises
100 classifiers, each of which is built upon 10 centers computed by k-means++ [14] with Euclidean
distance. In the training phase, each individual classifier applies k-means [15] to a random projection
of the dataset and stores the centroids of the clusters. In the classification phase, to determine whether
a query object is a risk-prone situation or a normal behavior, each classifier compares it with all of the
centroids in order to determine the cluster to which the object is most likely to belong. Each classifier
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returns a similarity value according to the distance of the query object relative to its closest cluster
centroid. The ensemble returns the average similarity computed by individual classifiers.

To evaluate the performance of OCKRA and to compare it with other classifiers, the Personal RIsk
DEtection (PRIDE) dataset described in [1] was used. PRIDE is built based on 23 test subjects where
the user data were collected in ordinary life activities, as well as specific scenarios under stressful
conditions. Data were captured for the users by employing a set of sensors embedded in a wearable
band. The classifiers were trained based only on the daily behavior of the users. Then, the performance
of the classifiers was tested while detecting anomalies that were not included in the training process
for the classifiers.

OCKRA was compared with the following classifiers: ocSVM [16], the Parzen window classifier
using Euclidean distance [17] and two versions of the Parzen window classifier based on k-means.
In the first version, k-means classifies new objects based only on the closest center of the cluster [2],
whereas in the second, k-means classifies new objects using all of the centers of the clusters [18].
On average, results showed that OCKRA outperformed the other algorithms for at least 0.53% of the
area under the curve (AUC). This number is small, but it is significant because a user will have a higher
probability of being assisted in time if they encounter a risk-prone situation. Experimental results are
encouraging because the classifier achieved an AUC greater than 90% for more than 57% of the users.

The main contribution of the present study is a new algorithm based on an ensemble designed for
one-class classification, which is suitable for personal risk detection. During the design process, it was
necessary to consider that OCKRA should run on a mobile personal device, such as a smartphone,
with limited resources in terms of the CPU and memory. These restrictions affect the ensemble
parameters, i.e., a small value for k (the number of clusters) and the number of classifier instances,
while maintaining good classification accuracy. In addition, the final design had to be capable of
efficiently integrating any new learning object into the ensemble’s knowledge base without the need to
retrain every single classifier.

Before introducing the new algorithm in Section 3, the dataset used for the experiments is
described in the following.

2. PRIDE Dataset

The PRIDE dataset was described in [1], and it is based on ordinary daily activities as well as
specific scenarios under stressful situations. The PRIDE dataset was built based on 23 test subjects
during a data collection period of one week for 24 h each day to obtain the normal conditions dataset
(NCDS). A Microsoft Band v1 c© and a mobile application developed by the authors using the available
SDK were used to collect the data. All of the captured stream data were transferred to a private cloud
under our control.

Next, to build the anomaly conditions dataset (ACDS), the same 23 test subjects participated in
another process to acquire data under particular conditions, where five scenarios to simulate abnormal
or stressful conditions were designed, which included the following activities: rushing 100 m as fast as
possible, going up and down the stairs in a multi-floor building as fast as possible, a two-minute boxing
practice session, falling back and forth and holding one’s breath for as long as possible. Each activity
aimed to simulate a dangerous or abnormal condition in the real world, e.g., running away from
a dangerous situation, leaving a building due to an evacuation alert, fighting an aggressor during
a quarrel, swooning and experiencing breathing problems, such as dyspnea. The session required
building the anomaly dataset for each test subject lasting for about two hours, and it demanded major
physical effort.

In order to obtain reliable data that could help to distinguish abnormal from normal conditions,
the daily collection of behavior and vital signs data was not restricted to a laboratory environment;
on the contrary, test subjects felt comfortable wearing the band [19], and they were not deprived of
their privacy [20]. Furthermore, the ACDS data collection process was monitored without interfering
with the test subjects in terms of their freedom to perform activities.
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The daily log obtained from a test subject included all of the observations that occurred from
00:00 h to 23:59 h. Data were collected for a test subject during a period of seven days, but there were
gaps in the log of at least 40 min usually for three times per day due to the battery recharging process.
Moreover, the data were collected during ordinary daily tasks, so the test subjects usually paused the
data collection process for personal reasons on several occasions, e.g., to perform an aquatic activity.

To perform a more comprehensive study [21], test subjects with diverse characteristics in terms of
gender, age, height and sedentary lifestyle were considered. The test subjects comprised eight female
and 15 male volunteers aged between 21 and 52 years, with heights from 1.56 to 1.86 m, weights
from 42 to 101 kg, exercising rates of 0 to 10 h a week and the time spent sitting during working
hours or leisure ranging from 20 to 84 h a week. The elderly comprise a very important group in
society, but were not included in the data collection process due to the demanding nature of the
method employed.

PRIDE is freely available for downloading through the Syncplicity c©cloud solution by sending
a request to the corresponding author. For the interested reader, Annex 1 shows the mean value, x,
and the sample standard deviation, s, for all of the test subject features, as well as the number of
observations from the PRIDE dataset. All of the procedures performed in this study involving human
participants were conducted in accordance with the national law of the Protection of Personal Data in
Possession of Particulars. Informed consent was obtained from all of the individual participants in
the study.

Next, a brief description of the mobile application developed, as well as the band’s built-in sensors
is given.

2.1. Mobile Application and Sensor Network Description

To capture data from the test subjects, a Microsoft Band [22,23] was used because of two main
reasons: the number and nature of sensors included in the band; and the availability of an SDK that
allowed us to develop an application according to our needs. The application was developed for the
Android platform, and it was connected to the band via Bluetooth. The application acquired the sensor
data in real time and stored all of the measurements in a CSV file on the mobile phone. The file was
transferred to a secure FTP server under our control, which was performed by the test subject once or
twice each day by using the upload file to server option on the application.

Accelerometer and gyroscope data were acquired at an interval of 125 ms (the sensor operating
frequency was set to 8 Hz) in order to maintain a reasonable file size (about 175 MB) after 24 h
and a battery life of almost 9 h. The battery could be recharged to 80% of its full capacity within
approximately 40 min. For comparison, if a sensor operating frequency of 31 Hz or 62 Hz were used,
the size of the file would have increased to 650 MB and 870 MB, respectively, and the battery life
would have degraded to 8 h and 6 h, respectively. However, the frequency of operation could be set
directly to 8, 31 or 62 Hz at any time from the application. Distance, heart rate, pedometer and calorie
measurements were logged using a readout interval of 1 s, and UV and skin temperature data were
collected every 60 s and 30 s, respectively, or whenever the value changed. GPS data were not available
using the SDK, so it should be noted that the distance was derived using a proprietary Microsoft
algorithm, which considered the number of steps taken by the user (pedometer), the user’s stride
length and their height. Height and other types of general user information were provided when
setting up the application and during synchronization with the band for the first time. The algorithm
was patented by Microsoft (Adaptive Lifestyle Metric Estimation. Microsoft Internal Number 341468.
U.S. Patent 20150345985-A1).

Table 2 describes the sensors in the band, as well as the frequencies at which their data could be
retrieved. Using the sensor operating frequencies shown in the table, the test subject data could reach
approximately 1,670,160 records per day (around 175 MB), and the battery life was about 9 h.
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Table 2. Sensor descriptions.

Sensor Description Frequency

Accelerometer Provides X, Y and Z acceleration in g units. 8 Hz
1 g = 9.81 m per second squared (m/s2).

Gyroscope Provides X, Y and Z angular velocity in 8 Hzdegrees per second (◦/s) units.

Distance

Provides the total distance in centimeters,

1 Hzcurrent speed in centimeters per
second (cm/s), current pace in milliseconds
per meter (ms/m).

Heart Rate
Provides the number of beats per minute, also

1 Hzindicates if the heart rate sensor is fully locked
onto the wearer’s heart rate

Pedometer Provides the total number of steps 1 Hzthe user has taken.

Skin Temperature Provides the current skin temperature 33 MHzof the user in degrees Celsius.

UV
Provides the current ultraviolet

16 MHzradiation exposure intensity
(none, low, medium, high, very high)

Calories Provides the total number of calories 1 Hzburned by the user.

2.2. PRIDE Pre-Processing for Online Personal Risk Detection

Before using PRIDE and performing any experiments, the data had to be prepared in order to
derive a feature vector for every test subject, which was refreshed every second. The following steps
summarize the dataset pre-processing procedure.

• For each test subject in the PRIDE dataset, the records were arranged by day.
• The feature vector was computed using a window size of one second. The frequency of our

sensors varied significantly, so three rules were applied to compute the feature vector for a given
window: (1) if the readout interval was less than one second, the feature vector was assigned
both the average and sample standard deviation for all of the sensor measurements; (2) if it was
equal to one second, then the feature vector was assigned directly the sensor value; and (3) if it
was greater than one second, the feature vector was assigned the last sensor value.

Specifically, a feature vector for a given window contained the following:

• Means and standard deviations for the gyroscope and accelerometer measurements;
• Absolute values obtained by the heart rate, skin temperature, pace, speed and UV sensors;
• The incremental changes (∆-value) in the absolute values for the total steps, total distance and

calories burnt; a ∆-value was computed as the difference between the current and previous values.

Thus, a 26-dimensional feature vector was obtained, and its values were refreshed every second.
The structure of this vector is shown in Tables 3 and 4. Both the NCDS and ACDS were pre-processed
using this method.

Next, each of the test subject logs was divided into five folds to use them in a five-fold
cross-validation. In the cross-validation, four folds of the normal behavior by test subjects were used for
training, and one fold was joined with the anomaly dataset log to test the classifiers. This procedure was
repeated five times by alternating the test subject fold that was retained for testing. Thus, five training
datasets and five testing datasets were obtained.
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Table 3. Feature vector structure (Fields 1 to 18).

Gyroscope Accelerometer Gyroscope Angular Velocity Accelerometer

X Axis Y Axis Z Axis X Axis Y Axis Z Axis X Axis Y Axis Z Axis
x s x s x s x s x s x s x s x s x s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Table 4. Feature vector structure (Fields 19 to 26).

Heart Rate Skin Temperature Pace Speed UV ∆ Pedometer ∆ Distance ∆ Calories

19 20 21 22 23 24 25 26

In our datasets (the pre-processed PRIDE dataset), every object was stored as a row in a CSV file,
which followed the structure of the feature vector described previously. The last column of every
row contained one of two labels: “typical” or “atypical”. The label “typical” indicated that the object
represented normal test subject behavior, and the label “atypical” indicated that the object represented
an anomalous state. This label was never used for training the classifier, and it was only used for
testing purposes.

Next, the new algorithm will be described in detail as an ensemble of one-class classifiers for
personal risk detection.

3. Proposed Algorithm

This study introduces a new algorithm called OCKRA, which is based on the hypothesis that
a risk-prone situation produces sudden and significant deviations from standard user patterns.
These patterns are computed based on the data sensed by the Microsoft Band, as described in
Section 2.1.

The proposed algorithm is an ensemble of one-class classifiers, based on multiple projections of
the dataset according to random subsets of features. Random subsets of features are used to ensure
that there is high diversity [6–8] among the classifiers, in the same manner as some other well-known
ensembles, e.g., random forest [24]. OCKRA first applies k-means++ [14] to each subset of features to
obtain a collection of cluster centroids. Next, to classify a new sample observation, OCKRA returns
an average similarity measurement, which is computed by the ensemble of all of the individual
classifiers. While combining multiple k-means, each one computed on a random projection of the
dataset, has already been explored for clustering [15], the novel aspect of our method is that OCKRA
is designed for one-class classification problems instead of several-class problems. In particular,
OCKRA operates in the context of personal risk detection based on wearable sensors, where processing
is performed by devices with limited resources, such as smartphones. In the following, a formal
description of the ensemble training and classification phases is given.

3.1. Training OCKRA

OCKRA is an ensemble of one-class classifiers, each of which is based on k-means++ (Algorithm 1).
As described by Breiman in [24], the number of individual classifiers was set at 100, which yielded
good experimental results, but determining the best number of classifiers with respect to detection
performance remains an open question. In order to introduce diversity among each of the elements of
the ensemble, a different set of features was used in order to train each individual classifier. To train
the ensemble, the process starts with an initial training dataset T of size m× n, where m is the number
of samples and n is the number of features. Random feature selection with replacement was used
(Step 4). In this step, n random numbers between one and n are generated using a uniform probability
distribution. After removing any duplicates, the remaining elements represent the index of the features
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that will be considered during the construction of individual classifiers. According to our experience,
this procedure extracts 63% of the n original features on average.

Next, for each classifier, the algorithm projects the training dataset T (Step 5) over the
randomly-selected features in order to obtain the projected dataset T′. This dataset has a size of
m× n′, where 1 ≤ n′ ≤ n is the number of randomly-selected features. Next, the algorithm computes
the centers of the k clusters obtained using k-means++ (Step 7). The distance function is set to
Euclidean (which is standard in previous studies) and k = 10. k needs to be small since OCKRA must
work online using smartphones, so it should consume low RAM memory and CPU resources while
maintaining good classification accuracy. Again, determining the optimum value of k with respect to
the consumption of resources and detection performance remains an open question. The algorithm
uses the centers of the clusters obtained by k-means++ to build one-class classifiers, which return the
likelihood that a new object belongs to its nearest cluster given a distance threshold. To compute the
distance threshold (Step 6) and because of the massive amount of available data for each user, the
process uses a subset of T′ created by using only the data points separated by 60 s between them,
which reduces the data required for processing from m samples to approximately m/60. The distance
threshold is computed by averaging the distance between all of these points. It was decided to use the
average distance after experimenting with different thresholds, such as the maximum and minimum
distance between points, because it performed better in different contexts.

The training phase returns a set comprising the parameters of each individual classifier,
which consists of a triplet containing the randomly-selected features, the computed centroids of
each cluster and the distance threshold.

Algorithm 1 OCKRA training phase.

1: function OCKRA_TRAIN(T) . T: training dataset.

2: OCKRAParameters← {}
3: for i = 1..100 do

4: SelectedFeatures← RandomFeatures(T)

5: T′ ← Project(T, SelectedFeatures)

6: δi ← AvgDistances(T′)

7: Centres← ApplyKMeansAndComputeCentres(T′)

8: OCKRAParameters← OCKRAParameters
⋃{(SelectedFeatures, Centres, δi)}

9: end for

10: return OCKRAParameters

11: end function

3.2. Classification Using OCKRA

In order to classify a new object, the algorithm takes a one-dimensional table O containing the
object, which is a vector of size 1× n (Algorithm 2). The following steps need to be performed for
each classifier parameter triplet obtained from the training phase. First, OCKRA projects O onto the
randomly-selected feature space (Step 5) obtained by training, thereby resulting in a projected object
contained in O′. After projection, the first step for classification by OCKRA involves selecting the
nearest cluster to O′, which is achieved by selecting the centroid with the smallest Euclidean distance
to the object in O′ (Step 6).

The last step of classification with OCKRA involves transforming the distance between the
projected object and its nearest cluster centroid onto a similarity value in the interval [0, 1] (Step 7).
A value of zero indicates a risk-prone behavior, whereas a value of one indicates that the object
resembles the normal behavior of users. If the distance value is less than δi, the algorithm computes
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a high similarity value (>0.6), which indicates that the object is likely to belong to the cluster of its
nearest center. When the distance is more than three times δi, the algorithm yields a low similarity
value (<0.02), which indicates that the object does not belong to any cluster. It is worth noting that
there is an inverse relationship between the similarity score and the distance from the object to the
nearest cluster.

In order to reach a consensus among all of the members of the ensemble, OCKRA averages the
similarity measurements of all of its classifiers (Step 9).

The ensemble returns a similarity value where zero indicates a potentially risky situation and
one represents normal behavior, so the accuracy of our classifier relies on a threshold for determining
what is anomalous and what is not. A threshold value closer to one will detect most of the risk-prone
situations, but it may annoy the user by confusing normal behavior with risk. By contrast, if the
threshold is closer to zero, the user would be notified less often, but the system is likely to miss many
actual risky situations. Hence, the setting of the threshold value depends on the specific needs of the
user (e.g., detecting risky situations for a healthy athlete is not the same as that for an elderly person in
a retirement home).

Algorithm 2 OCKRA classification phase.

1: function OCKRA_CLASSIFY(O, OCKRAParameters)

2: . O: table that contains object to be classified; OCKRAParameters: set returned by Algorithm 1

3: s← 0

4: for each (Featuresi, Centresi, δi) ∈ OCKRAParameters do

5: O′ ← Project(O, Featuresi)

6: dmin ← min
cj∈Centresi

(EuclideanDistance(O′, cj))

7: s← s + e−0.5(dmin/δi)
2

8: end for

9: s← s/|OCKRAParameters|
10: return s

11: end function

4. Results and Discussion

By using the method described in [1], the performance of OCKRA was tested based on a five-fold
cross-validation, as described in Section 2.2, during the pre-processing step with the PRIDE dataset.

Users want to be protected by an ideal classifier, which can correctly discriminate every possible
abnormal behavior from that of a normal user. Therefore, the aim is to build classifiers that maximize
true positive classifications (i.e., true abnormal conditions) while minimizing false positive ones
(i.e., false abnormal or dangerous situations). Therefore, the classifiers were evaluated using the
following performance indicators.

• Precision-recall (P-R) curves: Precision refers to the fraction of retrieved instances that are relevant,
and recall (also known as sensitivity) is the fraction of relevant instances that are retrieved. In our
case, a relevant instance is characterized by a true anomaly. In addition, recall is equivalent to the
true positive detection rate (TPR). A P-R curve was built for each user independently, as well as a
single P-R curve based on the mean and standard deviation for all of the users.

• ROC curves: The performance indicators were computed based on the receiver operating
characteristic (ROC) curves, built according to Fawcett [25]. A similar approach to that used for
constructing the P-R curves was employed. A ROC curve was built for each user independently
and also a single ROC curve based on the mean and standard deviation of the total population.
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Sensitivity is crucial in a personal risk detection context, where it is preferable to receive several
false alerts (false abnormal or dangerous situation), rather than missing one true one (false
ordinary or normal condition); hence, it is important to maximize recall even at the cost of
experimenting with a certain false alarm rate.

• AUC: The AUC of the TPR versus the false positive detection rate (FPR), which indicates the
general performance of the classifier for all FPR rates.

OCKRA was compared with the following classifiers.

• ocSVM: The implementation of ocSVM [16] included in LibSVM [26] with the default parameter
values (γ = 0.038 and ν = 0.5) and using the radial basis function kernel.

• Parzen: Parzen window classifier using the Euclidean distance [17]. For every training dataset,
the classifier computes the width of the Parzen window by averaging the distances between
objects sampled every 60 s (this procedure saved approximately seven days when computing the
distances per test subject using an Intel Core i7-4600M CPU at 2.90 GHz).

• k-means1: A version of the Parzen window classifier based on k-means [2]. k-means1 classifies
new objects based only on the closest center of the cluster.

• k-means2: A version of the Parzen window classifier based on k-means [18]. k-means2 classifies
new objects using all of the centers of the clusters.

Figure 1 shows the average P-R and ROC curves for all of the population, where the standard
deviations are shown as vertical lines for each algorithm at different intervals. For the interested reader,
the individual P-R and ROC curves can be accessed as Supplementary Material. The P-R curves in
Figure 1 show that OCKRA and k-means1 outperformed Parzen and k-means2, and there was no
significant difference between OCKRA and k-means1. The ROC curves in Figure 1 confirm the results
of the P-R curves, but it can be noticed that OCKRA obtained better FPR rates between 5% and 30%.
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Figure 1. Precision-recall curves (a) and ROC curves (b) based on the average performance and
standard deviation for all users.

In order to quantify the differences among the algorithms, the average of the AUC results was
computed for all of the test subjects. Table 5 shows that OCKRA outperformed the other algorithms for
at least 0.53% of the AUC on average. This number is small, but it has a significant impact because it
means that a user will have a higher probability of assistance in a risk-prone situation. Parzen achieved
the second best result in terms of AUC, but it is less suitable for running on a smartphone because it is
two orders of magnitude more expensive than OCKRA (i.e., Parzen requires the full dataset to classify
a new object, whereas OCKRA requires only 1000 centers of the clusters). In summary, our classifier
achieved an AUC above 90% for approximately 57% of the users, which is an encouraging result.
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Table 5. Area (percentage) under the curve for TPR versus FPR.

Test Subject ocSVM Parzen k-Means1 k-Means2 OCKRA

TS 1 97.3 96.6 98.5 96.6 98.8
TS 2 94.5 95.4 95.5 92.5 95.7
TS 3 87.4 88.3 90.1 87.1 91.2
TS 4 83.9 83.6 89.9 81.9 88.2
TS 5 80.8 92.3 84.3 91.2 90.2
TS 6 96.1 95.6 97.0 96.0 98.2
TS 7 69.4 77.0 78.0 76.8 79.2
TS 8 93.8 93.5 90.0 91.4 92.4
TS 9 95.3 93.2 91.0 89.8 92.7

TS 10 94.0 93.7 86.9 93.3 93.7
TS 11 93.4 92.7 89.5 91.3 90.9
TS 12 74.6 76.5 80.1 76.0 80.3
TS 13 75.8 79.9 80.1 76.7 80.5
TS 14 78.0 83.8 82.4 82.2 81.9
TS 15 93.8 93.0 94.1 90.6 94.5
TS 16 83.2 88.3 88.1 87.1 87.9
TS 17 98.1 98.2 95.7 97.8 98.0
TS 18 89.1 89.3 89.5 87.0 86.9
TS 19 89.4 88.2 91.4 88.0 89.6
TS 20 90.5 91.5 92.7 87.3 92.2
TS 21 98.4 95.7 98.0 94.9 97.9
TS 22 78.3 79.6 79.3 76.7 79.2
TS 23 53.0 71.0 73.8 64.4 68.9

Average 86.44 88.56 88.52 86.81 89.09

Figure 2 shows pairwise comparisons of the algorithms, which demonstrates that OCKRA
outperformed the other algorithms for most of the test subjects. Furthermore, OCKRA was the only
algorithm to obtain significantly higher accuracy than ocSVM according to Wilcoxon’s signed-rank
test at a significance level of 0.05.

The methodology used in this study to train and test the classifier is based on subject-dependent
tests; thus, the results just presented represent the potential performance of OCKRA in a production
stage. By running the Kruskal–Wallis test, it has been proven that all users’ datasets are statistically
different, i.e., they are not drawn from the same population; hence, using a subject-independent
approach is not feasible.
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Figure 2. Pairwise comparisons of the algorithms based on the AUC results. AUC winning count:
(a) ocSVM versus all; (b) Parzen versus all; (c) k-means 1 versus all; (d) k-means 2 versus all;
(e) OCKRA versus all. The columns with red outer rectangles indicate significant differences according
to Wilcoxon’s signed-rank test at a significance level of 0.05.
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5. Conclusions and Further Work

This study introduces a new algorithm, called OCKRA, that stands for One-Class K-means
with Randomly-projected features Algorithm. OCKRA is an ensemble of one-class classifiers built
over multiple projections of the dataset according to random subsets of features; OCKRA comprises
100 classifiers, each of which is built upon 10 centers computed by k-means++ with Euclidean distance.

Combining one-class classifiers has been demonstrated to outperform the classification
performance obtained by single classifiers; additionally, the ensemble can be enhanced by training one
or several of its classifiers with different features of the dataset [2–8]. Several studies have reported a
wide range of applications where these techniques have been applied satisfactorily; however, none is
oriented toward our area under study: personal risk detection.

Barrera-Animas et al. [1] argued that it is possible to use PRIDE, a dataset with information drawn
from a number of test subjects wearing a sensor network device, to develop a personal risk detection
mechanism. They showed that abnormal behavior can be automatically detected by a one-class
classifier. In addition, they showed that one-class support vector machine (ocSVM) achieved the best
performance and best average ranking compared with other classifiers. The present study aims to
improve on the best results reported therein; i.e., to improve the anomaly detection accuracy in the
context of PRIDE.

The results obtained in this study supersede those reported in [1]; therefore, OCKRA stands so
far as the state-of-the-art in the context of personal risk detection. Additionally, experimental results
show that OCKRA is the only algorithm that achieved significant statistical improvement over ocSVM,
as shown in Figure 2.

In [1], ocSVM was compared with the following classifiers: the Parzen window classifier (PWC)
using the Mahalanobis distance and two versions of PWC based on k-means with the Mahalanobis
distance. The present study compared OCKRA with ocSVM [16], PWC, but this time using Euclidean
distance [17], and two versions of PWC based on k-means also based on Euclidean distance [2,18].
It should be noted that all versions of PWC used in this study outperform their counterpart
in [1]. In summary, the authors have knowledge of eight different classifiers tested on the same
one-class dataset.

It remains an open question, beyond the scope of this paper, to compare OCKRA with other
one-class algorithms in a different context; that is, using a different dataset. Furthermore, as discussed
in [1], it is difficult to find open-access datasets posing a one-class detection problem.

A publicly-available one-class dataset that could be a good candidate for comparison purposes is
WUIL (the Windows-Users and -Intruder simulations Logs) [27]. However, preliminary tests on WUIL
have led to the conclusion that classifiers based on the Mahalanobis distance perform better on WUIL
than those based on Euclidean distance, whereas in the context of PRIDE, our results show exactly
the opposite. Due to the scarcity of datasets posing a one-class classification problem, a common
practice in the research community is to transform a “multi-class” dataset into a “one-class” dataset.
However, the authors have so far refrained from adopting this procedure since modifying the problem
domain amounts to creating a new domain that often departs from the original nature of the problem.

The main contribution of this study is the introduction of OCKRA, a new algorithm which is
an ensemble specially designed for one-class classification, which is highly suitable for personal risk
detection based on wearable sensors.

Results showed that OCKRA outperformed the other algorithms for at least 0.53% of the AUC on
average. This number is small, but it has a significant impact because it means that a user will have
a higher probability of being assisted in time if they encounter a risk-prone situation. The classifier
achieved an AUC above 90% for more than 57% of the users, which is an encouraging result because
it supports the hypothesis that abnormal behavior can be detected automatically.
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A promising approach to consider in future work is to combine the proposed ensemble with
other classifiers that take into account temporal relationships among consecutive events. In addition,
another approach will be explored that updates the ensemble knowledge continuously whenever it
misclassifies normal behavior as abnormal (i.e., when it generates a false alarm).

Furthermore, due to the high amount of raw data collected by users, the possibility of
implementing mechanisms based on information fusion [28] will be considered, with the aims of both
decreasing the amount of data stored/transmitted and improving the classification process.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/16/10/1619/s1.
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ocSVM One-class support vector machine
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UCI University of California Irvine

http://www.mdpi.com/1424-8220/16/10/1619/s1


Sensors 2016, 16, 1619 14 of 18

Appendix A. PRIDE Dataset

PRIDE Dataset: X and s for All Test Subject Features are shown in Tables A1–A6.

Table A1. Normal conditions dataset. Part I.

No. of
Records

Gyroscope Accelerometer Gyroscope Angular Velocity

X Axis x (s) Y Axis x (s) Z Axis x (s) X Axis x (s) Y Axis x (s) Z Axisx (s)

TS 1 466,175 −0.066 (0.479) 0.282 (0.491) 0.312 (0.573) 0.346 (13.712) −0.644 (9.379) −0.894 (12.138)
TS 2 314,975 −0.060 (0.493) −0.349 (0.531) −0.201 (0.551) −0.646 (20.150) 0.837 (15.469) −0.090 (16.640)
TS 3 341,645 −0.079 (0.439) −0.296 (0.452) 0.493 (0.508) −0.298 (18.403) −0.120 (12.021) 0.053 (15.084)
TS 4 373,019 0.051 (0.567) −0.347 (0.424) 0.359 (0.483) −0.702 (16.034) −0.411 (11.139) 0.174 (12.828)
TS 5 296,270 −0.094 (0.487) 0.321 (0.473) 0.381 (0.520) −0.711 (18.799) 0.463 (12.088) −0.398 (14.399)
TS 6 328,976 −0.214 (0.432) 0.359 (0.435) 0.463 (0.488) −0.606 (14.530) −0.431 (9.046) −0.062 (11.104)
TS 7 288,386 0.024 (0.519) −0.398 (0.448) 0.318 (0.512) −0.083 (19.638) −0.254 (13.010) −0.945 (16.512)
TS 8 397,320 −0.128 (0.543) 0.263 (0.492) 0.387 (0.471) −0.412 (14.073) −0.157 (8.302) −0.023 (9.557)
TS 9 336,474 −0.190 (0.511) −0.267 (0.563) −0.149 (0.541) 0.377 (12.486) −0.671 (10.083) −0.879 (10.745)

TS 10 251,383 −0.123 (0.493) 0.334 (0.424) 0.566 (0.360) −0.344 (13.887) −0.079 (9.187) −0.036 (13.403)
TS 11 442,304 −0.032 (0.412) −0.299 (0.491) −0.262 (0.640) −0.601 (15.472) −0.287 (10.329) 0.058 (11.972)
TS 12 243,701 0.016 (0.485) 0.265 (0.432) 0.520 (0.474) −0.735 (19.527) 0.087 (12.183) −0.373 (14.832)
TS 13 431,496 0.019 (0.451) −0.321 (0.534) 0.225 (0.598) −0.515 (15.429) −0.253 (10.246) 0.018 (11.710)
TS 14 160,975 −0.082 (0.498) 0.430 (0.373) −0.276 (0.582) 0.262 (24.231) −0.861 (15.893) −1.255 (19.733)
TS 15 302,863 −0.178 (0.448) 0.287 (0.540) 0.220 (0.588) −0.722 (19.533) −0.382 (14.578) 0.030 (15.678)
TS 16 327,804 0.001 (0.481) 0.379 (0.430) −0.503 (0.428) −0.832 (18.842) −0.017 (13.758) −0.002 (16.473)
TS 17 133,795 −0.094 (0.396) 0.168 (0.628) −0.356 (0.536) 0.259 (11.996) −0.627 (7.500) −0.948 (9.317)
TS 18 335,424 −0.021 (0.511) −0.376 (0.492) −0.225 (0.546) −0.725 (12.759) 0.548 (8.500) −0.170 (11.065)
TS 19 400,906 0.001 (0.515) 0.229 (0.412) 0.537 (0.480) −0.844 (19.031) −0.721 (12.126) −0.056 (15.083)
TS 20 300,461 −0.048 (0.458) 0.122 (0.550) 0.442 (0.526) −1.281 (16.373) −0.889 (10.710) 0.106 (13.007)
TS 21 359,603 −0.048 (0.421) 0.118 (0.567) 0.242 (0.647) −0.704 (11.529) 0.534 (8.535) −0.289 (10.951)
TS 22 373,783 −0.033 (0.549) 0.257 (0.535) 0.151 (0.576) −0.028 (18.364) −0.347 (14.401) −0.903 (15.219)
TS 23 209,128 −0.082 (0.519) 0.060 (0.665) 0.039 (0.545) −0.617 (18.176) −0.020 (12.978) 0.084 (14.793)

Table A2. Normal conditions dataset. Part II.

Accelerometer Heart Rate Skin Temperature Pace

X Axis x (s) Y Axis x (s) Z Axis x (s) x (s) x (s) x (s)

TS 1 −0.066 (0.479) 0.282 (0.491) 0.312 (0.573) 71.856 (10.254) 33.553 (1.300) 47.613 (249.390)
TS 2 −0.059 (0.493) −0.349 (0.531) −0.201 (0.551) 64.426 (10.274) 32.821 (1.412) 134.718 (431.197)
TS 3 −0.079 (0.439) −0.296 (0.452) 0.493 (0.508) 71.488 (8.425) 31.885 (1.789) 74.004 (319.042)
TS 4 0.051 (0.567) −0.347 (0.424) 0.359 (0.483) 68.335 (10.309) 32.127 (2.239) 49.351 (271.310)
TS 5 −0.094 (0.487) 0.321 (0.473) 0.381 (0.520) 68.911 (9.593) 33.381 (2.001) 65.316 (301.010)
TS 6 −0.214 (0.432) 0.359 (0.435) 0.463 (0.488) 66.160 (11.398) 32.749 (1.144) 49.332 (248.829)
TS 7 0.024 (0.519) −0.398 (0.447) 0.318 (0.512) 74.341 (9.454) 33.184 (3.004) 156.612 (438.505)
TS 8 −0.128 (0.543) 0.263 (0.491) 0.387 (0.471) 65.663 (11.600) 31.970 (1.880) 43.232 (219.687)
TS 9 −0.190 (0.511) −0.267 (0.563) −0.149 (0.541) 81.414 (11.777) 34.166 (1.571) 46.143 (247.978)

TS 10 −0.123 (0.493) 0.334 (0.424) 0.566 (0.360) 77.573 (14.253) 32.970 (1.239) 40.556 (220.579)
TS 11 −0.032 (0.412) −0.299 (0.492) −0.262 (0.640) 72.384 (10.791) 34.237 (1.426) 40.066 (232.637)
TS 12 0.016 (0.485) 0.265 (0.432) 0.520 (0.474) 71.344 (9.123) 38.917 (1.942) 65.041 (296.546)
TS 13 0.019 (0.451) −0.321 (0.534) 0.225 (0.598) 71.832 (15.471) 31.981 (2.379) 72.149 (296.384)
TS 14 −0.082 (0.498) 0.430 (0.373) −0.276 (0.582) 70.741 (7.681) 32.512 (1.615) 102.405 (375.538)
TS 15 −0.178 (0.448) 0.287 (0.540) 0.220 (0.588) 71.081 (8.969) 32.926 (2.354) 80.668 (340.809)
TS 16 0.001 (0.481) 0.379 (0.430) −0.503 (0.428) 73.199 (10.221) 33.224 (2.119) 84.804 (339.817)
TS 17 −0.094 (0.396) 0.168 (0.628) −0.356 (0.536) 61.294 (11.812) 34.141 (1.331) 70.054 (325.963)
TS 18 −0.021 (0.511) −0.376 (0.492) −0.225 (0.546) 73.254 (10.305) 41.339 (1.881) 69.961 (284.993)
TS 19 0.001 (0.515) 0.229 (0.412) 0.537 (0.481) 67.203 (9.325) 31.956 (2.218) 95.774 (365.087)
TS 20 −0.048 (0.458) 0.122 (0.550) 0.442 (0.526) 77.566 (16.511) 31.969 (2.306) 59.234 (287.112)
TS 21 −0.048 (0.421) 0.118 (0.567) 0.242 (0.647) 73.858 (6.150) 37.665 (2.952) 31.313 (218.225)
TS 22 −0.033 (0.549) 0.257 (0.535) 0.151 (0.576) 72.621 (7.315) 31.056 (3.128) 71.868 (311.424)
TS 23 −0.082 (0.519) 0.060 (0.665) 0.039 (0.544) 74.748 (19.082) 32.344 (4.198) 57.822 (262.482)
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Table A3. Normal conditions dataset. Part III.

Speed x (s) UV x (s) ∆ Pedometer x (s) ∆ Distance x (s) ∆ Calories x (s)

TS 1 4.992 (23.964) 0.022 (0.148) 0.068 (0.513) 5.277 (40.239) 0.026 (0.810)
TS 2 11.247 (33.578) 0.020 (0.183) 0.180 (5.749) 14.001 (449.963) 0.037 (1.902)
TS 3 7.146 (28.243) 0.036 (0.203) 0.107 (2.468) 8.187 (183.953) 0.034 (1.975)
TS 4 3.871 (19.806) 0.035 (0.184) 0.087 (8.173) 6.946 (653.910) 0.030 (1.789)
TS 5 5.678 (24.098) 0.038 (0.203) 0.111 (6.601) 8.859 (527.082) 0.037 (1.954)
TS 6 5.123 (23.836) 0.020 (0.138) 0.087 (3.533) 6.788 (308.571) 0.037 (2.059)
TS 7 17.295 (46.119) 0.034 (0.206) 0.298 (26.685) 24.777 (2186.446) 0.042 (1.936)
TS 8 5.117 (24.167) 0.040 (0.195) 0.088 (4.579) 6.993 (362.702) 0.034 (1.597)
TS 9 4.311 (21.449) 0.027 (0.173) 0.068 (1.205) 4.804 (85.353) 0.022 (0.797)
TS 10 5.343 (26.415) 0.025 (0.156) 0.101 (6.972) 7.950 (550.756) 0.046 (3.286)
TS 11 3.477 (18.744) 0.000 (0.000) 0.057 (0.659) 3.841 (43.986) 0.024 (0.807)
TS 12 5.966 (25.317) 0.046 (0.226) 0.105 (5.378) 8.240 (417.039) 0.040 (2.834)
TS 13 9.248 (35.681) 0.056 (0.268) 0.253 (80.693) 11.237 (463.311) 0.042 (1.507)
TS 14 8.549 (29.013) 0.039 (0.193) 0.320 (31.097) 19.210 (1361.480) 0.055 (4.229)
TS 15 6.909 (27.264) 0.022 (0.183) 0.198 (12.125) 15.908 (970.020) 0.044 (1.611)
TS 16 7.687 (28.507) 0.011 (0.105) 0.929 (469.171) 8.790 (208.055) 0.035 (1.633)
TS 17 5.485 (23.726) 0.004 (0.060) 0.282 (31.805) 22.152 (2507.279) 0.062 (5.433)
TS 18 8.582 (31.890) 0.001 (0.029) 0.120 (2.264) 9.411 (177.234) 0.035 (2.723)
TS 19 8.361 (29.700) 0.040 (0.205) 0.261 (74.531) 12.155 (856.181) 0.033 (1.216)
TS 20 5.767 (25.677) 0.027 (0.172) 0.099 (5.606) 7.917 (447.581) 0.045 (2.562)
TS 21 2.517 (16.320) 0.000 (0.000) 0.914 (515.916) 3.794 (201.550) 0.410 (231.157)
TS 22 7.137 (28.469) 0.043 (0.227) 0.126 (7.354) 9.356 (557.696) 0.025 (1.090)
TS 23 11.618 (47.721) 0.022 (0.148) 0.274 (17.692) 21.581 (1330.140) 0.045 (2.482)

Table A4. Anomaly conditions dataset. Part I.

No. of Records
Gyroscope Accelerometer Gyroscope Angular Velocity

X Axis x (s) Y Axis x (s) Z Axis x (s) X Axis x (s) Y Axis x (s) Z Axis x (s)

TS 1 770 0.113 (0.619) −0.679 (0.414) 0.017 (0.417) −0.846 (40.900) −1.102 (38.233) 0.524 (33.024)
TS 2 608 0.384 (0.501) −0.699 (0.492) 0.114 (0.642) 2.209 (50.987) 2.188 (31.660) −3.077 (35.142)
TS 3 494 0.339 (0.803) −0.655 (0.673) 0.374 (0.410) −12.002 (59.791) −4.086 (32.065) 2.214 (33.438)
TS 4 708 0.431 (0.609) −0.346 (0.387) 0.324 (0.489) −3.294 (42.243) −2.153 (34.449) 0.413 (33.770)
TS 5 792 0.586 (0.783) 0.532 (0.525) 0.161 (0.349) 2.098 (29.158) −2.664 (27.008) −0.408 (38.388)
TS 6 674 0.457 (0.669) 0.571 (0.658) 0.560 (0.446) 1.093 (47.790) −1.054 (32.493) 0.516 (40.079)
TS 7 770 0.411 (0.685) −0.635 (0.606) 0.298 (0.389) 1.095 (41.332) 1.919 (35.214) −2.004 (42.678)
TS 8 724 0.580 (0.838) 0.832 (0.657) −0.214 (0.617) 2.072 (39.552) −10.207 (39.374) −1.571 (36.128)
TS 9 566 0.086 (0.647) −0.399 (0.556) 0.449 (0.350) 2.317 (40.801) −0.828 (36.996) −5.515 (42.064)

TS 10 767 0.299 (0.517) 0.321 (0.818) −0.023 (0.532) 2.590 (37.810) 1.085 (25.954) −0.927 (30.640)
TS 11 647 0.365 (0.739) −0.236 (0.626) 0.231 (0.575) −2.795 (45.353) 5.866 (32.214) 3.660 (49.090)
TS 12 679 0.740 (0.716) 0.058 (0.600) 0.454 (0.466) −0.114 (41.168) −1.030 (35.996) −2.367 (36.503)
TS 13 485 0.491 (0.826) −0.549 (0.526) 0.030 (0.494) −0.647 (41.101) −4.246 (41.316) 2.940 (41.405)
TS 14 1,066 0.464 (0.656) 0.491 (0.502) 0.108 (0.507) −5.939 (40.240) 5.508 (32.998) −1.785 (33.435)
TS 15 881 0.245 (0.593) 0.799 (0.687) −0.095 (0.430) 7.482 (48.483) 2.926 (37.574) −0.901 (43.749)
TS 16 578 0.560 (0.796) 0.809 (0.667) −0.130 (0.475) −7.245 (39.853) 7.422 (31.144) 0.075 (37.856)
TS 17 941 0.194 (0.525) 0.689 (0.534) 0.295 (0.501) 1.151 (45.200) 0.685 (25.359) −0.138 (29.349)
TS 18 904 0.320 (0.574) −0.656 (0.339) 0.213 (0.428) −0.638 (38.582) 2.106 (27.732) −3.557 (33.302)
TS 19 769 0.542 (0.800) 0.785 (0.506) −0.082 (0.371) 0.284 (35.969) −3.791 (31.353) −3.904 (36.100)
TS 20 586 0.655 (1.105) 0.820 (0.855) 0.290 (0.415) 3.980 (45.278) −7.457 (33.883) −1.901 (43.004)
TS 21 423 0.127 (0.480) 0.854 (0.591) 0.061 (0.529) 5.873 (42.590) 3.025 (36.399) −2.729 (39.754)
TS 22 584 0.231 (0.674) 0.684 (0.657) −0.095 (0.726) 9.598 (46.259) −2.294 (59.213) 3.746 (57.355)
TS 23 854 0.389 (0.598) 0.841 (0.485) −0.199 (0.468) 9.798 (51.226) −2.865 (31.501) 1.634 (40.658)
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Table A5. Anomaly conditions dataset. Part II.

Accelerometer Heart Rate Skin Temperature Pace

X Axis x (s) Y Axis x (s) Z Axis x (s) x (s) x (s)

TS 1 0.110 (0.622) −0.680 (0.411) 0.015 (0.417) 97.097 (22.148) 31.739 (0.429) 258.291 (371.325)
TS 2 0.395 (0.482) −0.696 (0.511) 0.156 (0.670) 80.655 (6.793) 29.113 (1.196) 460.569 (419.805)
TS 3 0.338 (0.805) −0.655 (0.667) 0.374 (0.411) 87.263 (17.918) 28.942 (1.791) 287.767 (418.495)
TS 4 0.431 (0.611) −0.346 (0.388) 0.324 (0.491) 82.602 (15.916) 28.941 (1.645) 558.905 (633.728)
TS 5 0.603 (0.781) 0.538 (0.528) 0.154 (0.352) 81.412 (11.368) 33.933 (0.829) 339.201 (542.872)
TS 6 0.457 (0.668) 0.569 (0.652) 0.555 (0.450) 85.220 (14.215) 29.616 (0.402) 246.426 (371.220)
TS 7 0.412 (0.685) −0.635 (0.605) 0.297 (0.390) 76.544 (6.768) 29.921 (1.307) 393.745 (574.313)
TS 8 0.579 (0.837) 0.818 (0.653) −0.215 (0.615) 79.148 (8.492) 28.358 (0.921) 221.006 (310.291)
TS 9 0.085 (0.643) −0.399 (0.555) 0.448 (0.347) 79.936 (12.531) 30.151 (1.243) 160.900 (259.476)

TS 10 0.298 (0.518) 0.321 (0.817) −0.023 (0.532) 81.675 (11.959) 30.589 (1.417) 221.785 (413.279)
TS 11 0.365 (0.739) −0.236 (0.625) 0.232 (0.573) 86.611 (20.806) 31.249 (1.198) 206.471 (305.513)
TS 12 0.746 (0.740) 0.054 (0.607) 0.446 (0.482) 79.031 (8.765) 39.856 (1.977) 262.915 (472.168)
TS 13 0.492 (0.829) −0.550 (0.528) 0.030 (0.493) 79.563 (8.671) 31.597 (0.993) 230.324 (435.552)
TS 14 0.466 (0.661) 0.490 (0.494) 0.102 (0.501) 83.398 (14.065) 31.157 (0.984) 251.290 (415.069)
TS 15 0.253 (0.597) 0.799 (0.673) −0.085 (0.433) 79.748 (11.037) 27.039 (0.673) 330.247 (538.912)
TS 16 0.564 (0.799) 0.811 (0.669) −0.131 (0.475) 88.540 (20.952) 33.407 (0.918) 216.730 (353.419)
TS 17 0.189 (0.516) 0.690 (0.533) 0.310 (0.499) 81.963 (16.540) 27.289 (0.985) 120.472 (243.084)
TS 18 0.320 (0.573) −0.655 (0.342) 0.213 (0.428) 93.290 (24.697) 37.815 (2.559) 183.941 (356.975)
TS 19 0.542 (0.801) 0.787 (0.502) −0.083 (0.373) 70.281 (8.279) 24.584 (2.809) 242.893 (432.227)
TS 20 0.654 (1.105) 0.825 (0.864) 0.289 (0.413) 101.604 (31.635) 29.182 (0.738) 164.817 (294.219)
TS 21 0.127 (0.479) 0.854 (0.594) 0.061 (0.528) 77.934 (11.546) 30.818 (1.186) 240.584 (259.975)
TS 22 0.253 (0.670) 0.688 (0.655) −0.090 (0.743) 77.926 (7.718) 27.729 (0.881) 278.907 (447.636)
TS 23 0.398 (0.600) 0.838 (0.487) −0.186 (0.446) 75.689 (6.032) 28.225 (1.819) 221.013 (432.126)

Table A6. Anomaly conditions dataset. Part III.

Speed x (s) UV x (s) ∆ Pedometer x (s) ∆ Distancex (s) ∆ Calories x (s)

TS 1 118.190 (133.248) 0.118 (0.323) 1.164 (1.662) 123.790 (178.250) 0.078 (0.268)
TS 2 176.948 (122.629) 0.523 (0.500) 1.714 (1.680) 176.194 (181.270) 0.094 (0.292)
TS 3 134.763 (160.947) 0.223 (0.516) 1.279 (1.846) 142.591 (229.427) 0.071 (0.257)
TS 4 77.801 (92.240) 0.097 (0.297) 0.893 (1.601) 82.054 (159.729) 0.055 (0.228)
TS 5 104.194 (138.165) 0.665 (0.472) 0.990 (1.782) 105.869 (190.114) 0.037 (0.188)
TS 6 144.616 (157.949) 0.405 (0.491) 1.315 (1.788) 151.721 (210.877) 0.042 (0.200)
TS 7 116.610 (145.402) 0.553 (0.832) 1.047 (1.710) 121.081 (203.444) 0.032 (0.177)
TS 8 140.436 (158.209) 0.394 (0.489) 1.199 (1.776) 141.738 (221.937) 0.033 (0.179)
TS 9 117.992 (149.526) 0.498 (0.500) 1.155 (1.712) 127.212 (193.314) 0.023 (0.150)
TS 10 85.001 (126.758) 0.248 (0.432) 0.866 (1.616) 95.557 (180.922) 0.031 (0.174)
TS 11 85.121 (115.315) 0.233 (0.423) 0.989 (1.573) 94.414 (152.147) 0.039 (0.193)
TS 12 124.980 (162.112) 0.236 (0.492) 1.037 (1.939) 125.973 (235.163) 0.037 (0.188)
TS 13 121.590 (164.312) 0.243 (0.598) 1.010 (1.775) 128.878 (238.527) 0.035 (0.184)
TS 14 88.249 (126.044) 0.067 (0.249) 0.797 (1.455) 86.081 (170.038) 0.034 (0.181)
TS 15 109.222 (152.789) 0.314 (0.465) 0.981 (1.711) 114.547 (205.342) 0.034 (0.181)
TS 16 139.817 (169.673) 0.351 (0.478) 1.128 (1.678) 141.412 (222.837) 0.059 (0.235)
TS 17 71.153 (125.804) 0.000 (0.000) 0.618 (1.416) 72.259 (169.026) 0.052 (0.222)
TS 18 85.978 (125.400) 0.198 (0.399) 0.772 (1.468) 86.354 (168.715) 0.063 (0.243)
TS 19 106.29 (155.192) 0.000 (0.000) 0.830 (1.634) 106.052 (216.716) 0.031 (0.174)
TS 20 132.802 (177.826) 0.152 (0.359) 1.017 (1.675) 133.014 (237.409) 0.087 (0.282)
TS 21 148.603 (142.036) 0.000 (0.000) 1.556 (1.835) 161.296 (207.782) 0.026 (0.159)
TS 22 108.405 (131.115) 0.000 (0.000) 1.058 (2.150) 112.277 (247.873) 0.024 (0.153)
TS 23 81.359 (131.804) 0.354 (0.478) 0.721 (1.517) 83.218 (187.737) 0.020 (0.140)
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