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Abstract: In the mobile computing era, smartphones have become instrumental tools to develop
innovative mobile context-aware systems. In that sense, their usage in the vehicular domain eases
the development of novel and personal transportation solutions. In this frame, the present work
introduces an innovative mechanism to perceive the current kinematic state of a vehicle on the basis
of the accelerometer data from a smartphone mounted in the vehicle. Unlike previous proposals,
the introduced architecture targets the computational limitations of such devices to carry out the
detection process following an incremental approach. For its realization, we have evaluated different
classification algorithms to act as agents within the architecture. Finally, our approach has been tested
with a real-world dataset collected by means of the ad hoc mobile application developed.
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1. Introduction

Smartphones have been the center of most of the technological advances for the last decade.
As a result, they are currently equipped with several embedded sensors like a GPS, accelerometer,
gyroscope or magnetometer. This makes them suitable enablers to capture a wide range of contextual
features, like weather [1] and traffic [2] conditions, or user behaviors [3]. Consequently, they are
instrumental tools to develop mobile ubiquitous solutions [4,5].

During the last few years, a novel course of action intends to move such smartphone-based
contextual perception to the vehicular domain [6–8]. More in detail, smartphones are used to enrich the
sensing features of traditional situation-aware driving assistance systems (SADASs) [9]. This allows
one to capture a wider range of driving events resulting in safer and more comfortable trips.

One common driving event to be perceived in a timely manner by SADASs is the current maneuver
of a vehicle [10]. In that sense, some works already use the inertial and motion sensors of a smartphone,
mounted in a car, to detect dangerous behaviors of the driver (e.g., speeding or drunk driving) [7,11]
or rough road conditions [12]. However, little effort has been done so far to use such sensors to detect
the vehicular maneuver in more varied scenarios.

Consequently, the present work focuses on detecting a vehicle’s maneuvers using the
accelerometer sensor of a smartphone inside the vehicle on the basis of a taxonomy of four states,
stopped, driving, parking and parked. Unlike previous solutions, these maneuvers have been defined
from the point of view of a vehicle’s movement in an urban domain. Hence, they can be useful in
different scenarios. Besides, the proposed system has been designed to locally run on a smartphone.
Since this type of device has constrains in terms of battery, memory and processing capabilities, we deal
with these limitations in two ways,
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• The maneuver detection from accelerometer data is done by two interconnected classification
agents following an incremental approach. This intends to reduce the general overload of the
solution. In order to instantiate these agents, three classification algorithms have been studied,
random forests (RF) [13], support vector machines (SVM) [14] and fuzzy rule-based classifiers
(FRC) [15].

• In order to minimize the execution of the aforementioned agents, we have devised a lightweight
mechanism that detects meaningful variations of the vehicle’s speed. Thus, only when a
remarkable speed change is detected, the maneuver detection is launched. As we will see,
this reduces even more the computational load of the proposal.

The present solution can be of great help in several domains. First of all, existing solutions
for participatory vacant parking space management strongly depend on manual reports of
users each time they occupy or leave a parking space (Wazypark, http://www.wazypark.com;
Waze, https://www.waze.com). Since the proposed system detects the instant at which a vehicle
is being parked, this automatic detection would be a useful feature to come up with more reliable
solutions reporting available parking spaces in a city.

Secondly, the capability of the system to detect moving and stopped episodes of a vehicle can
be useful for distributed traffic information systems in order to control the traffic state of a region
of interest.

On the whole, the salient contributions of the present work can be summarized as follows:
(1) a novel maneuver detection for vehicles using a smartphone’s acceleration measurements;
(2) a mechanism to reduce the global overload of such detection; (3) a study of different algorithms for
the accelerometer-based classification of vehicular maneuvers.

The remainder of the paper is structured as follows: an overview of the state of the art
of vehicle-maneuver detection and accelerometer-based classification is put forward in Section 2.
A detailed explanation of the proposed system is stated in Section 3. Then, Section 4 discusses the
suitability of the candidate algorithms to implement the inner classifiers of the system. Next, Section 5
shows the final evaluation of the system. Finally, Section 6 puts forward the main conclusions of
the work.

2. Related Work

In this section, we provide an overview about the two main domains related to this work, the usage
of motion sensors for activity recognition and the detection of maneuvers in the vehicular context.

2.1. Activity Recognition Based on Accelerometer

The accelerometer sensor has been widely used to perceive the current activity of a person [16].
Depending on the device under consideration, we can distinguish among works that make use of
wearable devices [17] and solutions that rely on smartphones [18].

In both cases, the general approach consists of extracting certain features of the measurements
from the accelerometer and then applying different types of learning models to generate a final classifier
able to infer the current behavior from a set of pre-defined ones. In that sense, the most common
approach is to train the classifiers in a desktop machine before installing them in a smartphone [19].
However, alternative solutions propose to train such classifiers on the mobile phone in real time [18].

In this scope, a prominent line of research focuses on detecting the locomotion activity of a person
(e.g., standing, walking, lying, climbing, jogging, and so on) [16]. In that sense, a palette of supervised
learning models has been applied for that goal, like support vector machines [19], decision trees [20],
K-nearest neighbors (KNN) [21] and naive Bayes [22]. Other works have also successfully applied
statistical modeling methods. This is the case of hidden Markov models [23] or conditional random
fields [24].

Our work is enclosed in a recent course of action that proposes to use the aforementioned
learning methods within the vehicular or transportation domain using the accelerometer data of
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vehicle-mounted devices. For example, some works are already able to distinguish between motorized
and non-motorized means of transport used by a person by processing the readings from his or her
smartphone’s accelerometer with an acceptable confidence level [25,26].

Regarding these works, the present proposal centers on a different problem in the vehicular
domain, as it does not distinguish among means of transport. On the contrary, provided that the
user is using a motorized vehicle, it focuses on detecting the current kinematic state of such a vehicle.
Thus, the information extracted by our proposal can complement the one from such mechanisms.
For example, given that it is detected that a person is using a motorized means of transport by any
of the aforementioned techniques, the present work can enrich such information with the current
maneuver of the vehicle at each moment.

Finally, a plethora of solutions for driver profiling has also been proposed following a similar
approach [7,11,27,28]. The key goal of these works is to use such information to detect particular
risky situations during a trip, like turning-acceleration episodes [7,28], aggressive-normal [27] or
drunk [11] driving.

Like these proposals, our work also intends to detect the activity that the driver is performing in
each moment by means of a supervised learning method. However, the target activities are related to
the current maneuver of the vehicle from a kinematic point of view. Consequently, unlike previous
solutions, the present work is designed as a cross-domain vehicular maneuver detection that can be
used beyond security purposes.

Furthermore, the present work also describes an incremental approach to perform maneuver
detection that intends to minimize the computational load of the whole solution by reducing the
global execution of the classifiers. This is an important advantage with respect to existing approaches,
which assume the continuous execution of the classification models, bearing in mind the limitations in
terms of the computation of current mobile platforms.

2.2. Vehicular Maneuver Detection

The detection of the current maneuver of the vehicle has been widely studied in the vehicular
field as an important type of information used by collision-avoidance support systems. In that sense,
the current or future kinematic state of a vehicle is instrumental so as to assess its associated risk in a
scene. In this context, there already exists several solutions based on sets of different models capable
of recognizing pre-defined vehicular kinematic states relying on different sensors and units installed
in a vehicle (also known as Ego Vehicle, EgoV).

For example, [29] applies an unscented Kalman filter for curvilinear motions in an interactive
multiple model (IMM) algorithm to keep track of a maneuvering vehicle. Similarly, [30] introduces a
lateral and longitudinal maneuver predictor based on an IMM algorithm taking as input GPS/IMU
measurements and a digital custom map. Moreover, in [31], the authors put forward a neuro-fuzzy
architecture for maneuver prediction using a navigation unit composed of GPS, odometry and a gyro.
Finally, [10] states a fuzzy rule-based classifier to detect the longitudinal maneuver of the EgoV by also
using an on-board inertial measurement unit.

Even though our solution pursues a quite similar goal, it only depends on the acceleration
measurements of a smartphone mounted in the EgoV. Since it does not depend on any onboard sensor
or unit of the EgoV it can be regarded as a low-cost solution with respect to existing vehicle maneuver
detection approaches.

3. System Design

This section is devoted to describing in detail the design of the proposed mechanism of vehicular
maneuver detection based on the accelerometer. To do so, we firstly put forward the target maneuvers
of the EgoV that the system is ready to detect.
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3.1. Target Maneuvers

The present proposal assumes that the driving loop of a vehicle usually follows a simple pattern,
the vehicle always starts in a stationary state, followed by a constant movement, which is only
interrupted by stop episodes of different time lengths. Finally, such movement finishes in a parking
state. This closes the loop, and the vehicle comes back to its initial stationary state.

Bearing in mind the aforementioned driving loop, the present work focuses on detecting the
kinematic state of a vehicle by distinguishing among four possible maneuvers: parking (PRK),
parked (PRD), stopped (ST) and driving (DR) , Ω = {PRK, PRD, ST, DR}

As Figure 1 depicts, PRK represents the time period between the moment at which a vehicle
remarkably decreases its speed to start the parking maneuvers and the instant when it eventually
stops. PRD is the stationary state of its parking place, whereas ST represents the rest of stationary
states of the vehicle due to, for example, red traffic lights. Finally, DR stands for the moving episodes
of the vehicle.

PRK
(parking)

DR
(driving)

ST
(stopped)

PRD
(parked)

[Beginning of the movement]

[Eventual stop]

[Parking started][Parking finished]

Figure 1. Target maneuvers and conceptual transitions among them.

3.2. System Architecture

In this section, we describe the architecture of the proposed system aiming at detecting the four
maneuvers described above. This system has been designed to locally run in a smartphone, and
as Figure 2 shows, it takes as input the data from the built-in accelerometer of the device and reports
the current kinematic state of the vehicle where the smartphone is mounted.

In that sense, there are other sensors widely available in regular smartphones like GPS that could
be also suitable for the classification goal of the system. However, the key benefit of the accelerometer
sensor with respect to such sources is that there is much less battery draining when it is intensively
used [32]. This is a key feature so as to come up with user-friendly applications. Furthermore, as has
been described in Section 2, it has been successfully used for many classification domains.

Maneuver Detection System

Feature 
extraction

Maneuver Detection Agent

Coarse-grained 
classifier

(Driving - Other)

Fine-grained
 classifier

(Driving - Stopped - Parked - 
Parking)

Case: Other

Case: Driving

Speed-based 
BreakO

ut Detection Agent

Accelerometer data Windomized data

Case: Breakout
detected

Case: No Breakout detected
Output: Driving

Output   [ Driving - Parking - Stopped -Parked ]

Figure 2. Architecture of the system.
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As far as the inner structure of the system is concerned, it comprises a fine-grained and a
coarse-grained classification agent. These two agents and the speed-based breakout detector agent
(SBDA) work in a hierarchical procedure so as to avoid a large consumption of the computational
resources of the host smartphone. For the sake of clarity, Algorithm 1 shows such a procedure. We
describe in detail of each of its parts in the following sections.

Algorithm 1: Global procedure of the system.
Input: The acceleration of the vehicle at at instant t.
Output: The maneuver of the vehicle mt ∈ Ω at instant t.
/* Feature Extraction */

1 A ← A∪ at
2 w← create_window(A, tsize)
3 Fw ← extract_features(w)

4 at
w ← ∑ai∈w

√
x2

i + y2
i + z2

i ×∑ai∈w ti − ti−1

5 st ← st−1 + (at
w − at−1

w )
6 S ← S ∪ st
7 switch mode do
8 case breakoutactive

/* Speed-based breakout detection */
9 (Sτ̂ ,Sκ̂)← EDM(S , δ)

10 if (Sτ̂ ,Sκ̂) = (∅, ∅) then
11 mt ← DR

12 else
13 mode← MDAcoarse

active
14 goto line 19

15 if |S| ≥ ssize
max then

16 S ← {s n
2
, ..., sn}

17 break

18 case MDAcoarse
active

/* Coarse grained algorithm classification */
19 mt ← coarse_grained_classification(Fw)
20 if mt 6= DR then
21 mode← MDA f ine

active
22 goto line 27

23 else
24 mode← breakoutactive

25 break

26 case MDA f ine
active

/* Fine grained algorithm classification */
27 mt ← fine_grained_classification(Fw)
28 if mt = DR then
29 mode← breakoutactive

30 return mt

3.2.1. Feature Extraction Module

The vehicle maneuver detection relies on the endless acquisition of the accelerometer data stream
from the host smartphone, A = {a1, a2, .., an}, where ai = {xi, yi, zi, ti} is a tuple with acceleration
(xi, yi, zi) at instant ti. Then, A is continuously partitioned in time-based sliding windows w of length
tsize (Line 2 of Algorithm 1).
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Next, for each window w, the feature extraction module (FEM) (see Figure 2) composes a set of
time and statistical features Fw (Line 3). To do so, the present work takes as a reference the analysis
carried out in [19,25] about human and transport activity recognition. However, unlike these works,
our approach is not driven to distinguish different transport-based activities, such as take the train,
the car or walking. Nevertheless, their strategy can be also applied in our setting, taking into account
that each target maneuver has a time length and can be treated as a distinct activity.

Furthermore, the FEM also uses each new w to approximate the vehicle’s speed at instant j (sj)
by means of the Euler method (Lines 4–5 of Algorithm 1). Next, each new Fw feeds three parts of the
system, the SBDA, the coarse-grained and the fine-grained classification agents (see Figure 2).

3.2.2. Speed-Based Breakout Detection Agent

This agent analyzes the speed measurements, s, calculated by the previous module to detect abrupt
changes in the EgoV’s speed that may represent potential shifts in its kinematic state. For example,
a vehicle’s transition from DR to ST will be reflected in its speed. For that goal, this agent makes use
of the E-divisive with median (EDM) algorithm [33]. This non-parametric algorithm allows timely
detection of the changes in the speed mean using statistically robust metrics.

In a nutshell, and in our setting, the EDM algorithm takes as input the sequence of speed
values incrementally generated by the FEM, S = {s1, s2, ..., sn}. Then, EDM splits such a sequence
into two sub-subsequences Sτ = {s1, s2, ..., sτ} and Sκ = {sτ+1, sτ+2, ..., sκ}, where 1 < δ ≤ τ and
τ + δ ≤ κ ≤ n.

Consequently, the two resulting sub-sequences Sτ and Sκ comprise at least δ observations, and τ

is the breakout point of both sub-sequences. The calculation of the best breakout point τ̂ can by done
by solving a maximization problem,

(τ̂, κ̂) = arg max
τ,κ
Q̃(Aτ ,Bτ(κ); α, δ)

where Q̃ calculates the energy distance between two sets and α is a scale factor. This way, EDM not
only obtains an estimate τ̂, but also its associated test statistic value q̂. Given this and a predetermined
significance level, the algorithm performs a permutation test to determine whether the reported
breakout is statistically significant.

All in all, the speed-based breakout detection agent (SBDA) endlessly feeds the EDM algorithm
with the current speed sequence S (Line 9 of Algorithm 1). If this algorithm does not report any
significant breakout, the SBDA will assume that there is not any remarkable change in the EgoV’s
speed and, thus, its kinematic state. Consequently, it automatically generates the system’s output as
DR (Lines 10–11). This assumption is based on the intuitive idea that DR is the most common state in
Ω when a vehicle is being driven.

In case a relevant speed breakout is detected, then it might be a sign that the EgoV’s maneuver
has actually changed or is about to change. Therefore, in order to clearly perceive the (potentially) new
maneuver of the vehicle, the SBDA activates the classification agents in order to compose the system’s
outcome (Lines 13–14). At this point, all of the features sets Fw are directly delivered to the maneuver
detection agent (MDA).

Finally, the SBDA also controls the whole size of S (Lines 15–16 of Algorithm 1). If such a size
exceeds a particular threshold, then the set is restricted to its n

2 last values.

3.2.3. Maneuver Detection Agent

The core of the proposed system is the MDA that comprises two classification models. As Figure 2
depicts, both models are hierarchically organized in order to reduce the number of times they
are executed.

The top level of the hierarchy is composed of a coarse-grained classifier (see Figure 2). This model
runs when the SBDA reports a significant speed change (Lines 18–25 of Algorithm 1). The goal of this
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first model is to detect whether the vehicle still remains in the DR state or, on the contrary, has actually
moved to a different non-driving maneuver (ST, PKR, PKD). For that goal, it classifies the incoming
Fw tuples into DR or non-DR. In that sense, it only considers a sub-set of Fw. By reducing the number
of input features, we intend to reduce the complexity and computational load of this first classifier.

Provided that the outcome of this first classifier is a non-driving maneuver (Lines 20–24),
the second-level classifier will be activated (see Figure 2). This model is in charge of uncovering
the actual maneuver of the EgoV in Ω. To do so, a classification of the incoming Fw tuples is carried
out (Lines 26–29). Due to the fact that in this case, a high level of accuracy is required, this classifier
takes as input all of the features in each Fw.

Lastly, if the maneuver returned by the coarse-grained or the fine-grained classifier is DR,
the SBDA is re-launched and the MDA stopped until a new abrupt change is detected (Lines 24
and 29).

3.3. System Orchestration

For the sake of completeness, the orchestration of the SBDA and the MDA is shown in Figure 3.
As we can see, the key goal of such a cooperation is to reduce as much as possible the number of times
the MDA is launched. This is because the continuous execution of its classifiers in a mobile platform
might be computationally draining.

Speed-based 
breakout agent 

active

MDA activebreakout detected

driving maneuver

Fine-grained
 classifier

Coarse-grained 
classifier

non-driving maneuver

non-driving maneuver

Figure 3. Orchestration of agents and models.

In that sense, the fine-grained classifier is the most complex element of the system in terms of
computation, as it makes use of all of the calculated features and should be able to distinguish among
all maneuvers in Ω. Hence, it is only executed when both the SBDA and the coarse-grained classifier
infer that a meaningful change in the kinematic state of the vehicle has likely occurred.

4. Classifiers Generation

Once the design of the system has been devised, the next step is to study which particular models
should play the role of fine- and coarse-grained classifiers within the MDA. For that goal, we evaluated
and compared different classification algorithms. The results of this study are presented in this section.

4.1. Target Classification Algorithms

We have considered three different data-driven and supervised classification algorithms,
namely random forest (RF), support vector machines (SVM) and fuzzy rule-based classifier (FRC).
While the first two algorithms are well-known solutions to uncover human activities with accelerometer
data, FRC has not been fully explored in this field. An overview of each method is put forward next.
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4.1.1. Random Forest

This classifier consists of a combination of decision trees as described in [13]. It takes advantage
of two powerful machine-learning techniques: bagging [34] and random feature selection [35,36].

The bagging method allows reducing the variance of the model without increasing its bias.
This makes the predictor less sensitive to noise and less prone to overfitting. Besides, the random
feature selection is the key difference between RF and regular bagging predictors. It involves randomly
selecting a small group of input features at each tree’s node. Therefore, unlike other similar approaches,
such as adaptive boosting (AdaBoost), RF is more robust to outliers and noise, which is very convenient
when dealing with accelerometer-based data [13,25].

4.1.2. Support Vector Machine

Support vector machine is a classifier based on statistical theory that works by defining
hyperplanes to separate data into different classes [14]. Each defined hyperplane divides the data
into two classes and tries to leave the maximum margin from both. In case that training data are not
linearly separable, then it is common to combine it with kernel functions that transform the original
data to a space of higher dimensions in order to find optimal hyperplanes there more easily.

4.1.3. Fuzzy Rule-Based Classifier

This kind of model can be extracted from data following the approach described in [15].
This process is called fuzzy modeling, and it has been widely applied for regression problems. Since the
goal in our setting is to perform a classification task, it can be approached as a regression problem
with only a set of possible output values if the set of predefined maneuvers is converted into a set of
numbers. Having this idea in mind, a set of fuzzy rules with fuzzy sets in the antecedents and first order
polynomials of the input features as consequents can be used for our maneuver classification problem.

The fuzzy modeling process is composed of two main steps. The goal of the first step is the
identification of the rule antecedents. For this aim, a fuzzy clustering technique is applied to the
input-output dataset. Then, the detected fuzzy clusters are projected into each one of the input feature
axes; afterwards, these projections are approximated by means of Gaussian bells, the obtained bells
being the fuzzy sets composing the rule antecedents.

The second step is the identification of the rule consequents; that is, the identification of the
coefficients of the polynomials composing the rule consequents. In the current approach, this is done
by the application of the least square estimator (LSE).

4.2. Data Collection

In order to collect a reliable dataset to train the three algorithms described above, we developed
an Android application to read, store and label with its corresponding maneuver the measurements
from the accelerometer. The application’s screen-shoot is shown in Figure 4.

Figure 4. Screenshots of the android app used for data collection.



Sensors 2016, 16, 1618 9 of 23

We then mounted a smartphone running the aforementioned application in a vehicle. We covered
with such a vehicle seven different urban circuits to generate a palette of driving situations. In all of
the circuits, two person were involved. While the driver, who was always the same person, drove the
vehicle, the other person used the application to label the data by using the aforementioned dataset.
During the collection campaign, we used an LG G4 smartphone equipped with an accelerometer
sensor with a resolution of 0.00119 m/s2 and a 100-Hz frequency. Figure 5 shows how the smartphone
was mounted for this campaign, whereas Figure 6 depicts the resulting orientation of accelerometer’s
axes of such an installation.

Figure 5. Smartphone installation for the data collection campaign.

Figure 6. Accelerometer axes’ orientation during the data collection campaign.

As a result, the seven circuits comprised a dataset with 110,200 timestamped and labeled
accelerometer readings. In addition to that, we removed the gravity from these measurements to
get realistic values of the vehicle movement. This is because when we keep the gravity acceleration,
each acceleration component is affected with an increment that does not correspond with its real
relative value. Finally, the distribution of the circuits with respect to the maneuver labels is shown in
Table 1. For the sake of clarity, the name of these circuits just corresponds to the order in which they
were covered; they do not represent any physical meaning.
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Table 1. Distribution of instances among maneuvers and circuits in terms of percentage and total
number (in brackets).

Maneuver DR PRD PRK ST Total

circuit1 68.38 (11,402) 14.51 (2419) 15.19 (2533) 1.93 (321) 16,675
circuit2 63.21 (5235) 18.97 (1571) 12.48 (1034) 5.34 (442) 8282
circuit3 59.85 (7141) 12.69 (1514) 23.84 (2844) 3.62 (432) 11,931
circuit4 60.39 (10,975) 20.10 (3653) 15.48 (2813) 4.04 (734) 18,175
circuit5 69.78 (20,112) 8.78 (2530) 11.61 (3345) 9.83 (2833) 28,820
circuit6 73.24 (8487) 8.99 (1042) 13.53 (1568) 4.24 (491) 11,588
circuit7 64.04 (9432) 11.89 (1751) 17.80 (2622) 6.27 (924) 14,729
Total 72,784 14,480 16,759 6177 110,200

4.3. Classifiers Training

Once we collected the whole dataset, the next step was to train each of the three algorithms in
order to compose a set of classification candidates to act as coarse-grained and fine-grained classifiers.

4.3.1. General Setup

Here, we describe the configuration details of the training of the algorithms.

Windows Generation

In order to generate the windows w from the collected data, we applied a time-based sliding
window with tsize of 0.5 seconds and 50% overlapping. Due to the fact that the accelerometer sensor
was sampled to 100 Hz, each window contained over 50 samples. In addition to that, we also controlled
that each window contained only readings labeled with the same maneuver to ease the training of
the classifiers.

Feature Extraction

For each window w, Table 2 shows its set of 13 computed features Fw, where (x, y, z) refers to the
particular accelerometer axes. These features have been repetitively used in the literature [18]. In that
sense, atotal is the acceleration obtained with the square root of the squared components of acceleration,
and s is the vehicle speed calculated as has been put forward in Section 3.2.1. As we will see later,
each of the two classifiers of the system is fed with a different subset of Fw.

Table 2. List of features Fw.

Domain Features

Time Statistical

speed (s)
mean (µ(x), µ(y), µ(z), µ(atotal))

variance (VAR(x), VAR(y), VAR(z))
accumulative median ( ˜VAR(y))

standard deviation (STD(x), STD(y), STD(z), STD(atotal))

Maneuver Fusion

In the original maneuver set Ω, PRD and ST actually represent the same kinematic state of the
EgoV. Hence, for the present comparison, both maneuvers have been merged into a single stationary
one (STA ). Thus, the resulting maneuver set turned into Ω′ = {PRK, STA, DR}.

Given such a fusion, discovering the particular stationary maneuver (PRD or ST) if the system
generates STA as the current state is possible by considering the previous maneuver detected by the
system. This way, before PRD, the EgoV should be in PRK, whereas before ST, the EgoV should remain
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in the DR state. Consequently, the sequences {PRK→ STA} and {DR→ STA} will be automatically
translated into {PRK→ PRD} and {DR→ ST} before being delivered by the system as the output.

4.3.2. Classifiers Configuration

The default configuration of each algorithm for the comparison is shown in Table 3.

Table 3. Algorithms default configuration. FRC, fuzzy rule-based classifier.

Algorithm Parameter Value Meaning

RF ntrees 500 Max. number of trees to be generated
coeff gini Contribution measurement

SVM model linear Model for classification
C 1 Violation threshold

FRC nrules [2:8] Max. number of rules to be generated
m 2 Cluster’s fuzziness

Regarding FRC, it was also necessary to perform a numerization of the output label of every tuple.
In this case, we applied a one to one numerization, as it does not incorporate additional complexity
in the problem. However, this technique can only be applied whether some kind of total order can
be established among the nominal values. In our case, it is obvious that we can define the partial
order, 1-STA, 2-PRK, 3-DR, given that a stopped vehicle (1) needs to un-park (2) so as to reach a cruise
velocity (3).

4.3.3. Training Method

The training of the three proposed classifiers has been done with a varied data distribution. On the
basis of the seven collected circuits, we defined three experiments splitting the data into training and
evaluation sets. Table 4 shows the composition in circuits of each experiments.

For E1, circuit5 was selected for evaluation, because it contains the higher number of samples and
multiple state changes (see Table 1). Regarding E2, we used circuit4 as the evaluation circuit due to the
fact that it has the largest amount of PRK and PRD samples. Finally, circuit3 was used in E3 to prove
the quality of the system classifying a great number of PRK samples.

Table 4. Summary of experiments and circuits.

Experiment Training Evaluation

E1 circuit1,2,3,4,6,7 circuit5
E2 circuit1,2,3,5,6,7 circuit4
E3 circuit1,2,4,5,6,7 circuit3

Lastly, the three algorithms have been trained by following a repeated k-fold cross-validation
using the six training circuits of each experiment with the k parameter set to 10 and the number of
repetitions to five. Consequently, in each iteration, 90% of the training circuits’ tuples were used to
train and the remaining 10% to test. We opted for this approach instead of a static division of the
dataset into training and testing due to the large number of DR maneuvers with respect the other ones.
Such an unbalanced distribution of labels might lead to biased models if we used the aforementioned
static division.

4.4. Classifiers Results

In this section, we provide the results obtained by the three algorithms under consideration.
In order to discard a potential over-fitting of the models, we show both the training and the evaluation
errors of the candidates.
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4.4.1. Coarse-Grained Classifier

Recall that this first model provides a binary classification by detecting whether the vehicle
is in DR or any other state, and it should only consider a few features of Fw as input to reduce its
computational load. Bearing this goal in mind, we performed a filter-based feature selection to generate
a sub-set of Fw to feed the first model candidates. It is important to note that, for this procedure,
the non-driving maneuvers (PRD, ST and PRK) were fused into a single artificial NoDR one giving rise
to the maneuver set Ω′′ = {DR, NoDR}.

As a result of this selection process, four features were selected as the input of the three
algorithms under consideration, s, VAR(x), VAR(z), and the accumulative mean of VAR(y). In that
sense, we observed that the variance of the acceleration components provides useful information about
the kinematic state of the EgoV. In particular, a high variance corresponds with moments where the
EgoV’s speed covers a wide range of values that usually corresponds to a DR state. Apart from that,
a low variance represents episodes when the EgoV is in a low speed range, like the PRK or STA states.

Regarding the accumulative mean of VAR(y), this feature has been selected because it smooths
the variance of y. This is because VAR(y) tends to zero and remains at such a value when the EgoV
is stopped. Such a decrease of the variance occurs in a smooth manner. However, for the prompt
detection of a stationary state, it is more useful that the convergence of VAR(y) towards zero occurs
more quickly. Since the accumulative mean of such a feature is less noisy because it retains the average
value of the data and discards random peaks, its convergence towards zero is faster than VAR(y),
and thus, it becomes a more useful feature for the classifiers.

Figure 7 shows the resulting models’ accuracy in terms of training and evaluation errors when
acting as a coarse-grained classifier. According to these results, we did not observe signs of overfitting,
and RF obtained lower errors in the three experiments by correctly classifying more than 90% of the
tuples. Furthermore, Table 5 shows the confusion matrices of the three classifiers for the evaluation
circuits of the experiments.
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Figure 7. Coarse-grained classifier candidates’ accuracy. (a) Training error; (b) evaluation error.

Results from such a table show that RF overcomes the other two candidates. In particular, this
algorithm was able to correctly classify between 94% and 93% of the coarse-grained maneuvers. On the
contrary, the other two candidates achieved a significantly lower accuracy.

For the sake of completeness, Table 6 shows the average sensibility and specificity of the three
models. In this case, the DR maneuver is regarded as the positive state and NoDR as the negative
state. It also depicts the accuracy, ACC (= TP+TN

TP+TN+FP+FN ), sensitivity, SEN (= TP
TP+FN ), and specificity,

SPE (= TN
TN+FP ), of the models. As we can see, RF achieved the best ACC and SEN rates and an

acceptable SPE value. This is consistent with the results shown in previous confusion matrices.



Sensors 2016, 16, 1618 13 of 23

Table 5. Confusion matrix of the candidates when acting as a coarse-grained classifier in terms of
percentage and number (in brackets) of correctly-classified instances.

RF SVM FRC

Exp. Man. DR NoDR DR NoDR DR NoDR

E1 DR 0.94 (750) 0.15 (45) 0.90 (724) 0.13 (46) 0.88 (704) 0.12 (40)
NoDR 0.06 (52) 0.85 (298) 0.10 (78) 0.87 (297) 0.12 (98) 0.88 (303)

E2 DR 0.97 (425) 0.13 (36) 0.96 (418) 0.16(45) 0.92 (400) 0.09 (27)
NoDR 0.03 (12) 0.87 (250) 0.04 (19) 0.84(241) 0.08 (37) 0.91 (259)

E3 DR 0.98 (278) 0.12 (22) 0.94 (267) 0.13 (24) 0.93 (264) 0.05 (10)
NoDR 0.02 (6) 0.88 (168) 0.06 (17) 0.87 (166) 0.07(20) 0.95(180)

Table 6. Sensitivity (SEN), specificity (SPE) and accuracy (ACC) of the candidates for the coarse-grained
classifier along with their number of true positives (TP), false positives (FP), true negatives (TN) and
false negatives (FN).

RF SVM FRC

TP (DR as DR) 1453 1409 1368
FN (DR as NoDR) 70 114 155

TN (NoDR as NoDR) 716 704 742
FP (NoDR as DR) 103 115 77

SEN 0.95 0.92 0.90
SPE 0.87 0.86 0.91
ACC 0.92 0.90 0.90

4.4.2. Fine-Grained Classifier

This second-level classifier is in charge of detecting the specific maneuver of the vehicle in the
case that the SBDA reports that a meaningful change of the vehicle’s speed has just occurred, and
the coarse-grained classifier reports that the current maneuver of the vehicle is different from DR.
Consequently, this fine-grained classifier plays a crucial role for the whole accuracy of the system.

For that reason, the three candidates have been trained with all of the features described in Table 2.
Figure 8 depicts the training and evaluation error of the three candidate algorithms in each of the
devised experiments. As we can see, there was no overfitting, and RF obtained the most promising
results for this second model. In fact, RF generated the models that kept a similar accuracy for both the
coarse-grained and fine-grained classifiers.
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Figure 8. Fine-grained classifier candidates’ accuracy. (a) Training error; (b) evaluation error.
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For the sake of completeness, Table 7 shows the confusion matrices of the three candidates as
fine-grained classifiers for the evaluation circuit of each experiment. Despite the fact that FRC achieved
the best accuracy for the PRK maneuver, the RF model obtained a better general accuracy for the three
experiments and maneuvers.

Table 7. Confusion matrix of the candidates when acting as a fine-grained classifier in terms of
percentage and number (in brackets) of correctly-classified instances.

RF SVM FRC

Exp. Man. DR PRK STA DR PRK STA DR PRK STA

E1
DR 0.96 (774) 0.25 (33) 0.07 (15) 0.94 (753) 0.31 (41) 0.14 (30) 0.89 (713) 0.15 (20) 0.10 (21)

PRK 0.03 (21) 0.49 (65) 0.06 (13) 0.04 (36) 0.24 (32) 0.02 (5) 0.11 (85) 0.54 (71) 0.18 (37)
STA 0.01 (7) 0.26 (34) 0.87 (183) 0.02 (13) 0.45 (59) 0.83 (176) 0.00 (4) 0.31 (41) 0.73 (153)

E2
DR 0.99 (436) 0.21 (24) 0.10 (17) 0.98 (428) 0.35 (39) 0.18 (32) 0.92 (404) 0.12 (13) 0.06 (11)

PRK 0.00 (0) 0.61 (68) 0.31 (54) 0.01 (5) 0.34 (38) 0.14 (24) 0.08 (33) 0.72 (81) 0.35 (61)
STA 0.01 (1) 0.18 (20) 0.59 (103) 0.01 (4) 0.31 (35) 0.68 (118) 0.0 (0) 0.16 (18) 0.59 (102)

E3
DR 0.99 (281) 0.15 (17) 0.06 (5) 0.98 (277) 0.24 (27) 0.04 (3) 0.84 (238) 0.05 (6) 0.0 (0)

PRK 0.01 (2) 0.73 (82) 0.03 (2) 0.01 (4) 0.24 (26) 0.03 (2) 0.15 (43) 0.65 (73) 0.53 (41)
STA 0.00 (1) 0.12 (14) 0.91 (70) 0.01 (3) 0.53 (60) 0.94 (72) 0.01 (3) 0.3 (34) 0.47 (36)

Lastly, Table 8 depicts the average number of TP, TN, FP and FN of the candidates in the three
experiments with respect to each maneuver in Ω′. It also depicts the SEN, SPE and ACC of the models.
In this case, results also show that RF achieved the best ACC in two out of three maneuvers and quite
high and stable SEN and SPE values for the three maneuvers.

Table 8. Sensitivity (SEN), specificity (SPE) and accuracy (ACC) of the candidates for the fine-grained
classifier along with their number of true positives (TP), false positives (FP), true negatives (TN) and
false negatives (FN).

DR PRK STA

Meas. RF SVM FRC RF SVM FRC RF SVM FRC

TP 1491 1458 1355 215 96 225 356 366 291
TN 708 647 748 1873 1909 1685 1803 1706 1780
FN 32 65 68 142 261 132 106 96 171
FP 144 172 71 92 112 300 77 174 100

SEN 0.98 0.96 0.89 0.60 0.27 0.63 0.77 0.79 0.63
SPE 0.83 0.76 0.88 0.93 0.97 0.35 0.96 0.91 0.95
ACC 0.93 0.89 0.89 0.90 0.86 0.92 0.96 0.88 0.88

4.5. Classifiers Comparative

Since the evaluation results stated above cover different classifiers and multiple experiments,
we cannot just compare the average accuracies of the models. Such measurements might contain
outliers and depend on the data.

As a result, we formally compare the three classifiers with the analysis of variance (ANOVA)
and the Dunn test. By means of these tests, we computed the p-value of the null hypothesis that the
evaluation results of the classifiers are different.

While ANOVA was used to detect whether meaningful differences actually exist between the three
classifiers, the Dunn test was applied to uncover the particular differences among pairs of classifiers.
Furthermore, we used the Levene and the Shapiro–Wilk tests to confirm the homoscedasticity of the
evaluation results and the fact that they follow a normal distribution. These are two requirements for a
dataset to be evaluated with the ANOVA test.
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4.5.1. Coarse-Grained Classifier

Regarding the comparison of the three algorithms when they acted as coarse-grained classifiers,
Table 9 shows the p-values of the Levene and Shapiro–Wilk tests that confirmed the homoscedasticity
and the normal distribution of the evaluation results.

Table 9. Test to ensure the homoscedasticity and the normal distribution of the evaluation results for
the coarse-grained classifiers.

Test p-Value

Levene 0.82
Shapiro-Wilk 0.80

Next, we launched the ANOVA test over the evaluation results reporting 0.00317 as the p-value.
This indicates that meaningful differences exist among the results of the classifiers. Hence, we finally
made use of the Dunn test discovering the particular differences between the classifiers whose results
are contained in Table 10.

Table 10. Dunn test for coarse-grained classifiers.

RF FRC

FRC Mean Diff. −2.39 -
p-value 0.03 -

SVM Mean Diff. −0.75 1.64
p-value 0.23 0.10

According to the results of this table, the only two classifiers with a different behavior are RF
and FRC because their associated p-value (0.03) rejects the null hypothesis. Moreover, the negative
difference of their evaluation means indicates that RF provides better classification capabilities than
FRC as a coarse-grained classifier. Lastly, the test does not indicate a significant difference between
either SVM and RF or SVM and FRC.

Selected Classifier

Keeping in mind the results of the comparison described above, we firstly discarded the FRC
model as the coarse-grained classifier. Consequently, we had to decide between SVM and RF as the
final classifier for the first level of the MDA. Since the Dunn test indicates certain similarities between
both models, we finally opted for RF because its evaluation results were slightly better than SVM,
as was described in Section 4.4.

4.5.2. Fine-Grained Classifier

For the second classifier of the MDA, we followed the same procedure to compare the models.
Thus, Table 11 shows the Levene and Shapiro–Wilk tests of the evaluation results of the models acting
as a fine-grained classifier. They confirm the normal distribution and homoscedasticity of the results.

Table 11. Test to ensure the homoscedasticity and normal distribution of the evaluation results for the
fine-grained classifier.

Test p-Value

Levene 0.65
Shapiro–Wilk 0.67
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Since the ANOVA test returned a p-value of 0.00346, we eventually executed the Dunn test, whose
results are shown in Table 12.

Table 12. Dunn test for the fine-grained classifiers.

RF FRC

FRC Mean Diff. −2.68 -
p-value 0.01 -

SVM Mean Diff. −1.34 1.34
p-value 0.18 0.09

Again, RF and FRC exhibited a different behavior with a p-value of 0.03. Besides, the test
also confirmed the best classification accuracy of RF with respect to FRC and the lack of significant
differences between either SVM and RF or SVM and FRC.

Selected Classifier

To sum up, RF was chosen as the fine-grained classifier instead of SVM by considering the
evaluation results described in Section 4.4.

5. System Evaluation

Once we selected the concrete models to implement the two layers of the MDA, we eventually
evaluated the resulting system. To do so, we used the evaluation circuits of the three experiments
already described in Section 4.3.3.

One of the key innovations of the present proposal is the usage of a mechanism to monitor
meaningful changes of the vehicle’s speed to launch or not the MDA. Thus, we have evaluated the
actual suitability of such a mechanism.

For that goal, we compared the proposed system with the SBDA enabled and a slight modification
that does not include this agent. Such an alternative only comprises the fine-grained classifier within
the MDA, which endlessly processes the incoming features Fw. Since this alternative requires the
continuous execution of the fine-grained classifier, it implies a higher computational load.

When we compared our system and its alternative, we obtained the results shown in Figure 9.
On average, the system accuracy with and without breakout is similar, while our approach also saves
execution cycles.
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Figure 9. Evaluation error of the system when the speed-based breakout detection is activated or not.
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Despite this reduction, Table 13 also shows that the speed change detection achieved its desired
goal because it reduced the number of executions of the MDA by around 25%. Consequently, it is
necessary to define a trade-off between accuracy and potential execution savings.

Table 13. Summary of the evaluation results with and without breakout detection.

With Breakout Without Breakout

Exp. Accuracy Savings Accuracy

E1 0.89 0.25 0.89
E2 0.80 0.28 0.84
E3 0.87 0.23 0.90

Mean 0.85 0.25 0.88

More in detail, Table 14 shows the confusion matrix of the system with and without the breakout
mechanism. From this matrix, we observed that the most conflictive maneuver was PRK. In this case,
the system suffered from the highest failure rate. This is because during a parking phase, the EgoV
suffers similar changes of acceleration along the horizontal axis as in the driving phase. Besides, during
the instant at which the EgoV is changing its movement forwards or backwards, it practically remains
stationary for a moment, which can be misclassified as an STA maneuver.

Table 14. System’s confusion matrix for the experiments in terms of percentage and number of instances
(in brackets). SBDA, speed-based breakout detector agent.

SBDA Disabled SBDA Enabled

Exp. Man. DR PRK STA DR PRK STA

E1
DR 0.97 (778) 0.30 (39) 0.09 (18) 0.98 (785) 0.33 (43) 0.09 (19)

PRK 0.02 (17) 0.45 (60) 0.06 (12) 0.01 (10) 0.45 (59) 0.06 (12)
STA 0.01 (7) 0.25 (33) 0.86 (181) 0.01 (7) 0.23 (30) 0.85 (180)

E2
DR 1.00 (436) 0.25 (28) 0.13 (22) 1.00 (436) 0.43 (48) 0.23 (40)

PRK 0.00 (0) 0.60 (67) 0.28 (49) 0.00 (0) 0.50 (56) 0.26 (46)
STA 0.00 (1) 0.15 (17) 0.59 (103) 0.00 (1) 0.07 (8) 0.51 (88)

E3
DR 0.99 (281) 0.20 (23) 0.06 (5) 1.00 (283) 0.26 (29) 0.25 (19)

PRK 0.01 (2) 0.67 (76) 0.03 (2) 0.00 (1) 0.63 (71) 0.03 (2)
STA 0.00 (1) 0.12 (14) 0.91 (70) 0.00 (0) 0.12 (13) 0.73 (56)

Furthermore, the slight difference of accuracy when the breakout is disabled or enabled is suitable
if we take into account the execution-cycle saving observed in Table 13 when the breakout is enabled.

Finally, Figure 10 shows the maneuver inferred by the system and the real one as time proceeds.
As we can see, this figure confirms that most of the erroneous classifications were related to ST and
PRK episodes, whereas it accurately perceived the rest of the DR episodes.
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Figure 10. System predictions using breakout detection for the three target experiments. (a) Experiment
E1; (b) Experiment E2; (c) Experiment E3.

5.1. GPS Addition Evaluation

In order to evaluate the effect on the system’s accuracy of adding new sources of information,
we decided to slightly modify the proposed system so that it was able to also read the GPS
measurements of the smartphone. Thus, the current speed of the EgoV was not estimated by means of
the accelerometer measurements, but directly extracted from the values returned by the GPS sensor.
Then, such speed values were the ones that fed the SBDA and the two classifiers of the system.

For this evaluation, we generated two versions of the system, the one only using accelerometer
data and the new one using both accelerometer and GPS data. In both cases, RF was the algorithm
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implementing the two classifiers of the system, since it was the one that provided the best accuracy
according to the study in Section 4.

We also designed a new experiment comprising three new circuits for training and a new one for
evaluation. In this case, we collected the readings coming from the accelerometer and GPS sensors of
the smartphone whose model was the same as in the evaluation in Section 4 (LG G4). The four circuits
comprised 197,887 instances (171,181 for training and 26,706 for test). The training procedure was also
a k-fold cross-validation with the k parameter set to 10 and the number of repetitions to five.

Regarding the input features, they were the same as the ones in the evaluation of Section 4, but in
this case, s was the speed directly returned by the GPS sensor.

Firstly, we individually evaluated the impact of the GPS-based speed in the two types of classifiers
of the system. In that sense, Table 15 shows the confusion matrix of the coarse-grained classifier for the
two versions of the system. We can see that including GPS data in the classification loop remarkably
improves the capability of the system to detect non-driving states. This is because the EgoV’s speed
estimation is more accurate when using GPS, and thus, this feature allows the classifier to better
distinguish among states.

Table 15. Coarse-grained classifier’s confusion matrices with and without GPS enrichment.

Accelerometer + GPS Accelerometer

Man. DR NoDR DR NoDR

DR 0.99 (8885) 0.32 (494) 0.98 (8843) 0.42 (482)
NoDR 0.02 (135) 0.68 (1141) 0.02 (177) 0.58 (1153)

ACC 0.94 0.94

Regarding the fine-grained classifier (Table 16), we can see that the version using GPS remarkably
improves the detection of the STA state with respect to the version using only accelerometer data.
The rationale of this increment has also to do with the speed estimation. Since the detection of a
stationary state is strongly related to EgoV’s low speed, the better estimation of this value makes the
system more capable of accurately perceiving such a maneuver.

Table 16. Fine-grained classifier’s confusion matrices with and without GPS enrichment.

Accelerometer + GPS Accelerometer

Man. DR PRK STA DR PRK STA

DR 0.99 (8943) 0.38 (261) 0.12 (111) 0.99 (8925) 0.41 (281) 0.17 (162)
PRK 0.00 (23) 0.50 (340) 0.19 (181) 0.01 (24) 0.49 (330) 0.23 (221)
STA 0.01 (54) 0.12 (81) 0.69 (660) 0.01 (71) 0.10 (71) 0.60 (570)

ACC 0.88 0.86

Finally, Table 17 depicts the general confusion matrix of the two versions of the whole system.
Results confirm that the slight improvement of the GPS + accelerometer version affects the DR and
STA states where the EgoV’s speed plays a key role (high speed for DR and low speed for STA).

Table 17. System’s confusion matrices with and without GPS enrichment.

Accelerometer + GPS Accelerometer

Man. DR PRK STA DR PRK STA

DR 0.98 (8966) 0.27 (180) 0.26 (251) 0.97 (8975) 0.21 (140) 0.39 (372)
PRK 0.01 (24) 0.70 (482) 0.16 (151) 0.02 (22) 0.75 (511) 0.12 (111)
STA 0.01 (31) 0.03 (20) 0.58 (551) 0.01 (23) 0.04 (31) 0.49 (470)

ACC 0.86 0.85
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Despite this improvement, we should consider the impact of using the GPS sensor on the
smartphone’s battery because, as has been already mentioned, it is a rather battery-draining
sensor. Consequently, a study of the trade-off between required accuracy and the associated energy
consumption must be carried out in each particular deployment of the system.

5.2. Multi-User Usage Evaluation

Since the present system has been designed to mainly run on smartphones, it is intended to
provide a personal detection of the maneuvers performed by the driver. In that sense, all of the
training, testing and evaluation datasets used throughout all of the previous evaluations were related
to a single and unique driver.

However, we have also briefly studied the performance of the system when it is used by a driver
who is different from the one who generated the dataset that trained and composed the system.
Thus, the goal of this evaluation is to give insight into the feasibility of coming up with a system that
is suitable for a group of users instead of a single one. This multi-user solution might increase the
potential exploitation of the system.

Consequently, we launched a new data-collection campaign by using the same mobile application
to gather the datasets. Unlike the previous studies, this time, the person playing the driver role was
different. As a result of this new campaign, a new dataset comprising 46,494 instances was generated.
Table 18 depicts the details of such a dataset.

Table 18. Distribution of instances among the maneuvers of the circuit with the new driver in terms of
the percentage and total number (in brackets).

Maneuver DR PRD PRK ST Total

circuitnew-user 54.11 (25,159) 15.84 (7368) 26.48 (12,312) 3.57 (1655) 46,494

Next, we fed the system generated with the previous driver’s dataset, whose results were put
forward at the beginning of Section 5, with this new dataset. This way, we evaluated the system with a
dataset from a user different from the one that generated the system.

Table 19 shows the confusion matrix of the system when it was fed with this new dataset.
Furthermore, for the sake of completeness, we also include the system’s matrix that we obtained
when the system was trained and evaluated with the same driver (the average results in Table 14 for
SBDA enabled).

Table 19. Confusion matrices when the system is used by a driver who is different or the same as the
one for which the system was trained.

Different Driver Same Driver

Man. DR PRK STA DR PRK STA

DR 0.99 (977) 0.96 (498) 0.89 (333) 0.99 (1504) 0.34 (120) 0.17 (78)
PRK 0.00 (3) 0.03 (17) 0.09 (34) 0.01 (11) 0.52 (186) 0.13 (60)
STA 0.00 (2) 0.01 (3) 0.02 (4) 0.00 (8) 0.14 (51) 0.70 (324)

ACC 0.53 0.85

As we can see from these results, the performance of the system remarkably drops when it is
used by a different driver than the one for which the system was trained. This decrease is specially
noticeable for PRK and STA for which only about 2% of the maneuvers were correctly classified.

This decrease is because during the training phase, the collected dataset is defined by certain
personal features of the driver when it comes to using his or her vehicle like, for example his or her
tendency to roughly park his or her car or to accelerate very fast when the vehicle is stopped. This type
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of underlying driving behavior of a person is indirectly learned by the system and, thus, makes the
system less accurate when a different user makes use of it.

6. Conclusions

The sensor equipment of smartphones now allows one to capture more and more features of
its surrounding environment, allowing one to develop a wide range of context-aware and pervasive
solutions. In particular, the vehicular domain can benefit from such mobile platforms in many different
ways to come up with innovative solutions to improve the traveling experience.

In this frame, the present work puts forward a novel mechanism to detect the current maneuver
of a vehicle by processing the accelerometer readings of a smartphone. By means of a hierarchy of
classifiers and the automatic detection of speed changes, the system is able to accurately perceive the
vehicle’s kinematic state. Moreover, we have also considered the limitations of mobile platforms when
it comes to coping with computationally-greedy applications.

For its realization, we have trained and compared three different supervised learning algorithms
to study which one was the most suitable for the proposed architecture. The results proved that
random forest was the best option to implement the two-level classifiers of the system. In addition to
that, the final evaluation of the system confirmed that the detection of speed changes to activate the
classifiers slightly reduces the accuracy of the whole system, but on the contrary, provides a lighter
solution in terms of computational needs.

Finally, future work will focus on the integration of other common sensors of a smartphone,
like the gyroscope, in order to improve the perception capabilities of the whole system.
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