Supplementary Materials: A Toolbox of Genetically Encoded FRET-Based Biosensors for Rapid L-Lysine Analysis

Victoria Steffen, Julia Otten, Susann Engelmann, Andreas Radek, Michael Limberg, Bernd W. Koenig, Stephan Noack, Wolfgang Wiechert and Martina Pohl

1. Titration Curves of the Sensor Prototype with L-lysine, L-arginine, L-histidine, and L-glutamine

Figure S1. Binding isotherms of the sensor prototype with L-lysine, L-arginine, L-histidine, and L-glutamine. Distortion of the titration curve >0.1 mM L-arginine and L-lysine, respectively, is due to the use of a crude sensor preparation. The results demonstrate that the sensor with the cpLAO-binding protein still has similar affinities for L-lysine (107 μ M) and L-arginine (ca. 25 μ M), whereas the affinity for L-histidine is much lower (>100 mM).

a 2.2 b 0.6 2.0 normalised FRET-ratio 0.4 1.8 FRET-ratio 1.6 0.2 14 6.9 oH 7.0 0.0 . nH 7 0 1.2 pН 1E-6 0.01 0.1 1E-3 0.01 0.1 100 1000 1E-4 1E-3 L-lysine (mM) L-lysine (mM)

2. pH-Dependent Binding Isotherms of the Sensor Prototype

Figure S2. Binding isotherms of the sensor prototype in MOPS buffer with pH-values between pH 6.7 to 7.2. The solution of the sensor prototype was stored in 20 mM MOPS buffer, pH 7.3. This buffer was replaced by 20 mM MOPS buffer with the respective target pH via ultrafiltration. The recorded binding isotherms are shown in (**a**) and for better comparison the normalized binding isotherms are shown in (**b**).

3. Isothermal Calorimetry

Figure S3. Isothermal titration calorimetry data reflecting L-lysine binding to the binding protein cpLAO-BP (**a**) and the complete sensor prototype containing this binding protein (**b**). The upper two panels show baseline subtracted raw data for titration of 22 μ M cpLAO-BP with 100 μ M L-lysine (left) and 60 μ M sensor prototype with 1 mM L-lysine (right). The lower panels display enthalpy changes per added mole of L-lysine as a function of the total molar ratio of lysine to protein in the calorimeter cell, reflecting binding isotherms. Only the sigmoidal isotherm in the left panel can be reliably fit to a binding model (single binding site, K_d = 1.5 μ M, N = 0.36, Δ H = -58 kcal mol⁻¹). Please note the different scaling of the y-axis in (**a**) and (**b**).

4. Protein Sequences from S. typhimurium and E. coli

 S. typhimurium
 ALPQTVRIGT
 DTTYAPFSSK
 DAKGEFI GFD
 IDLGNEMCKR
 MQVKCTWVAS DFDALIPSLK

 E. coli
 ALPETVRIGT
 DTTYAPFSSK
 DAKGDFVGFD
 IDLGNEMCKR
 MQVKCTWVAS DFDALIPSLK

 S. typhimurium
 AKKIDAIISS
 LSITDKRQQE
 IAFSDKLYAA
 DSRLIAAKGS
 PIQPTLESLK
 GKHVGVLQGS

 E. coli
 AKKIDAIISS
 LSITDKRQQE
 IAFSDKLYAA
 DSRLIAAKGS
 PIQPTLDSLK
 GKHVGVLQGS

 S. typhimurium
 TQEAYANDNW
 RTKGVDVVAY
 ANQDLI
 YSDL
 TAGRLDAALQ
 DEVAASEGFL
 KQPAGKEYAF

 E. coli
 TQEAYANETW
 RSKGVDVVAY
 ANQDLVYSDL
 AAGRLDAALQ
 DEVAASEGFL
 KQPAGKDFAF

 S. typhimurium
 AGPSVKDKKY
 FGDGTGVGLR
 KDDTELKAAF
 DKALTELRQD
 GTYDKMAKKY
 FDFNVYGD

 E. coli
 AGSSVKDKKY
 FGDGTGVGLR
 KDDAELTAAF
 NKALGELRQD
 GTYDKMAKKY
 FDFNVYGD

Figure S4. Comparison of the protein sequences derived from *S. typhimurium* and *E. coli*. The lysine binding proteins show high similarity. Homologous substitutions are marked in green, and non-homologous substitutions are marked in red. The amino acids involved in lysine binding are underlined. The sequence deleted during the circular permutation is marked in yellow.

5. Characteristic Mutations of the Fluorescent Proteins Relative to GFP

ECFP: F64L/S65T/Y66W/N146I/M153T/V163A [1] Citrine: S65G/V68L/Q69M/S72A/T203Y/H231L [2]

6. DNA and Protein Sequence of the Sensor Construct with cpLAO-BP

The DNA sequence encoding the His-Tag is highlighted in **bold**, the sequence of CFP is marked blue, the recognition site of the restriction enzymes is <u>underlined</u>, the LAO-binding protein sequence is shown in green, and the Citrine sequence is shown in yellow. The same code was used for the protein sequence.

6.1. Nucleotide Sequence:

ATGCGGGGTTCTCATCATCATCATCATCATGGTATGGCTGATACTCGCATTGGTGTAAC AATCTATAAGTCGGCTGGTATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCC ATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGC GAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTG CCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTGGGGCGTGCAGTGCTTCAGCCGCT ACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA GGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCGAGGTGAAGTT CGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGG CAACATCCTGGGGCACAAGCTGGAGTACAACTACATCAGCCACAACGTCTATATCACCGCC GACAAGCAGAAGAACGGCATCAAGGCCAACTTCAAGATCCGCCACAACATCGAGGACGG CAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCT GCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCCAACGAGAA GCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCGGGATCGGGATCCGGCACCGGT GTAGGGCTACGTAAAGATGATGCTGAACTGACGGCTGCCTTCAATAAGGCGCTTGGCGAGC TGCGTCAGGACGGCACCTACGACAAGATGGCGAAAAAGTATTTCGACTTTAATGTCTACGG TGACGGTGGCAGTGGAGGGAGCGGTGGAAGTGGCGGAAGCGCGCTACCGGAGACGGTAC GTATCGGAACCGATACCACCTACGCACCGTTCTCATCGAAAGATGCTAAAGGTGATTTTGTT GGCTTTGATATCGATCTCGGTAACGAGATGTGCAAACGGATGCAGGTGAAATGTACCTGGG TTGCCAGTGACTTTGACGCGCTGATCCCCTCACTGAAAGCGAAAAAAATCGACGCTATTAT TTCGTCGCTTTCCATTACCGATAAACGTCAGCAGGAGATTGCCTTCTCCGACAAGCTGTACG CCGCAGATTCTCGTTTGATTGCGGCCAAAGGTTCACCGATTCAGCCAACGCTGGATTCACTG AAAGGTAAACATGTTGGTGTGCTGCAGGGATCAACCCAGGAAGCTTACGCTAACGAGACC TGGCGTAGTAAAGGCGTGGATGTGGTGGCCTATGCCAACCAGGATTTGGTCTATTCCGATCT GGCTGCAGGACGTCTGGATGCTGCGTTACAAGATGAAGTTGCTGCCAGCGAAGGATTCCTC AAGCAACCTGCTGGTAAAGATTTCGCCTTTGCTGTCGACGAGCTGTTCACCGGGGTGGTGCC CATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGG CGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCT GCCCGTGCCCTGGCCCACCTCGTGACCACCTTCGGCTACGGCCTGATGTGCTTCGCCCGCT ACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA GGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCGAGGTGAAGTT CGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGG CAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGC CGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACG GCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGC TGCTGCCCGACAACCACTACCTGAGCTACCAGTCCGCCCTGAGCAAAGACCCCAACGAGA AGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGGGGATCACTCTCGGCATGGA CGAGCTGTACAAGTAA

MRGSHHHHHHGMADTRIGVTIYKSAGMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEG EGDATYGKLTLKFICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEGYVQERT IFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYISHNVYITADKQKNGIKA NFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAA GI<u>GS</u>GTGVGLRKDDAELTAAFNKALGELRQDGTYDKMAKKYFDFNVYGDGGSGGSGGSGGSGSAL PETVRIGTDTTYAPFSSKDAKGDFVGFDIDLGNEMCKRMQVKCTWVASDFDALIPSLKAKKIDAII SSLSITDKRQQEIAFSDKLYAADSRLIAAKGSPIQPTLDSLKGKHVGVLQGSTQEAYANETWRSKG VDVVAYANQDLVYSDLAAGRLDAALQDEVAASEGFLKQPAGKDFAFA<u>VD</u>ELFTGVVPILVELD GDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLMCFARYPDHMKQHD FFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNS HNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDP NEKRDHMVLLEFVTAAGITLGMDELYK

7. Table S1

Table S1. Overview of the binding parameters of the toolbox sensors.

Sensor	00	0F	0R	F0	FF	FR	R0	RF	RR
Ro	1.70	1.95	2.30	1.52	1.49	1.92	2.20	1.74	2.28
Rsat	2.16	2.25	2.37	2.59	2.61	2.52	2.20	3.20	2.87
ΔR	0.46	0.30	0.07	1.07	1.12	0.60		1.46	0.59
Ka(µM)	107 ± 5	4.7 ± 0.8	2.5 ± 0.3	67 ± 3	3 ± 0.3	3 ± 0.2		81 ± 2	27 ± 4

Includes the FRET-ratios in the non-bound (R₀) state and under saturating conditions (R_{sat}), the sensitivity (Δ R), and the affinity (Kd) of the sensor variants for lysine.

8. Table S2

Table S2. Overview of the binding parameters of the sensor prototype without additional linkers (00) in fresh medium and in culture supernatant (refers to Figure 5 in the main paper).

Measurement System	Ro	Rsat	ΔR	Kd	pН
Fresh medium	0.63 ± 0.01	0.84 ± 0.01	0.21	$0.37 \pm 0.04 \text{ mM}$	7.0
Culture supernatant	0.93 ± 0.02	1.08 ± 0.00	0.15	$0.63 \pm 0.14 \text{ mM}$	7.5
MOPS buffer	1.70 ± 0.00	2.16 ± 0.00	0.46	$107 \pm 5 \mu M$	7.3

The mean values of three independent measurements are shown. They were performed directly in the Biolector® cultivation system in the Flowerplates® at 1000 rpm and 30 °C. For comparison, the values measured in MOPS buffer are shown.

9. Setup and Data Analysis of Sensor Application in Microscale Cultivation Experiments of a Lysine Producer

In the following tables, the setup and analysis of the sensor application for L-lysine estimation in microtiter cultivation is explained in detail. See Table S3 for information about the plate layout. The fluorescence signals were measured constantly at $\lambda_{Ex} = 430 \pm 5$ nm, $\lambda_{Em} = 468 \pm 5$ nm (ECFP) and $\lambda_{Ex} = 430 \pm 5$ nm, $\lambda_{Em} = 532 \pm 5$ nm (Citrine), so the fluorescence intensity in each sample was recorded before each sampling and was subtracted from the measured fluorescence intensity in the presence of the sensor protein (Table S4). With the calculated FRET-ratios of the standards, the mean values and standard deviations of the in-plate calibration respective calibration lines were calculated (Table S5, Figure S5). Based thereon, the respective lysine concentrations in the samples were estimated (Table S6).

10. Table S3

TA7 - 11	01	02	03	04	05	06	07	08
wen	Samples				Calibratior	n Standards		
A = 0 h								
B = 4 h								
C = 8 h	cultivation of L-lysine producing C. glutamicum			0 mM L-lysine	1 mM L-lysine	10 mM L-lysine	100 mM L-lysine	
D = 12 h	DM1933 (4 wells per sample point)			in-plate calibration	in-plate calibration	in-plate calibration	in-plate calibration	
E = 16 h								
F = 20 h								

Table S3. Layout of the cultivation plate (Flowerplate[®]).

Note: In each row, four wells were filled with culture broth (1–4) and four wells were filled with L-lysine standards for recalibration of the sensors depending on the pH and on the medium composition. Accordingly, the standards in row A were prepared with fresh media, whereas the standards in rows B–F contained increasing amounts of the culture supernatant, which was prepared before with a wild-type strain of *C. glutamicum*. The calibration standards in row B were prepared with a mixture of 67% fresh medium and 33% culture supernatant and accordingly the standards in row C were prepared with a mixture of 33% fresh medium and 67% culture supernatant, whereas rows D, E, and F were prepared with 100% culture supernatant.

11. Table S4

Table S4. Raw data of the fluorescence measurement of the yellow and blue channel at sampling times. In-plate calibration data is shaded in gray, respectively.

	ECF	P-Signal ($\lambda_{Ex} = 430 \pm$	$5 \text{ nm}, \lambda_{\text{Em}} = 468 \pm 5 \text{ nm}$	Cit			
	Raw Data	Raw Data After	Eluorosconco Signal of the Sonsor	Raw Data		Fluoroscopco Signal of the Soncor	FRET-Ratio =
Well Number	Well Number Before Biogeneor	Minus Background Eluorescence	Before	Raw Data After	Minus Background Eluoroscongo	Citrine/ECFP	
	Biosensor	Addition	of the Cultivation Broth	Biosensor	Biosensor Addition	of the Cultivation Broth	
	Addition		of the California protein	Addition		of the Californian Dioth	
1	0.41	11.38	10.97	0.20	7.64	7.44	0.68
A02	0.35	11.11	10.75	0.17	7.61	7.44	0.69

A03	0.35	11.04	10.68	0.18	7.55	7.37	0.69
A04	0.38	11.11	10.73	0.18	7.52	7.34	0.68
A05	0.37	9.82	9.45	0.17	6.57	6.40	0.68
A06	0.38	9.53	9.15	0.17	6.17	6.00	0.66
A07	0.41	11.38	10.97	0.19	9.50	9.31	0.85
A08	0.65	13.92	13.27	0.29	12.08	11.79	0.89
B01	0.55	12.39	11.85	0.40	8.38	7.98	0.67
B02	0.52	11.98	11.46	0.37	8.10	7.73	0.67
B03	0.55	12.15	11.60	0.38	8.34	7.96	0.69
B04	0.55	12.13	11.59	0.40	8.28	7.88	0.68
B05	0.66	14.13	13.47	0.77	9.88	9.11	0.68
B06	0.69	14.05	13.37	0.79	10.07	9.28	0.69
B07	0.72	14.97	14.26	0.81	12.14	11.33	0.79
B08	0.99	16.84	15.85	0.89	14.58	13.69	0.86
C01	0.95	12.09	11.14	0.99	9.08	8.09	0.73
C02	0.95	11.92	10.97	1.00	9.01	8.01	0.73
C03	0.98	12.32	11.34	1.00	9.26	8.26	0.73
C04	0.99	12.41	11.42	1.01	9.43	8.42	0.74
C05	0.95	16.81	15.86	1.20	11.66	10.46	0.66
C06	0.98	16.66	15.69	1.21	12.01	10.80	0.69
C07	1.06	17.08	16.02	1.24	13.81	12.57	0.78
C08	1.35	19.05	17.70	1.33	16.81	15.48	0.87
D01	1.46	12.50	11.04	1.79	10.26	8.47	0.77
D02	1.46	12.44	10.98	1.80	10.31	8.51	0.78
D03	1.49	12.52	11.02	1.83	10.49	8.66	0.79

D04	1.52	12.72	11.20	1.84	10.65	8.81	0.79
D05	1.38	20.36	18.98	1.77	14.45	12.68	0.67
D06	1.36	20.14	18.78	1.76	14.65	12.89	0.69
D07	1.39	20.20	18.81	1.77	16.09	14.32	0.76
D08	1.62	21.03	19.41	1.87	18.27	16.40	0.84
E01	1.36	13.17	11.80	1.96	11.00	9.04	0.77
E02	1.35	13.07	11.72	1.95	11.05	9.10	0.78
E03	1.40	13.22	11.82	1.97	11.20	9.23	0.78
E04	1.40	13.32	11.92	2.00	11.31	9.31	0.78
E05	1.42	20.78	19.36	1.82	14.38	12.56	0.65
E06	1.40	20.67	19.26	1.78	14.81	13.03	0.68
E07	1.43	20.12	18.69	1.80	16.33	14.53	0.78
E08	1.69	21.41	19.72	1.89	18.43	16.54	0.84
F01	1.43	13.28	11.85	2.07	11.01	8.94	0.75
F02	1.42	13.37	11.95	2.06	11.15	9.09	0.76
F03	1.42	13.38	11.96	2.10	11.25	9.15	0.77
F04	1.48	13.34	11.86	2.14	11.26	9.12	0.77
F05	1.42	20.43	19.01	1.79	14.34	12.55	0.66
F06	1.43	20.67	19.24	1.81	14.63	12.82	0.67
F07	1.39	19.80	18.41	1.76	15.52	13.76	0.75
F08	1.66	20.70	19.04	1.87	18.01	16.14	0.85

12. Table S5

	FRET-Ra	tios of th		Standard	Deviation				
Sampling Time	0 h	4 h	8 h	12 h	16 h	20 h	Mean Value	Deviation	in Percent
0 mM L-lysine	0.68	0.68	0.66	0.67	0.65	0.66	0.67	0.01	1.5
1 mM L-lysine	0.66	0.69	0.69	0.69	0.68	0.67	0.68	0.01	2.0
10 mM L-lysine	0.85	0.79	0.78	0.76	0.78	0.75	0.79	0.03	4.1
100 mM L-lysine	0.89	0.86	0.87	0.84	0.84	0.85	0.86	0.02	2.1

Table S5. FRET-ratios of the in-plate calibration with mean values and standard deviation.

Note: the saturation concentration of the sensor with L-lysine under the given conditions is > 10 mM but < 100 mM L-lysine and could not be resolved in the three-point calibration. Therefore, the calibration curves (Figure. S5) apparently increase continuously until 100 mM.

13. Figure S5

Figure S5. In-plate measured calibration curves.

14. Table S6

Table S6. Analysis of the culture bi	roth using the sensor	prototype.
--------------------------------------	-----------------------	------------

Sampling Time	0 h	4 h	8 h	12 h	16 h	20 h					
FRET-ratios of the culture broth											
Well 1	0.68	0.67	0.73	0.77	0.77	0.75					
Well 2	0.69	0.67	0.73	0.78	0.78	0.76					
Well 3	0.69	0.69	0.73	0.79	0.78	0.77					
Well 4	0.68	0.68	0.74	0.79	0.78	0.77					
Mean Value 0.69 0.68 0.73 0.78 0.78 0.76											
Standard Deviation (SD) 0.01 0.00 0.00 0.01 0.01 0.01											
Regression curve: $y = a \times ln(x) + b$											

а	0.0506	0.0368	0.0405	0.0344	0.0352	0.0394				
b	b 0.6812 0.6996		0.6895	0.6849	0.6831	0.6632				
L-lysine in culture broth										
$0-1 \pm 0.12 0-1 \pm 0.01 3 \text{ mM} \pm 15 \text{ mM} \pm 12 \pm 0.04$										
	mМ	mM	0.01 mM	0.02 mM	0.3 mM	mM				

References

- 1. Kremers, G.J.; Goedhart, J.; van Munster, E.B.; Gadella, T.W., Jr. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius. *Biochemistry* **2006**, *45*, 6570–6580.
- 2. Griesbeck, O.; Baird, G.S.; Campbell, R.E.; Zacharias, D.A.; Tsien, R.Y. Reducing the environmental sensitivity of yellow fluorescent protein. *J. Biol. Chem.* **2001**, *276*, 29188–29194.