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Abstract: The following work presents an overview of smart sensors and sensor fusion targeted at
biomedical applications and sports areas. In this work, the integration of these areas is demonstrated,
promoting a reflection about techniques and applications to collect, quantify and qualify some
physical variables associated with the human body. These techniques are presented in various
biomedical and sports applications, which cover areas related to diagnostics, rehabilitation,
physical monitoring, and the development of performance in athletes, among others. Although some
applications are described in only one of two fields of study (biomedicine and sports), it is very
likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the
contemporaneity of applications, an analysis of specialized papers published in the last six years has
been made. In this context, the main characteristic of this review is to present the largest quantity
of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals,
without deeply addressing one specific system or technique, to the detriment of the others.

Keywords: smart sensors; sensor fusion; biomedical; sports; rehabilitation; development of
performance in athletes
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1. Introduction

Given the growing demand for the development of intelligent monitoring systems, with a local
processing or sensor network, this paper presents a review of the state of the art sensor fusion and
smart sensors geared to sports and biomedical areas mainly during the last six years. In particular,
it relates to how these technologies are present in several actions aimed at monitoring biological
functions of individuals (biomedicine); exhibiting the use of biosignals for the execution of activities
(biosignal interfaces); sports performance improvement of an individual (physical therapy and sports
science) and recovery; and the correction of movements and ergonomics.

Taking into account the high amount of techniques on biomedical and sports applications,
both sensor fusion and smart sensors are highlighted. In the literature, it is possible to find many related
terms, such as: sensor fusion, multi-sensor, smart sensor, data fusion, smart devices, smart systems,
fusion systems, among others. For a better understanding of this paper, smart sensors are defined as
devices able to acquire, process and transmit/show data to users. On the other side, sensor fusion
(which can be smart fusion or not) is a junction between two or more sensors present in the same
system [1].
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The sensor fusion concept is increasingly widespread and discussed these days, making it
comparable to a Science [1]. Due to a large amount of features involved, it is unlikely that only one
signal acquisition can provide a satisfactory compression system or variable analysis [2]. In general,
sensor fusion is the combination of different data from sensors that may result in more complex
analysis, which are not possible with the use of sensors singularly and/or separately [3]. In addition to
data acquisition of different magnitudes, sensor fusion includes management and combination of this
data with strategies to provide consistent and effective responses [1].

The development of fusion techniques is driven by the overview of a given system to be analyzed
in order to improve the decision-making process into specific actions in the same system. The areas
most affected by this technology are in commercial, social, biomedical, environmental, military,
sociological, and psychological scopes of effects: in short, often interdisciplinary interaction [1,2,4].

When it comes to sensor fusion, there are two situations. During the first, the fusion is done on
sensors with different signals [5]; while the second merges data, which is not necessarily of different
magnitudes, but with equivalent sensors in different situations.

Traditionally, its structure is composed of three levels, which act sequentially: acquisition and
data merger, fusion of characteristics, and merger of decisions [1]. These three levels work with
information in different classes, as shown in Figure 1. The first level (low) is composed of different
sensors that collect signals from n variables, which can be physical quantities, chemical, biological or
images (pixels). The second rating level (average) refers to handling and processing obtained signals,
from which their main information is extracted. Finally, in the third level (high), there are manipulation
classes, which create a fusion of symbols (characters, recognized information and strategies), and also
where decision algorithms for recognition and transmission information are applied.
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On another front, in cases where signal processing complexity is not so accurate, but there is
the need for intercommunication between various points, there are smart sensors. Smart sensors are
characterized by having their own communication system, which allows element sensor integration
in a sensing network [6]. Unlike sensor fusion complexity, smart sensors are identified as having
decision-making and communication present in a single system [7].

In a simplified form, in a single module, there is all the acquisition of physical quantities by the
sensor (s). These signals are electronically conditioned (by filters, A/D converters, etc.) and processed
(by microcontrollers and/or microprocessors). Subsequently, the communication stage is responsible
for data transmitting, using different means (by cable, wireless, Bluetooth®, Xbee®) in a network with
other sensors for post processing elements and data analysis [7]. The user can configure the entire
system remotely or on the device itself. This scheme is presented in Figure 2 [8,9].
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The main applications of the smart sensors are: environmental monitoring, agriculture, transport
and traffic, logistics, industrial, hospital, lighting, aerospace, energy conservation, automotive,
and telecommunications [7–10]. Among these different areas, applications in health care and sports
performance are also related with great emphasis [11,12].

Because of the similarities that exist between these technologies, as well as among the areas
of analysis proposed in this review, this work is organized into three application classes: sports,
postural and biomedical.

Although it is not always clear how to discern between sensor fusion and smart sensors (and their
related terms), the same occurs between biomedical and sports applications. However, it is necessary
to make an individual classification for each case, taking into account operation and usage types.
Therefore, this paper was not defined by the used technique, but by the function performed by those
sensors in the main application. For example, it mentions smart sensors and sensor fusion applied in
athletics (Section 2) and rehabilitation (Section 4).

The approach of this work has an extensive set of applications, and their technical description
depends on the system’s development factors. Hence, the intention is to present the main idea of the
sensor fusion and smart sensor utilization. Thereby, the technical specification of each system will not
be shown, only the main concepts. The motivation for this different proposal is due to the large variety
of devices used to achieve the same functionality, including those for commercial use and research
purposes, besides including information unavailable to the public.

In the same direction, this review has avoided dealing with consolidated sensing techniques
which rely only on the data fusion such as a motion capture system used in sports; but also chemistry
biosensors, which deviate from the context and extent, usually having invasive applications which
alone could give rise to a specific revision.

The aim of this paper is to demonstrate that there is a great interaction between biomedical and
sports applications, especially in the case of the evolution of technology which has developed in
both areas to quantify and qualify the physical variables that involve the human body. In such cases,
there are variables that may be used for performance increase and for monitoring the health condition
of a person (acceleration, heart rate, force, among others). This review is relevant in order to be able to
enlace similar areas and cooperate with ongoing studies following the evolution of technology.

In the field of sports, in Section 2, there are applications that aim to aid sports performance
and to provide support for referees. As a connection, in Section 3, there are applications that work
with principles that fit in both areas, sports and biomedical, especially regarding physical therapy.
In the biomedical field, Section 4, there are applications with a rehabilitation purpose; general,
physical therapy purposes; a monitoring purpose; and an aim to aid the diagnosis or execution
of activities with the help of signals provided from the human body. A little contextualization is given
to each branch, followed by some recent and relevant applications, and a brief analysis of the concepts
of sensor fusion and smart sensors.
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2. Sports

Three types of data analyze the development of athletes in sports: physiological, physical and
technical [13,14]. As physiological variables, the following can be highlighted: power (aerobic and
anaerobic), lactate, glucose, oxygen consumption, and others [13–15]. Among physical variables,
detach speed (average, critical, etc.), acceleration, and fatigue index, among others [13–15]. As examples
of technical variables, there are starting time (athletics, swimming, etc.), proper execution of
movements, repetitions of sequential movements, correct gait, posture during movement execution,
among others [16,17]. The analyses of these variables corroborate with technical, physiologist and
trainer assessments, used for decision-making and training implementation [13,14,16].

In sports, more and more applications have been developed as a result of data measurement,
which is also a useful tool for performance evaluation. Information and analysis usually do not depend
on the response of only one sensor but on the data fusion of multiple sensors, which must subsequently
undergo processing and data communication in a dynamic and interactive way (preferably during
exercise execution). However, in most cases post processing only occurs remotely [18,19].

The importance of instrumenting an athlete or accessory and analyzing real-time data is that it
helps technicians and physiologists in assessing timely performance and the orientation of the athlete
to develop it properly [20].

Sensor fusion, most commonly applied in sports, contains the following sensors: Accelerometer,
Gyroscope and Magnetometer [12,18,19,21]. Keeping in mind that sensor fusion and smart sensor
concepts can be used together, the selected applications in sports are presented and organized according
to a specific sport or group of modalities, such as athletics, swimming, cycling, ball and puck sports
and general applications.

2.1. Application in Athletics

Athletics is considered the motor base for other sports because it is difficult to find a high
performance sport that does not require running, throwing or jumping [22].

There is a great demand for studies that enable the technician to conduct his/her analysis and
guidance while in a training session, aiming for a higher growth rate of athletes’ performance [20,21].
In athletics, this convenience can develop a continuous interaction between coach and athlete,
providing more useful guidance in a competitive environment and in the practice of sports, rather than
in laboratories in further analyses [21].

In athletics, inertial sensors (accelerometer, gyroscope and magnetometer) are widely used,
providing an evaluation of quantities, such as acceleration, angular velocity, and magnetic field,
while providing orientation data analysis, as a quaternion and Euler angle [21]. The fusion of these
data with a video signal can provide data that can justify the difference in performance between two or
more athletes [21]. The work developed by [20] is an example of this analysis, in which it is possible
to examine the inertial behavior of sensors according to the time displacement of two athletes [20].
With this information, the trainer can provide corrections, specific training and guidance to athletes in
terms of starting time, positioning at starting time, among others.

In races, in addition to start monitoring, gait analysis is very important to the correct execution of
movements during training and competition, since the coach will be able to monitor the biomechanics
of this sport in real-time [23–28].

In order to analyze gait in sports, which depends on correct posture and movement, a system was
developed using force and inertial sensors in an athlete’s shoe [29]. The application of three sensors,
obtaining force, acceleration and angular velocity, comprises a sensor fusion used for the gait analysis
of the athlete.

Figure 3 illustrates some examples of places to install smart sensors according to their application.
The places where sensors are installed will influence both results and the type of analysis to be
performed, such as (a) installing a sensor on each ankle to analyze movements and range of movements;
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(b) installation of two sensors (thigh and tibia) to analyze the knee angle during gait execution;
(c) a sensor installed in the lumbar can analyze hip movements, according to the pace [23–30].
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The application of these concepts can be allocated to athletes for whom running is a bases of
their sport (marathon runners, triathletes and sprinters). Athletics is not restricted to sports which
are based solely on race, there are modalities using jumps (height, distance, triple, pole vault, etc.),
accessories (hammer, stick, dart, disc, etc.), and obstacles (gap and barriers) [31].

2.2. Application in Swimming

Basic swimming movements can be divided into three phases. First, there is swimming style
(freestyle, backstroke, breaststroke and butterfly). Second, there is the turn type, and third, there is
swimming intensity (speed or resistance) [14,32–43].

Based on this information, sensor fusion and smart sensors may be applied in various forms
in swimming, quantizing by numbers, graphics, and analyses. For example, to swimming type
recognition; quantity of strokes and the time between them; and also swim and speed intensity [14].

Swimming requires two important measurements of variables to the development of the athlete,
which are the resistance to the movement of the body in water and propulsion of the body in water,
according to the efficiency of the arms during the movement [32–44].

To exemplify this, there is a system divided into two major blocks. One block is responsible
for reading and storing data, and the other one is responsible for interacting with the data [44].
The function of the blocks is to perform inertial analysis of the limbs and the upper body during
swimming, fusing these signals with images, allowing technical analysis of the type of swimming and
its corrections through comparison of the swimming technique, according to numerical presentations
(graphics), and video analyses [35,40,45].

Sensor fusion can be used for more specific goals, such as conciliating concepts of speed, power,
and technique of a starting jump [40,45]. To illustrate this, there is a system that has the following
smart sensors: sensors on the start platform, inertial sensors, pressure sensor on the edge of the pool,
photoelectric sensors, and cameras and sound signals [40,45].

In this system it is possible to detect the reaction time of the athlete to the starting signal, the power
generated from jumping off the platform, his/her movement and technique, jump time (flying),
among others [40,45].

However, it is not only the monitoring of athletes that can be applied to sensor fusion.
Smart sensors and their fusion are also applied to the automation of sports and information provided
to scouts. In recent years, the number of systems that update the data of athletes (number of strokes,
and the time between them) in real time has increased, evaluating several athletes simultaneously,
as well as systems that help conduct training for several swimmers [39,43,46]. These systems have
been developed so that technicians would only be concerned with the movements of athletes and not
the sequences of the activities or taking notes and data during training [39,43].
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2.3. Application in Cycling

In cycling, studies are applied to both the performance improvements of riders and for the
rehabilitation of injured athletes, preventing future injuries [13,19,47–51]. Different types of data are
used, such as power, oxygen consumption, heart rate, effective force to the pedal, and biomechanical
measurement of the variables (such as foot and knee angles during exercise, correlating them with
cadence) [13,19,47–50], which are studied considering their relevance in athletic performance [19].

Some analyses can be performed in real time so that corrections can be made during exercise
practice, thus providing pedal stroke profiles of the athletes. The foot angle of the athlete on the
pedal is crucial to fully transfer the strength of the foot to the pedal [19]. To visualize the correct foot
position (angle), a smart sensor was developed that analyzes the angle of the foot by inertial sensors,
and presents the correction in an application on a mobile device, so the rider can reposition their
foot [19] (Figure 4).
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The crankset, shown in Figure 4, along with the pedal, rotates 360◦ during exercise execution,
allowing the analysis of the cycling in two phases. The first, which starts at 45◦ from the top (0◦),
generates power to move the bike, and the second phase, which happens when the set reaches 135◦

from the top, starts the recovery process, in which there is no motion generation. The two assessments
previously mentioned are displayed in Figure 4.

When power is applied outside the region of movement, pedaling efficiency decreases, which may
lead to a future injury [15]. Various techniques have been applied to measure the pedaling angle,
but the use of accelerometers is one of the most efficient and the signal obtained has less noise.
Once data is acquired, the signal is processed, which evaluates if the feet position is the most suitable
for the best performance of the rider while pedaling, and helps to prevent injuries.

In addition to pedaling technique, there are other key measurements for cycling, such as
quantifying the physical condition of an athlete. As a physiological variable to be measured in
cycling, power output stands out for being measured during training, competitions, and even in
laboratory evaluations [13,47]. The power meter used in cycling is a device that has a fusion of
two sensors (force and speed) and transmits data via wireless communication, being characterized as
a smart sensor [13,47–51].

The speed sensor is commonly found in two different forms. The first, and most common,
is a magnetic sensor installed on the crankset, detecting the passage through a fixed magnet installed
on the chain stay. The second form is presented in Microsystem Electromechanical (MEMS) form,
being the gyroscope responsible for measuring the angular velocity of the pedal [47].

The power or torque sensor is responsible for measuring the deformation in a mechanical part
of the bicycle, and this part can be the pedal, the crankset, the chain ring, the rear hub, or even the
chain stay [51]. This sensor is called Extensometer, which transforms the intensity of the mechanical
deformation into electrical resistance changes [47].
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After torque and speed data fusion, the power values in real time are displayed for the rider.
A device called Head Unit, which is placed on the bicycle handlebars, performs the interface with
the cyclist [13,47,48]. With the evolution of smartphones and mobile devices, integration with power
meters is facilitated by two wireless communication protocols: ANT+ and Bluetooth [13,48].

Having such examples of sensor fusion applied to cycling, it is clear that the analysis can be of both
the techniques and physical condition of the athletes, helping the sport as a whole. Cycling is a sport
that has endurance (road, hour record, etc.) and speed (time trial, track, etc.) racing categories, with the
applicability of the concepts of sensor fusion and smart sensors being vital to all of them [13,47–51].

2.4. Ball and Puck Sports

2.4.1. Applications in Football (Soccer)

Soccer, in particular, is a very susceptible sport for refereeing errors with constant slip ups
regarding offside decisions and even goal validations [52], which directly influences the course of the
match and the final result.

Goalpost instrumentation, using sensor fusion, has recently been proposed [52–54] based on
two techniques to scan a certain area. The first is based on cameras installed in the stadium structure,
making a decision according to the position of the ball related to the goal line based on the image of
three different cameras (at least) at the same time [53]. The second technique is based on magnetic
field sensors installed in the three goalposts, where the decision would be made based on the magnetic
field change [54,55]. Both techniques process signals from sensors and transmit them to the referees by
wireless encrypted communication [53]. These systems can be applied in other sports besides soccer,
such as hockey (ice and grass), basketball and water polo [54].

While the first technique is based on image fusion, the second also uses smart instrumentation of
the ball, which is loaded with a passive electronic circuit and the goalposts present a low frequency
magnetic field generated by the system. Any variation in the magnetic field behind the goal line is
detected and automatically confirms, or not, the passage of the ball [55].

The importance of smart sensors and sensor fusion in ball sports goes beyond monitoring rules
and objectives, also being applied in the physiological measurement of variables to evaluate the
physical performance of each athlete [55].

Regarding physical evaluations, running evaluation systems can be exemplified with sensors and
timers, which in parallel with physical examination sensors (fatigue, heart rate, etc.) are transmitted
to a signal processing center, as exemplified by Figure 5 [56]. The system displays the running time
between the towers. With this given time and the distance between towers, it is possible to calculate,
along with other parameters, physiological power, fatigue index, among others [15]. Figure 5a exhibits
a smart sensor topology for collecting time in continuous running between infrared or optical sensors
(A and B), and it can be sprints or even laps. Additionally, the system shown in Figure 5b is used for
agility tests, composed by many sensor towers (is showed 8 towers), where the measured value is
the time taken for the athlete to trigger the active sensor and return to the center, which is indicated
by lighting the tower to be triggered. Both systems has a central tower with a embedded system
microcontrolled to collect data, store them and also enable them to transfer to a computer.

To survey the physical performance of an athlete in the field, a GPS (Global Positioning System)
was used in each player to collect data such as speed, position, acceleration, time of each activity type,
among others [57]. Thus, sensor fusion use for soccer analysis is important for rule application, and for
the monitoring and assessment of players.

2.4.2. Applications in Basketball

The application of smart sensors in basketball includes real-time analysis of passes, shots (jumps),
drives, and dribbles [58,59] in both games and practices [58,60,61].
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To illustrate the individual analyses, the ball instrumentation stands out, performing data
collection to compare shot types; ball output angle from the hand of the athlete; the angle at which the
ball enters the hoop; and speed and flight time of the ball [61].

In [61], the proposed basketball instrumentation was developed using nine accelerometers
installed on the ball, which communicate with mobile devices, allowing the user to retrieve data
through an application installed on the device. This type of analysis helps corrections of movement
and shots in order to improve quality and accuracy of the field goals [61]. As for movement and
intensity analysis inside the court, smart sensors are installed on the body of the athlete, creating fusions
due to the physical performance of the athlete on the court [58–60].

These fusions are usually based on smart sensors installed on the body of the athlete, such as GPS,
instrumented insoles, inertial sensors, and cameras [58–61]. Together, these data are analyzed according
to the performance of the athlete, generating reports and feedback to coaches, physical trainers,
physiologists, and physicians.

2.4.3. Applications in Sports with Protective Equipment

Within team sports, there are modalities that require protection to the athlete because of the
impacts and intensity that the game offers, such as hockey and football. In these cases, smart sensors
and sensor fusion application enable the analysis of the impacts suffered by the athlete [62] which also
helps to provide knowledge to the development of protective gear. Several recent articles in the area
show the concern about monitoring possible concussions and other injuries to the head that may be
caused by an impact, especially in ice hockey and football [62–70].

Most of the impact monitoring systems in the game are composed of smart inertial sensors that
can transmit the following values: impact acceleration, impact time, impact local (head or part of the
body), impact direction, and the amount of impacts in sequence (if more than one) [63–70]. As the
largest target of the studies are impacts on the head, the most instrumented protective equipment is
the helmet (Figure 6a), since its approach has gained more relevance in the light of concussion cases in
these sports [64,67,69]. However, the vest can also be instrumented [71].
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In addition to safety equipment, in hockey there is also the fusion of smart sensors on the stick,
which analyze the movements of the athletes with the stick, the force of the strike, and the position of
the hands on the stick [72]. The fusion of three sensors installed on the stick can be used (Figure 6b):
inertial sensors at the top of the stick to analyze the movements of the stick in the hands of the athlete
(i region); linear potentiometers to identify the hand position on the stick of the athlete (ii region);
and lastly, strain gauge to analyze the deflection of the stick at the time of the strike (iii region),
thus monitoring the force at which the puck is released [72].

2.5. General Applications

In sports, heart rate is correlated to the effort of the athlete; its comparison with its thresholds
provides performance and fatigue levels in physical activity [73]. For this measurement, [73] which
can be used in volleyball, where heart rate sensors are installed on each athlete, monitoring in real time
and transmitting to the coaching staff. However, this measurement type can be used in conjunction
with other sensors, executing data fusion in other sports such as athletics (track), cycling, swimming,
soccer, and basketball [13,48,73].

In addition to the already mentioned types of movements, other types of movements are essential
in sports, such as swinging, which is characterized as a complete movement with a bat or racket to
have contact with the ball at the optimum time and angle, which is used in sports such as tennis, golf,
baseball, cricket, among others [74]. Based on this movement type, a system was developed to analyze
the swinging applied to golf. Inertial sensors are installed on the golf club, graphically raising the
trajectory of the bat, as well as the position and time until contact with the ball. These analyses can
lead to a breakthrough in golf teaching and also provide feedback to coach and athlete during training
and competitions [74].

The use of the concepts of sensor fusion and smart sensors can be applied to various sports and
types of analyses, as presented in Table 1, which displays the sports and the type of analysis.

Table 1. General applications for sensor fusion and smart sensor on sports.

Sport Type of Analysis

Alpine Skiing [75] Movement and techniques
Tennis [76,77] Swing and rules (challenge)

Snowboard [78,79] Real-Time feedback of snowboarding
Martial Arts (general) [80,81] Movement and technics

Taekwondo [80,82,83] Movement, technics and rules (system)
General Sports [84,85] Classification of the modality or activity of the sport
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3. Applications between Sports and Biomedical Areas

After the presentation of the application of smart sensors and sensor fusion in sports, this topic
reports the applications that can be used for sports and biomedical tests, all with the same equipment.
The objective of this topic is to introduce a connection between sports (Section 2) and biomedical
applications (Section 4). Three topics were selected to introduce smart sensors and fusion sensors to
both areas: plantar pressure, electrical activity of muscles, and ergonomics.

3.1. Plantar Pressure

To perform plantar pressure measurement in dynamic situations, the best system currently
displayed is called in-shoe, where a plantar pressure acquisition system is installed inside the sneaker
or the footwear of the individual [86,87]. This system model is based on measuring the plantar pressure
between the foot of the individual and the outsole of the footwear, having an interface between the
parts of an instrumented insole [17,86–89], as featured in Figure 7a.
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According to [86], in-shoe systems need some basic requirements for safe operation, such as
being mobile, having the least number of cables, being comfortable inside the sneakers, lightweight
(about 300 g), low cost, and low power consumption. This system is characterized as a smart sensor
because it has acquisition, processing and wireless transmission of plantar pressure data [86,87].

In addition to commercial systems, other in-shoe systems are developed to research and specific
studies, such as an instrumented insole that was developed to plantar pressure measurement in
heavy human activities [87]. As the main application, this insole has been applied to a landing
simulation parachute, which has a high impact on feet in contact with the ground [87]. This system
uses eight sensors that present an output voltage according to the internal material resistance that
changes when a mechanical force is applied to it. The system is microcontrolled and transmits data by
wireless communication modules [82].

For deeper or more specific analysis, there are other methods, such as the distance between feet,
gravity center, pressure percentage by foot, etc. [17,86–89]. These plantar pressure concepts can be
applied in high performance sports, not only in training or in the analysis of the assessments, but also,
for example, in track sports, snowboarding and soccer [16,24,79]. To achieve this, miniaturized sensors
were developed and installed within the pins of the athletic spike shoes (cleats) [16]. The instrumented
spike shoe contains six pins with sensors installed in each of them, as shown in Figure 7b.

3.2. Muscle Activity

Muscle behavior analysis during a physical activity can be performed using Surface
Electromyography (sEMG) [90–92]. In sports like weightlifting and powerlifting, there are movements
of lifting metal bars with weights attached to their ends [91].
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Weightlifting activity can be harmful to the body if not performed correctly and requires
continuous assessments to avoid injuries during training and competitions, such as in Olympics
and Paralympics [92]. To illustrate sEMG use, which can be applied in both sports and biomedical
applications, there is a protocol for assessing muscles of the trunk activation when a weight is
lifted from a resting state [90]. The intersection of sEMG values with video imaging analysis can
generate a data fusion to perform the comparison of muscle electrical activation with body position
in weightlifting.

The movement of lifting a weight from the floor may occur, even at low intensity, in everyday
and domestic activities. These activities are responsible for most of the injuries that occur in the
back, particularly in the lumbar region. A data fusion such as this allows the characterization
and quantization of the muscles of the trunk activation, being baseline studies for the injuries and
rehabilitation of athletes and people deprived of some movements [90].

3.3. Posture and Ergonomics

Several systems are able to conduct a posture analysis, which can operate in improving sports
performance and in recovery and rehabilitation systems for medicinal purposes [93]. For example,
heart rate contribution with trunk inclination and acceleration data allows a smart sensor to perform
the measurement of movements and positions for the physical classification of postural activities,
especially in the detection of abnormal conditions susceptible to an emergency [94].

In most cases, sensor fusion and smart sensors of those applications are developed by means of
an inertial sensor. Accelerometers, gyroscopes, and magnetometers can be used for posture monitoring
and for some ambulatory functions by extraction, via Kalman filter, of the orientation of a person [95].
In therapeutic applications, inertial sensors are used to measure posture inclination angles, which allow
a system to perform feedback with vibrotactile stimulations to people in the rehabilitation process [96].
However, there are exceptions, such as a smart sensor developed with inductive sensors sewn into
a T-shirt that permits the analysis of the spine curvature [97].

It is also possible to notice that the inertial sensor can be associated with other sensors for
recognizing and tracking functions and daily movements. For day-to-day activity recognition,
the fusion accelerometers and radio frequency identification sensors (RFID) correlate both movements
and the amount of calories burned by the exchange of gases, present in different activities [98].
The fusion of inertial sensors, a belt of one sonar sensor and ultrasonic sensors inserted in shoes,
are used to estimate the posture of the lower limbs in real time, with obstacle detection in unknown
environments [99]. As for outpatient movements, smart fabrics (e-textiles) and smart sensors are used
for an angular measurement system (goniometer) of the knee joint, with better performance and less
errors than commercial systems [100].

However, regarding posture analysis, sensor fusion and smart sensors can assist in the
rehabilitation and in the treatment of diseases. In clinical systems, a combination of accelerometers
and gyroscopes can help to measure balance, mobility, and movements, such as standing up, walking,
turning, and sitting again—especially for people with Parkinson’s, who may be monitored by a smart
sensor [101]. For monitoring people with a neurological disorder and chronic diseases, data fusion of
acceleration, angular speed (gyroscope), and video images are used to assess postural changes [102].

In ergonomic systems, a stress and sleep quality estimator were developed using Electrocardiography
(ECG) in the form of a smart sensor [103]. Another example is a fusion wearable system, based on
a piezoelectric sensor array with tri-axial accelerometers, which are sewn onto lycra clothing.
This system is used to analyze spine curvature and lumbar spine bow [104].

After the presentation of applications that can be directed as an intermediate for sports
and biomedical applications, Section 4 will present smart sensors and sensor fusion applications,
besides data in biomedical engineering and its specifics.
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4. Biomedical Applications

The sensor fusion concept is widely used in biomedical engineering. Among its applications
are some simple cases, such as ECG use, Arterial Blood Pressure, and Photoplethysmography
(PPG) for monitoring cardiac signals. Even if some techniques have their advantages when used
separately, together they provide greater robustness and reliability for data analysis in diagnosis [105].
However, they may be applied to systems with deeper analysis, such as brain function understanding.
Due to the complexity of the brain, which requires more refined and detailed function mapping,
the adoption of only one technique presents difficulties. Using space-time signals obtained by
encephalography (EEG) and magnetoencephalography (MEG), adding functional magnetic resonance
imaging (fMRI) enables the analysis of how different parts of the brain contribute to activities related to
perception and cognition [106]. To achieve this goal, three different techniques, with different sensors
and signals, are used together.

On the other hand, there are situations where diseases cannot be diagnosed by simple methods,
such as potentially malignant tumors, due to factors such as low sensitivity, high-risk of a false positive,
and a limited number of spatial samples (occasionally in biopsies). Fused sensor information helps the
doctor make a more accurate diagnosis [106], which is facilitated by the development of miniaturized
electronics and wearable systems [106,107].

There are applications that use data matrices to acquire signals. However, they are composed of
the same data type. Biopotential collection systems, such as electromyography (EMG) [108], EEG and
ECG, or anything that uses the same type of sensor [109] should be handled with care because more
than one electrode can be used to capture the signal. If the type of the signal obtained is the same,
the system is classified as a multisensor system. Its nature classifies it as sensor data fusion; an example
of this is the use of an array of electrodes to collect signals from surface EMG in pregnant women to
monitor uterine contractions [110]. Thus, this work contributes to promote a multiple data analysis in
a non-invasive way.

In parallel with data fusion and sensor technologies, smart sensors have also been widely
used in biomedical applications to acquire and process data to be used in assisting with diagnosis,
self-diagnosis [111], telemedicine [112], home monitoring (home care) [113], and to save lives [114].
In the construction of these sensors, some electronics principles and/or physicochemical reactions,
such as biosensors, are noticeable. These biosensors facilitate the development of smart sensors
because they can be miniaturized and implanted. Some present themselves with the concept of MEMS,
which are used for various applications such as treating tumors, controlling blood glucose levels,
and releasing therapeutic agents in response to biomolecular and physical stimuli to minimize medical
care personnel intervention [115].

There are numerous examples of smart sensors, such as the m-Health (mobile-Health), a simple
wearable device that monitors cardiac activity in real-time [116]. Meanwhile, more complex systems
require the use of smart sensors, such as a prosthesis which assists people with degenerative retinal
diseases—this is still being tested [117]. This system uses a camera to capture the signals and an array
of electrodes to stimulate the eye, reinforcing the image. Finally, one of the greatest conveniences
of smart sensors is their ease of replication, which allows them to be commercially developed [118],
such as an EMG monitoring system [119].

Next, equipment, devices, and systems that use sensor fusion techniques and smart sensors
through the main biomedical applications, will be covered. Though there may be some overlap,
the examples were separated into classes: patient monitoring in a hospital/clinical environment,
rehabilitation, home monitoring, self-diagnosis; and other relevant applications that do not fit in
the above.

4.1. Patients Monitoring in a Hospital/Clinical Environment

In the development of systems for patient monitoring, sensor fusion techniques can be used
for the analysis of a more complete and general condition of the patient. In a hospital environment,



Sensors 2016, 16, 1569 13 of 31

the use of a single system to insert sensors on the patient, such as the body temperature, heart rate,
ECG, breathing rate, and acceleration of the body, is common [120]. These systems may be
wearable [121]. These data are sent to a central processing unit, and algorithms identify the behavior
of an individual [120], verifying, for example, if he/she fell down or if their physical condition is
not stable. In integrated systems, a robot can be sent to meet the patient, which recognizes him/her
through a camera and a 3D spatial analysis’ LED (Light Emitting Diode) [120].

The technique of fusing data from multiple sensors is exemplified in an endoscopy system with
eight inertial sensors inserted into the endoscopic tube, determining its position and location [122].
The use of multiple sensors provides complete guidance to the doctor in only one device, and therefore,
results in a better correlation of the orientation with collected images from the tube, offering control of
movements and lessening the chance of internal organ damage [122].

Image data can also be fused, such as Positron Emission Tomography (PET) with ultrasound
images, which provides reliable clinical data to be presented in real time, using computer tomography
scanners [123]. On the other hand, data fusion to combine electromagnetic navigation with imaging
systems allows the performance of a biopsy of small lesions with high accuracy, which can subsequently
be used in clinical environments [124]. In exam and surgical systems (intraoperative), the obtained
data of endomicroscopy fused with an ultrasound signal allows complementary information to the
execution of transanal endoscopy microsurgeries [125].

For clinical applications, an example of a smart sensor is based on a planar capacitive sensor,
used for the measurement of urinary tract infections, to decrease the time of exams [126]. Instead of
a laboratory analysis, a capacitive sensor was used to detect the concentration of the Escherichia coli
bacteria in urine samples, since bacteria alter dielectric properties of infected material. A capacitive
plate, containing a touch screen, with nine deposition samples areas, was proposed as suggested in
Figure 8. Inserting the sample, the electric field dispersion is characterized according to the properties
of the sample. Sensors are coupled to a microcontroller that collects the signals, treats them, and sends
the data to a computer [126].
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Another example is a system of a smart sensor that was introduced to monitor the glucose of
the user [127]. Thus, data is sent to a communication system with insulin pumps, and the feedback
signals the release of medications into the patient. A commercial sensor system is coupled with
modules containing software tools, and together they generate alerts for a low and high concentration
of glucose.

A set of capacitive sensors is used for clinical monitoring with a sensor for the evaluation of
urinary continence. The set contains an array of capacitive sensors enclosed in a single system (smart),
inserted into the urethra to measure its pressure [128]. Capacitive sensors were chosen because the
application requires flexibility for insertion into the human body, in addition to the reliability of
the measurement of liquids in an in vivo environment. The presented set of sensors includes nine
elements, arranged in a single row, providing data to be analyzed together, which is a differential as
the authors present.

Also in the field of smart sensors, there are systems that combine different signal acquisitions to
the same application with combined treatment, making a data fusion. This is the case of the continuous
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patient monitoring system, suggested in Figure 9, which gathers body temperature (thermometer),
perfusion index, oxygen concentration, heart rate (these latter three coming from a pulse oximeter),
and other clinical data (respiratory rate and urinary concentration) [129]. This system can be controlled
remotely by a physician and acts by controlling the dosage of the medication and frequency for
a particular patient.
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With the ascent of wearable devices, the union of smart sensors and sensor fusion has become
increasingly present, such as the integration of ECG electrodes, a microphone, a pulse oximeter,
an accelerometer, two respiration bands (thorax and abdominal), a humidity sensor, a room
thermometer, and a body thermometer in a T-shirt [130]. All these sensors are integrated, providing
a wearable system for monitoring chronic diseases. The system is also characterized as a smart
sensor as the signals are jointly processed in a central position, and later there is communication to
a recording system.

4.2. Rehabilitation

Rehabilitation system devices intend to help people who have suffered accidents, disease or
infirmity, in order to recover and restore their condition (physical, sensory, and mental) [131].
As an example in this context, [132] presented in 2012, a rehabilitation system for people who have
suffered strokes to perform daily exercises using a vision system with the fusion of inertial sensors.
The inertial sensors are inserted into utensils (spoon, fork, and cup), allowing the analysis of position
and vibration, while the vision system enables the distinction between healthy and paralyzed areas of
the body, in order to generate a report about the health of an individual.

Electromyography and motion sensors are an example of sensors fusion and have been widely
used for rehabilitation systems. EMG signals (from electrodes) and motion sensors in three dimensions
can correlate muscular effort and spatial position to evaluate the muscle recovery process [133].
A vision system and multiple fusions of EMG channels exhibit improvements in the analysis of the
displacement of people walking, with a focus on people suffering from neuromuscular complications,
such as strokes and cerebral palsy [134].

A smart sensor using EMG signals, inertial sensors, and a flexible polymer sensor helps people
during the rehabilitation process of the knee [135]. The addition of the latter, compared with inertial
sensors, provides a better joint analysis by its flexibility and passive electrical nature.

The development of prostheses and exoskeletons, in robotic control settings, has also used EMG
signals associated with other sensors [136], such as in [137–140]. In [137], an application is presented
where EMG electrodes are attached to the arm, inertial sensors are positioned in a prosthesis, and vision
systems (allocated in the head) are used for the movement of a prosthesis more efficiently than only
using EMG. In [139], a combination of inertial sensors and EMG in the arm is used in conjunction with
a virtual simulation device for the restoration of the functions of the upper limb. Other systems invest
in uniting EEG with EMG and inertial sensors, monitoring and suppressing involuntary shaking of the
body [138]. There are methodologies, such as tracking [140] which, with inertial sensors, map EMG
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space traversed by the arm to be reproduced by a robot, which can be associated with a prosthesis.
This methodology can efficiently overcome nonlinearities that exist between the EMG signals and the
position of the limbs.

In a different study, there is an EMG fusion with near-infrared spectroscopy (NIRS), which uses
three EMG electrodes for EMG capturing and a transmitter-receiver pair (LED and Photoreceiver)
to spectroscopic signal, as indicated in Figure 10. These two combinations of sensors facilitate the
understanding of muscle activity (electrophysiological and metabolic) and assist in the development
of prostheses [141].
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To prevent leg weakness or atrophy of the nervous system, an instrumented cyclic wheelchair
(with pedals for locomotion) is proposed as a rehabilitation option [142]. Sensors fusion occurs with
angular position encoders, an inertial sensor, a potentiometer, and a laser. The angular velocity data
of the wheel of the chair (encoder) and of the whole chair angular velocity (inertial sensor) allow the
wheelchair dynamics to be monitored, while the torque on the pedal is measured (potentiometer).
It also ensures that there is no object obstructing the path (by the laser). This data promotes the engines
to increase the power of movement, enabling atrophied muscles to increase their strength, as well as
their correction and recovery.

Cardiopulmonary evaluation (obtained by fusing photoplethysmography-PPG sensors,
skin conductivity, and ballistocardiography-BCG) and motor activity (with a 3-axis accelerometer)
enable the status of a wheelchair to be monitored [143] as featured in Figure 11a. The techniques
used provide physiological discrete parameters, such as respiratory and heart rates. The continuous
monitoring of these parameters allows for both a shortened hospitalization time and assists in
monitoring rehabilitation. A microcontroller (µc) digitally processes all signals of the sensors and
data are transmitted to a computer or mobile device. A program is proposed for the application of
procedures and the analysis of collected data, providing further evaluation and/or diagnosis [143].
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Smart sensors can also support data fusion, and this is exemplified in the instrumentation of
a pair of gloves (illustrated in Figure 11b) for monitoring rehabilitation progress of patients suffering
from rheumatoid arthritis at the wrist. Bending sensors, accelerometers, and force sensors are
used for measuring the angle of the joint of the hand and fingers [144]. Bending sensors measure
flexion of fingers and wrist rotation; force sensors measure the interaction of forces by the Kapandji
index (graduating movements of the big toe related to other hand regions); and the accelerometers,
located on the phalanges of the fingers, assist in reading the position of the fingers. Data fusion
and respective analysis are performed in microcontrollers, which brings dynamic, rather than static,
analysis, as goniometers used for similar applications are static.

To assist people with the rehabilitation of Parkinson’s disease, load control, and speed sensors
can be used to instrument a bicycle, while its user can use sensors to monitor heart rate [145].
Storage systems and data transmission centralize the influx of signals and allow the data merger
to parameterize the most appropriate exercises for the individual in question. For patients with
Parkinson’s, it is proven that high pace and high intensity exercises improve their motor functions,
which are made possible by the equipment. The proposed equipment, in the form of a smart sensor,
enables improvement of motor function, monitoring the condition at the same time as it is modifying
the situation of the exercises.

Smart and fusion concepts are found in rehabilitation systems as well as in auxiliary equipment
and for the support in these systems. A set of accelerometers (analog and digital) and gyroscope
(digital) enables one to retrieve information about any abnormal or dangerous situation on the device
during its operation (rehabilitation process of a patient) [146].

4.3. Monitoring and Diagnostics Aid

To provide assistance with diagnostics and monitoring systems, there are tools that
combine various technologies which infer parameters that may indicate a particular behavior or
abnormality [147]. Examples of this are the smart sensor in [148] (inertial sensors to detect falls and
night epileptic seizures) and in [149] (proposed for measuring heart and temperature rates). Most of
these systems are developed for patient monitoring outside the hospital (homecare) [150], based on
the cost savings that medical equipment adds to the treatment [151]. Furthermore, systems working
with sensor fusion and smart sensors techniques mostly can be used remotely, relying on wireless
communication modules for data analysis on other devices, using biotelemetry [152] and e-Health
concepts [153].

Photoplethysmography (PPG) techniques, temperature measurement, and the use of acceleration
to monitor heart rate, body temperature, falls and inclination of a patient while sleeping, in a smart
sensor [150] is an example of these mentioned systems. Similar to this is the remote body temperature
measurement by thermoresistive sensor and heart rate by PPG, which can detect hyperthermia,
hypothermia, tachycardia, and bradycardia [111]. In [151], a smart, simultaneous sensor with
a single chip containing physiological date for temperature, glucose, protein concentration, and pH
(hydrogen potential), obtained by resistance change, measuring tension, flow, and capacitance.
A biotelemetry system is proposed in [152] for arterial blood pressure measurement (with a MEMS
sensor based on piezoresistive principles) and body temperature in a smart sensor, which aims to
monitor hypertensive patients.

Graphics platforms used for the acquisition, processing, analysis, and preparation of data, such as
LabVIEWTM, are one of the solutions found in monitoring systems. Presentation, processing and
analysis of signals, obtained from an ECG acquisition smart sensor and processed in a Digital Signal
Processor (DSP), were developed with LabVIEWTM [112]. Data is transmitted to a computer containing
such a platform. Also with wireless transmission and LabVIEWTM use for data analysis and remote
monitoring [154], a smart sensor with the ability to measure sodium, potassium, chlorine, and pH
was developed to observe electrolyte levels. In both cases, it is perceived the smart sensors with
a monitoring function combine data acquisition platforms, such as LabVIEWTM. These techniques



Sensors 2016, 16, 1569 17 of 31

allow for monitoring to be done at home with computer software, since the nature of these processes
in clinics demands large equipment and laboratory analysis.

Wearable sensor fusion and smart sensors are solutions for monitoring patients, like for example,
the fusion of PPG reflective (commonly used to measure and record volume changes in a portion of the
body or organ) with magnetic induction sensors. Both techniques enable cardiorespiratory monitoring
without using elements that come into contact with the body of the patient [155]. A Bluetooth
module consists of a coil made of printed circuit tracks, and a photoplethysmography optical sensor
(composed of LEDs) processed by a microcontroller. The device is designed in a way that it can fit in
the front pocket of the shirt of the patient, as shown the model in Figure 12.
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Another example of sensor fusion in wearable systems uses the respiratory rate information
(obtained by accelerometers) and ECG (acquired by electrodes) deployed in a T-shirt [156], which is
optimized for monitoring in neonates [157]. Data provides vital information for parents of
newborns, who monitor them on a remote system that keeps the accelerometer, inserting a gyroscope,
and changing the ECG sensor to a capacitive sensor that does not need contact. In [158] a smart
sensor is displayed. Performing fusion of the three acquisitions simultaneously allows the monitoring
of the heart, breath, and movements. Other examples are EMG textile electrodes, piezoresistive
sensors, and inertial sensors, which are fused in a wearable system in shoes, trousers, shirts and gloves,
or instrumented to assess the patient in stroke treatment [159].

Many other wearable examples use inertial sensors, which are frequent in applications aimed
at monitoring. Accelerometers and gyroscopes can detect and monitor balance of the body,
revealing Alzheimer’s evidence in its initial state by merging this data [160]. The data fusion from
multiple smart sensors, based on accelerometers, can assist in the evaluation of diseases that affect
vascular and neurological systems by exposing the individual to vibrations coming from occupational
equipment [161]. Data are recorded and remotely merged into microcontrollers or DSPs to estimate
the average amount of daily noise that a worker is exposed to. When they go beyond the safe limits,
an audible alarm is triggered, and a message to the operator to stop using the machine appears.

The EMG monitoring area has advanced in electrodes’ combination for smart sensors, as in
a device that uses EMG signals from the stomach, which records signals from the activity of the
stomach noninvasively [114,162]. Moreover, for monitoring kinesiological functions, neuromuscular
diseases, and motor activity disorders, [163] a smart sensor is presented with electrodes constructed
on a printed circuit board. In both cases, there are processing and data transmission systems.

In diabetes management, a major problem is in the determination of the quantity of glucose
in the blood, which has good accuracy only by clinical examination. The development of less
invasive and commercial techniques, such as optical gauges [164] have tolerance results within ±20%.
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More crossing of techniques can reduce the error range, providing greater reliability to the patient in
this high demand area [165,166]. This is the case for data fusion of capacitive and optical sensors [167].
Optical spectroscopy and dielectric measurement enable the estimation of the level of glucose through
the skin, proven by the same study [167], which resulted in high accuracy. Another case of fusion occurs
with ECG and pulse oximetry techniques in monitoring diabetes [168] by correlating this disease with
heart problems. Both measurements are made in separate parts of the body. However, the proposal
links them in one area as the functionality of a low-cost smart sensor.

Under the format of glucose monitoring smart sensors, commercial products are developed with
biosensors, such as the wearable device that performs collection of reverse iontophoresis glucose with
watch functions [115]. However, one problem is the bacterial contamination risk, which is possible due
to its size and adherence [115]. In this principle, monitoring is conducted with the fusion technique
in a smart sensor worn like a bracelet [169]. Two accelerometers are used to obtain data related to
the arm and body motion; thermistors measure temperature of the body; a heat flux sensor measures
heat loss on the skin; a galvanic sensor measures the conductivity of the subject; and ECG electrodes
measure the respiratory rate and QRS complex signals; where QRS complex signal is the combination
of three of the graphical deflections seen on a typical electrocardiogram signal (ECG).

Besides wearables, smart sensors may be applied to other parts of the body, such as contact lenses
used for glucose measurement through lacrimal fluid [170], shown in Figure 13. The measurement is
made in a polymer lens that includes a module with three electrodes (biosensors) and a communication
module, developed with microelectronic components and with a coil around the lens functioning as
an antenna for data communication.
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For monitoring patients with Parkinson’s disease, systems use inertial sensors mostly. This fact is
justified by Parkinson’s being a neurodegenerative disease [171], which has symptoms like tremors
in the hands, arms, legs and face, the stiffness of the limbs, bradykinesia (slowness to perform
movements [172]), and postural instability [173]. This disease affects about 6.3 million people around
the world [174].

The fusion of data from three accelerometers in an acquisition system [175] used in a device [176],
provides data regarding the possible risks of the patient to fall, with less response time and accuracy in
relation to other analysis, such as fall history, gait analysis, and gait locking (freezing) [175]. In the
wearable field, accelerometers and vibration and force sensors are used as smart sensors applied in
tracksuits [177,178] and gloves [179]. They are also applied to Parkinson’s and enable monitoring of
the patient’s activities in a more natural way.

The freezing of gait (FOG) is a major concern for Parkinson’s patients. For this application,
smart sensors are installed in headsets, which are exemplified by [171,180] for home environment
monitoring [180]. Accelerometers, gyroscopes, and 3-axes magnetometers are allocated in a headset
format, with recognition through a neural network to prevent catastrophic events, such as falls.
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The purpose of this system is to have a feedback loop [180], that occurs in [171]. With two inertial
units allocated to the ankle, there is the data fusion in a smart sensor with an implemented algorithm
to detect FOGs and warn the user through headsets to support the gait of the patient and reduce
accidents [171]. Another proposal for monitoring patients with Parkinson’s disease occurs with the
fusion of force sensors (for step detection) and respiration sensors (via inductive plethysmography).
These are integrated into a network capable of providing real-time movement and breathing in a smart
sensor operating in a smart network [181].

4.4. Other Applications

The following section presents works that, in nature, clash with the previously reported
applications, either because they have specific characteristics or because they are situated in concepts
that can be used in clinical systems, monitoring, and rehabilitation. An example of this is a smart sensor
for gaseous analysis through a person exhalation [182], which can be used for diagnosis and monitoring.
Another study, at an early stage, is the fusion of a galvanic response skin sensor, a temperature sensor,
and a position sensor to detect epileptic seizures [183].

Among other applications, there is recognition of movements. Its importance lies in the use
of remote controls, aided by video or reproduced by robots and smart systems for interpretation.
The sensors used for this are inertial, coupled with another signal that can provide additional
information, such as a vision system [184]. Fusing such data results in the recognition of the movements
of the hand. Accordingly, for human-computer interaction, an instrumented glove merges data from
a vision system with five degrees of freedom with bending sensors based on optical fiber by means
of a Kalman filter, with a 79% accuracy increase of close interphalangeal joints in relation to other
systems [185]. However, another signal may be used instead of a camera, which recognizes hand
movements, by using accelerometers (three-axes) and EMG signals [186]. The authors note that
these tools are more accurate than those based on gloves and vision recognition [186]. Sensors were
developed in the presented topology and the device is placed on the individual as shown in Figure 14.
Listed total of 72 words from the Chinese symbolic language alphabet were listed.
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Fusion obtained by a force sensor and laser enables the estimation of human motion [187].
Thus, a mobile robot for assistance was designed in a safe, effective, and comfortable way to monitor
the coordination of arms and legs, as seen in Figure 15. These instrumented robot models help elderly
people by facilitating their movements and mobility. Force sensors were based on resistive sensors,
inserted in the structure as shown in Figure 15, which estimate both strength and torque in the region of
the handles. The laser pointer used was attached to the bottom area of a robot, monitoring movements
of the legs. Data were fused using a Kalman filter, displaying the intention of movements of the patient.
A similar proposal is a robot that detects people, merging data from a camera and an RGB-D sensor
in order for the patient, especially the elderly, to be traced while in their home. Their faces can be
recognized by the robot and, through voice command, the user can order it to move and intervene in
dangerous or risk situations [188].
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Brain-Computer Interfaces (BCI) are also developed in the form of a smart sensor, with sensors
compounded of EEG electrodes. In m-Health, for treatment and diagnosis of neurological disorders,
a smart sensor is used with EEG electrodes with a complete processing system [189]. Based on
the psychological state of a person, a smart sensor is used to change the music automatically with
a BCI [190]. Moreover, systems used to merge data with BCIs containing accelerometers to control
prostheses are present [191].

Exams and imaging systems [192] merge medical use data images through stationary wavelet
transformation techniques and Non-Sampled Contourlet Transformed (NSCT). Both techniques
improve the variance information and the fused image phase, still using Principal Component
Analysis (PCA) and fusion rules to minimize redundancy, offering enhanced contrast and restoration
of morphological details. To increase the functioning knowledge of the brain in normal conditions
or in pathology presence, EEG fusion with functional magnetic resonance imaging is used [193],
combining an analysis in space. A magnetometer and gradiometer signals can be fused to
magnetoencephalography, which allows the improvement of results in a single mode [194].
For visualization of the veins, an ultrasonic sensor with a magnetic tracker is employed in the
reconstruction of the arteries for arterial intraluminal prosthesis stent allocation.

5. Conclusions

This work presented a different approach to the usage of smart sensors and sensor fusion
according to the application (sports and biomedical). In this case, it became clear that the applications
could be used as a support to the start and development of new projects in both areas.

To formulate this review, technical repositories and references were used, preferably from the last
six years. Among these references, there is a three-level classification: papers published in journals,
transactions, magazines, and others technical journals from 2010 to the present (48%); papers on
technical conferences, proceedings, annals, and symposiums (38%); and the remaining (14%) are
general references to conceptualization.

The use of two or more sensors allows better solutions to the problems, which cannot be
solved with only one type of data. The applications of smart systems coupled with processing
and transmission data grant integration of data from multiple devices. The devices that use sensor
fusion and smart sensors techniques are more complex than usual devices. Ergo, the use of these
techniques provides a new procedure to acquire, process and transmit the same data with a different
approach and innovative analysis.

In the second context, attention was given to the growing demand in biomedical and sports
applications. This demand is driven by the rapid development of electronics, allowing the construction
of sensors and controllers with reduced size, low cost and high reliability. Therefore, by assessing
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the different applications, it is remarkable that these two areas have much more similarities
than differences.

In the sports industry, sports equipment and the instrumentation of athletes presents better
conditions so that sports assessment and athletic performance can be improved. Within the sports
environment, training load quantification and evaluation of physical, physiological and technical
conditions are of paramount importance for the development of the athlete and injury prevention.
In order to perform these measurements, smart sensors, and sensor fusion provide numerical,
graphical and temporal analysis, offering feedback that can be the basis for decision-making. This work
presents smart sensors and sensor fusion application for the following sports: individual, collective,
those with safety equipment, those in need of an assistance of an arbitrator, among others; all of
which evolve by using these techniques. Thus, the importance of introducing such technology for
understanding and developing sports is evident.

The execution of activities in sports is mostly dynamic. Given this premise, the use of smart
sensors and sensor fusion enables data collection to be performed in real proof conditions, rather than
only in the laboratory. This change of environment, when assessing in real time, demands reliable
analysis that shows the performance of the athlete while performing his/her sport. With this new
perspective of evaluation and monitoring of athletes, their evolution of various characteristics has
become measurable, enabling more complex assessments both in real-time and in future analysis.

On the other hand, most biomedical applications present their use in concentrated or in special
environments, such as hospitals and clinics. These applications relied on expensive and difficult
operation/handling equipment, such as large imaging equipment. However, also boosted by the
electronic development, many of the applications left the vicinity of medical centers and became part
of the home, thanks to aid equipment and remote measurement development (fostered by technologies
such as m-health, homecare). In this context, the use of techniques of sensor fusion and smart sensors,
as seen throughout the article, has established mobile, practical, and feasible solutions with great
expansion potential.

It is apparent that many applications that use techniques discussed in this article are between these
two branches (biomedical and sports instrumentation). The difficulty of separating the applications
for these two areas is evident when the same smart sensor or sensor fusion can be designed for both
areas. For example, the heart rate monitored by a smart sensor can be applied to load training control,
as well as to homecare. Thus, Section 3, which presented cases of applications that pervade both
classes, is appropriate.

The main purpose was to show the interaction between sports and biomedical applications that
operated with smart sensors, sensor fusion or both in the same system. The introduction of these
techniques helped to understand the human body and its activities; moreover, how it was determinant
to the evolution of the aforementioned areas. Finally, this type of review was necessary to bring
together similar areas and collaborate with studies following the evolution of this technology.
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147. Malciuca, A.; Stamatescu, G.; Popescu, D.; Struţu, M. Integrating wireless body and ambient sensors into
a hybrid femtocell network for home monitoring. In Proceedings of the 2013 2nd International Conference
on Systems and Computer Science, Villeneuve d’Ascq, France, 26–27 August 2013; pp. 32–37.

148. Olivares, A.; Olivares, G.; Mula, F.; Górriz, J.M.; Ramírez, J. Wagyromag: Wireless sensor network for
monitoring and processing human body movement in healthcare applications. J. Syst. Archit. 2011, 57,
905–915. [CrossRef]

149. Varma, D.; Shete, V.V.; Somani, S.B. Development of Home Health Care Self Monitoring System. Int. J. Adv.
Res. Comput. Commun. Eng. 2015, 4, 252–255.

150. Megalingam, R.K.; Unnikrishnan, M.; Radhakrishnan, V.; Jacob, D.C. HOPE: An electronic gadget for
home-bound patients and elders. In Proceedings of the 2012 Annual IEEE India Conference, Kochi, India,
7–9 December 2012; pp. 1272–1277.

151. Huang, Y.-J.; Tzeng, T.-H.; Lin, T.-W.; Huang, C.-W.; Yen, P.-W.; Kuo, P.-H.; Lin, C.-T.; Lu, S.-L. A Self-Powered
CMOS Reconfigurable Multi-Sensor SoC for Biomedical Applications. IEEE J. Sol. State Circuits 2014, 49,
851–866. [CrossRef]

152. Bhattacharyya, M.; Gruenwald, W.; Dusch, B.; Aghassi-Hagmann, J.; Jansen, D.; Reindl, L. A RFID/NFC
based Programmable SOC for biomedical applications. In Proceedings of the 2014 International SoC Design
Conference, Jeju, Korea, 3–6 November 2014; pp. 78–79.

153. Mukherjee, S.; Dolui, K.; Datta, S.K. Patient health management system using e-health monitoring
architecture. In Proceedings of the 2014 IEEE International Advance Computing Conference, Gurgaon, India,
21–22 February 2014; pp. 400–405.

154. Cheng, J.-F.; Chou, J.-C.; Sun, T.-P.; Hsiung, S.-K.; Kao, H.-L. System for Monitoring of Blood Electrolytes
with Wireless Home-Care System. IEEE Sens. J. 2012, 12, 967–977. [CrossRef]

155. Teichmann, D.; Matteis, D.D.; Walter, M.; Leonhardt, S. A Bendable and Wearable Cardiorespiratory
Monitoring Device Fusing Two Noncontact Sensor Principles. In Proceedings of the 2014 11th International
Conference on Wearable and Implantable Body Sensor Networks, Zurich, Switzerland, 16–19 June 2014;
pp. 58–63.

156. Jourand, P.; Clercq, H.D.; Corthout, R.; Puers, R. Textile Integrated Breathing and ECG Monitoring System.
In Proceedings of the Eurosensors XXIII Conference, Lausanne, Switzerland, 6–9 September 2009; pp. 722–725.

157. Jourand, P.; Clercq, H.D.; Puers, R. Robust monitoring of vital signs integrated in textile. Sens. Actuators
A Phys. 2010, 161, 288–296. [CrossRef]

158. Albright, R.K.; Goska, B.J.; Hagen, T.M.; Chi, M.Y.; Cauwenberghs, G.; Chiang, P.Y. OLAM: A wearable,
non-contact sensor for continuous heart-rate and activity monitoring. In Proceedings of the 2011 Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA,
30 August–3 September 2011; pp. 5625–5628.

159. Lorussi, F.; Carbonaro, N.; de Rossi, D.; Paradiso, R.; Veltink, P.; Tognetti, A. Wearable Textile Platform
for Assessing Stroke Patient Treatment in Daily Life Conditions. Front. Bioeng. Biotechnol. 2016, 4, 1–16.
[CrossRef] [PubMed]

160. Wang, W.-H.; Chung, P.-C.; Hsu, Y.-L.; Pai, M.-C.; Lin, C.-W. Inertial-Sensor-Based Balance Analysis
System for Patients with Alzheimer’s Disease. In Proceedings of the 2013 Conference on Technologies
and Applications of Artificial Intelligence, Taipei, Taiwan, 6–8 December 2013; pp. 128–133.

161. Morello, R.; de Capua, C.; Meduri, A. A Wireless Measurement System for Estimation of Human Exposure to
Vibration during the Use of Handheld Percussion Machines. IEEE Trans. Instrum. Meas. 2010, 59, 2513–2521.
[CrossRef]

http://dx.doi.org/10.1109/TMECH.2015.2508030
http://www.ncbi.nlm.nih.gov/pubmed/27298575
http://dx.doi.org/10.1016/j.sysarc.2011.04.001
http://dx.doi.org/10.1109/JSSC.2013.2297392
http://dx.doi.org/10.1109/JSEN.2011.2161633
http://dx.doi.org/10.1016/j.sna.2010.05.002
http://dx.doi.org/10.3389/fbioe.2016.00028
http://www.ncbi.nlm.nih.gov/pubmed/27047939
http://dx.doi.org/10.1109/TIM.2010.2057690


Sensors 2016, 16, 1569 30 of 31

162. Morello, R.; de Capue, C.; Lamonaca, F. Diagnosis of gastric disorders by non-invasive myoelectrical
measurements. In Proceedings of the 2013 IEEE International Instrumentation and Measurement Technology
Conference, Minneapolis, MN, USA, 6–9 May 2013; pp. 1324–1328.

163. Vavrinsky, E.; Telek, P.; Donoval, M.; Sladek, L.; Daricek, M.; Horinek, F.; Donoval, D. Sensor System for
Wireless Bio-Signal Monitoring. Proc. Chem. 2012, 6, 155–164. [CrossRef]

164. Accu-Chek. Blood Glucose Monitoring: The Facts about Accuracy. Available online: https://www.accu-chek.
com/hcpstatic/documents/product-solutions/pe-kit/REVISED_29117_49670_routing.pdf (accessed on
4 March 2016).

165. World Health Organization. Diabetes. Available online: http://www.who.int/diabetes/facts/world_
figures/en/ (accessed on 4 March 2016).

166. Merriam-Webster. Diabetes. Available online: http://www.merriam-webster.com/dictionary/diabetes
(accessed on 1 March 2016).

167. Caduff, A.; Mueller, M.; Megej, A.; Dewarrat, F.; Suri, R.E.; Klisic, J.; Donath, M.; Zakharov, P.; Schaub, D.;
Stahel, W.A.; et al. Characteristics of a multisensor system for non invasive glucose monitoring with external
validation and prospective evaluation. Biosens. Bioelectron. 2011, 26, 3794–3800. [CrossRef] [PubMed]

168. Alhawari, M.; Khandoker, A.; Mohammad, B.; Saleh, H.; Khalaf, K.; Al-Qutayri, M.; Yapici, M.K.; Singh, S.;
Ismail, M. Energy efficient system-on-chip architecture for non-invasive mobile monitoring of diabetics.
In Proceedings of the 2013 8th International Conference on Design & Technology of Integrated Systems in
Nanoscale Era, Abu Dhabi, Dubai, 26–28 March 2013; pp. 180–181.

169. Sobel, S.I.; Chomentowski, P.J.; Vyas, N.; Andre, D.; Toledo, F.G. Accuracy of a Novel Noninvasive
Multisensor Technology to Estimate Glucose in Diabetic Subjects During Dynamic Conditions. J. Diabetes
Sci. Technol. 2014, 8, 54–63. [CrossRef] [PubMed]

170. Liao, Y.-T.; Yao, H.; Lingley, A.; Parviz, B.; Otis, B.P. A 3-µW CMOS Glucose Sensor for Wireless Contact-Lens
Tear Glucose Monitoring. IEEE J. Sol. State Circuits 2012, 47, 335–344. [CrossRef]

171. Mazilu, S.; Blanke, U.; Hardgger, M.; Tröster, G.; Gazit, E.; Dorfman, M.; Hausdorff, J.M. GaitAssist:
A Wearable Assistant for Gait Training and Rehabilitation in Parkinson’s Disease. In Proceedings of the
2014 IEEE International Conference on Pervasive Computing and Communication Workshops, Budapest,
Hungary, 24–28 March 2014; pp. 1–3.

172. Parkinson’s Disease Symptoms. Available online: http://www.parkinsons.org/parkinsons-symptoms.html
(accessed on 4 March 2016).

173. Parkinson’s Disease Information. Available online: http://www.parkinsons.org/ (accessed on 4 March 2016).
174. European Brain Council. Parkinson’s disease Fact Sheet. Available online: http://www.europeanbraincouncil.

org/pdfs/Documents/Parkinson\T1\textquoterights%20fact%20sheet%20July%202011.pdf (accessed on
2 March 2016).

175. Weiss, A.; Brozgol, M.; Dorfman, M.; Herman, T.; Shema, S.; Giladi, N.; Hausdorff, J.M. Does the evaluation
of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer
recordings. Neurorehabil. Neural Repair 2013, 27, 742–752. [CrossRef] [PubMed]

176. Weiss, A.; Herman, T.; Giladi, N.; Hausdorff, J.M. Objective assessment of fall risk in Parkinson’s disease
using a body-fixed sensor worn for 3 days. PLoS ONE 2014, 9, e96675. [CrossRef] [PubMed]

177. Niazmand, K.; Tonn, K.; Kalaras, A.; Kammermeier, S.; Boetzel, K.; Mehrkens, J.H.; Lueth, T.C.
A measurement device for motion analysis of patients with Parkinson’s disease using sensor based smart
clothes. In Proceedings of the 2011 5th International Conference on Pervasive Computing Technologies for
Healthcare (PervasiveHealth) and Workshops, Dublin, Republic of Ireland, 23–26 March 2011; pp. 6–16.

178. Niazmand, K.; Jehle, C.; D’Angelo, L.T.; Lueth, T.C. A new washable low-cost garment for everyday fall
detection. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine
and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 6377–6380.

179. Niazmand, K.; Tonn, K.; Kalaras, A.; Fietzek, U.M.; Mehrkens, J.H.; Lueth, T.C. Quantitative evaluation
of Parkinson’s disease using sensor based smart glove. In Proceedings of the 2011 24th International
Symposium on Computer-Based Medical Systems, Bristol, UK, 27–30 June 2011; pp. 1–8.

180. Lorenzi, P.; Rao, R.; Romano, G.; Kita, A.; Serpa, M.; Filesi, F.; Bologna, M.; Suppa, A.; Berardeli, A.
Smart sensors for the recognition of specific human motion disorders in Parkinson’s disease. In Proceedings
of the 2015 6th IEEE International Workshop on Advances in Sensors and Interfaces, Gallipoli, Italy,
18–19 June 2015; pp. 131–136.

http://dx.doi.org/10.1016/j.proche.2012.10.142
https://www.accu-chek.com/hcpstatic/documents/product-solutions/pe-kit/REVISED_29117_49670_routing.pdf
https://www.accu-chek.com/hcpstatic/documents/product-solutions/pe-kit/REVISED_29117_49670_routing.pdf
http://www.who.int/diabetes/facts/world_figures/en/
http://www.who.int/diabetes/facts/world_figures/en/
http://www.merriam-webster.com/dictionary/diabetes
http://dx.doi.org/10.1016/j.bios.2011.02.034
http://www.ncbi.nlm.nih.gov/pubmed/21493056
http://dx.doi.org/10.1177/1932296813516182
http://www.ncbi.nlm.nih.gov/pubmed/24876538
http://dx.doi.org/10.1109/JSSC.2011.2170633
http://www.parkinsons.org/parkinsons-symptoms.html
http://www.parkinsons.org/
http://www.europeanbraincouncil.org/pdfs/Documents/Parkinson\T1\textquoteright s%20fact%20sheet%20July%202011.pdf
http://www.europeanbraincouncil.org/pdfs/Documents/Parkinson\T1\textquoteright s%20fact%20sheet%20July%202011.pdf
http://dx.doi.org/10.1177/1545968313491004
http://www.ncbi.nlm.nih.gov/pubmed/23774124
http://dx.doi.org/10.1371/journal.pone.0096675
http://www.ncbi.nlm.nih.gov/pubmed/24801889


Sensors 2016, 16, 1569 31 of 31

181. Ying, H.; Schlösser, M.; Schnitzer, A.; Schäfer, T.; Schläfke, M.E.; Leonhardt, S.; Schiek, M. Distributed
intelligent sensor network for the rehabilitation of Parkinson’s patients. IEEE Trans. Inf. Technol. Biomed.
2011, 15, 268–276. [CrossRef] [PubMed]

182. Hijazi, Z.; Caviglia, D.; Valle, M.; Chible, H. High accuracy resistance to current circuit design for resistive
gas sensor biomedical applications. In Proceedings of the 2015 International Conference on Advances in
Biomedical Engineering, Beirut, Lebanon, 16–18 September 2015; pp. 57–60.

183. Gouravajhala, S.R.; Khuon, L. A multi-modality sensor platform approach to detect epileptic seizure activity.
In Proceedings of the 2012 38th Annual Northeast Bioengineering Conference, Philadelphia, PA, USA,
16–18 March 2012; pp. 233–234.

184. Liu, K.; Chen, C.; Jafari, R.; Kehtarnavaz, N. Fusion of Inertial and Depth Sensor Data for Robust Hand
Gesture Recognition. IEEE Sens. J. 2014, 14, 1898–1903.

185. Arkenbout, E.A.; de Winter, J.C.F.; Breedveld, P. Robust Hand Motion Tracking through Data Fusion of
5DT Data Glove and Nimble VR Kinect Camera Measurements. Sensors 2015, 15, 31644–31671. [CrossRef]
[PubMed]

186. Zhang, X.; Chen, X.; Li, Y.; Lantz, V.; Wang, K.; Yang, J. A Framework for Hand Gesture Recognition Based
on Accelerometer and EMG Sensors. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 2011, 41, 1064–1076.
[CrossRef]

187. Yan, Q.; Xu, W.; Huang, J.; Cao, S. Laser and force sensors based human motion intent estimation algorithm
for walking-aid robot. In Proceedings of the 2015 IEEE International Conference on Cyber Technology in
Automation, Control, and Intelligent Systems, Shenyang, China, 8–12 June 2015; pp. 1858–1863.

188. Hu, N.; Bormann, R.; Zwölfer, T.; Kröse, B. Multi-user identification and efficient user approaching by fusing
robot and ambient sensors. In Proceedings of the 2014 IEEE International Conference on Robotics and
Automation, Hong Kong, China, 31 May–7 June 2014; pp. 5299–5306.

189. Sukumaran, D.; Enyi, Y.; Shuo, S.; Basu, A.; Zhao, D.; Dauwels, J. A low-power, reconfigurable smart sensor
system for EEG acquisition and classification. In Proceedings of the 2012 IEEE Asia Pacific Conference on
Circuits and Systems, Kaohsiung, Taiwan, 2–5 December 2012; pp. 9–12.

190. Tseng, K.C.; Lin, B.S.; Wong, A.M.; Lin, B.S. Design of a mobile brain computer interface-based smart
multimedia controller. Sensors 2015, 6, 5518–5530. [CrossRef] [PubMed]

191. Zhang, X.; Li, R.; Li, Y. Research on brain control prosthetic hand. In Proceedings of the 2014 11th International
Conference on Ubiquitous Robots and Ambient Intelligence, Kuala Lumpur, Malaysia, 12–15 November 2014;
pp. 554–557.

192. Bhateja, V.; Patel, H.; Krishn, A.; Sahu, A.; Lay-Ekuakille, A. Multimodal Medical Image Sensor Fusion
Framework Using Cascade of Wavelet and Contourlet Transform Domains. IEEE Sens. J. 2015, 15, 6783–6790.
[CrossRef]

193. Hansen, S.T.; Winkler, I.; Hansen, L.K.; Müller, K.-R.; Dähne, S. Fusing Simultaneous EEG and fMRI Using
Functional and Anatomical Information. In Proceedings of the 2015 International Workshop on Pattern
Recognition in NeuroImaging, Stanford, CA, USA, 10–12 June 2015; pp. 33–36.

194. Mohseni, H.R.; Kringelbach, M.L.; Woolrich, M.W.; Aziz, T.Z.; Smith, P.P. A New Approach to the Fusion of
EEG and MEG Signals Using the LCMV Beamformer. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 1202–1206.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TITB.2010.2095463
http://www.ncbi.nlm.nih.gov/pubmed/21118782
http://dx.doi.org/10.3390/s151229868
http://www.ncbi.nlm.nih.gov/pubmed/26694395
http://dx.doi.org/10.1109/TSMCA.2011.2116004
http://dx.doi.org/10.3390/s150305518
http://www.ncbi.nlm.nih.gov/pubmed/25756862
http://dx.doi.org/10.1109/JSEN.2015.2465935
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Sports 
	Application in Athletics 
	Application in Swimming 
	Application in Cycling 
	Ball and Puck Sports 
	Applications in Football (Soccer) 
	Applications in Basketball 
	Applications in Sports with Protective Equipment 

	General Applications 

	Applications between Sports and Biomedical Areas 
	Plantar Pressure 
	Muscle Activity 
	Posture and Ergonomics 

	Biomedical Applications 
	Patients Monitoring in a Hospital/Clinical Environment 
	Rehabilitation 
	Monitoring and Diagnostics Aid 
	Other Applications 

	Conclusions 

