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Abstract: In the era of mobile internet, Location Based Services (LBS) have developed dramatically.
Seamless Indoor and Outdoor Navigation and Localization (SNAL) has attracted a lot of attention.
No single positioning technology was capable of meeting the various positioning requirements
in different environments. Selecting different positioning techniques for different environments
is an alternative method. Detecting the users’ current environment is crucial for this technique.
In this paper, we proposed to detect the indoor/outdoor environment automatically without high
energy consumption. The basic idea was simple: we applied a machine learning algorithm to
classify the neighboring Global System for Mobile (GSM) communication cellular base station’s
signal strength in different environments, and identified the users’ current context by signal pattern
recognition. We tested the algorithm in four different environments. The results showed that the
proposed algorithm was capable of identifying open outdoors, semi-outdoors, light indoors and
deep indoors environments with 100% accuracy using the signal strength of four nearby GSM
stations. The required hardware and signal are widely available in our daily lives, implying its high
compatibility and availability.
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1. Introduction

In the era of mobile internet, we can connect to the internet any place and any time with portable
devices. As a result, Location Based Services (LBS) have developed dramatically. The integration of
traditional services and location information has brought about a great deal of innovative applications.
All of these LBS applications have the same requirement: the user’s current position.

The users may by in any place, such as in the open outdoors, crowded avenues, deep indoors
and so on. The next generation of positioning systems must work well in a range of environments
to meet the needs of a variety of LBS applications. Researchers have developed many positioning
technologies for different environments. No single positioning technology is robust enough to perform
well in all of these environments. However, there is an accurate enough positioning technique for
any specific environment. For example, Global Navigation Satellite Systems (GNSS) performs well in
open sky environments, while Shadow Matching [1] is enough for urban canyon environments, and
Wi-Fi fingerprint positioning is suitable for indoor environments. This implies that we can integrate all
these positioning techniques for Seamless indoor and outdoor Navigation and Localization (SNAL)
applications [2]. However, the battery power is a limitation for any portable smart device. Turning on
all of the required sensors is energy consuming. Letting the user manually choose different techniques
according to different environments is not user friendly. Detecting the users’ current environments
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automatically and efficiently with low battery consumption is crucial for SNAL. In this paper, we focus
on the automatic indoor/outdoor detection problem in SNAL.

There are a lot of previous works focused on indoor/outdoor detection to provide essential
information for upper layer applications [3]. They mainly work in two types of environment: indoor
and outdoor environments [4], but for SNAL, these two environments are not enough. In this paper,
we focused on four types of environments: open outdoors, semi-outdoors, light indoors and deep
indoors. These environments are shown in Table 1.

Table 1. Four indoor/outdoor environments.

Environment Open Outdoors Semi-Outdoors Light Indoors Deep Indoors
Definition Outside a building Near a building Ina room with Ina room without
windows windows

Example i

In the open outdoors environment, at least four satellites are available for positioning because of

the open sky condition. Semi-outdoors represents a GNSS-hostile outdoor environment such as an urban
canyon or a wooded area, where there are not enough satellites for positioning. Light indoors is similar to
a semi-outdoors environment. Deep indoors environment refers to a place with no satellite in view.

In each of these four environments, there was a well-developed positioning algorithm for
localization. In the open outdoors environment, no matter whether on water or on a highway,
we can localize ourselves using GNSS [5]. In the semi-outdoors environment, urban canyons and
wooded areas are both capable of using GNSS shadow matching for positioning [1]. In the light
indoors environment, cooperative positioning was suitable [6], while in deep indoors environments,
a fingerprint positioning algorithm is the most commonly used technique [7,8].

The difference between open outdoors and semi-outdoors is the number of satellites in view.
In open outdoor environments, at least four satellites are available, which means the user can be
localized by GNSS, while in semi-outdoors environments, the number of visible satellites is not enough
for GNSS localization. The difference between light indoors and deep indoors is the visibility of
navigation satellites. In light indoors environments, users may receive navigation signals from several
satellites. As a result, the users in light indoor environments can be localized using peer to peer
cooperative positioning, but in deep indoor environments, no navigation satellites are available. In that
case, cooperative positioning fails.

Many works address the issue of detecting indoor/outdoor environments. Walter et al.
identified a set of novel environmental features that could be used for environment detection [9].
These features included gravity, ambient light, magnetic fields, scents, road signs, temperature, terrain
height, road texture and so on. Some of the related works focused on environment sensing using
mobile device’s sensors based on these features. The sensors used included Global Positioning
System (GPS), accelerometers, gyroscopes, barometers, geomagnetic sensors, Wi-Fi cards and so
on. In Groves’s work, environmental context detection using GNSS and Wi-Fi were examined [10].
The results showed that GNSS C/No measurement can be used to distinguish indoor from outdoor
environments and to distinguish different types of outdoor environment, such as urban and open.
Wi-Fi measurements have been shown to be unreliable for distinguishing betweenindoor and outdoor
environments, but good for distinguishing different outdoor types, such as residential and business
districts. Muralidharan proposed to use a barometer and GPS to identify different floors in indoor
environments [11]. Ravindranath et al. showed that GPS lock status can be used to indirectly infer
the ambient environment [12]. The GPS, however, consumed too much energy to be useful for many
applications. A smart phone may run out of energy in about 6 h if the GPS is running continuously [13],
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and furthermore, GPS was only available in open sky environments [14]. As a result, researchers
proposed to use the low energy consumption sensors available in smart phones for detecting the
environment, such as accelerometers, gyroscopes, barometers and magnetic sensors. Mostafa et al.
made use of accelerometers, gyroscopes, barometers, and magnetic sensors to detect the height
changing modes of the user in indoor environments [15-17]. However, accelerometers are orientation
and position-dependent, a require a high sampling rate to achieve good accuracy. Researchers sought
to use alternative sensors. For example, IODetector detected indoors, outdoors and semi-outdoors
environments using cell signals, light and magnetic intensity [2]. Vanini proposed to use barometers to
detect the change of floors [18]. TemplO classified the indoor/outdoor environment by comparing
the temperature [19]. Wu et al. showed that barometers were capable of monitoring door events [20].
Barometer and temperature sensors are not widely available in current mobile phones. Radu et al.
presented a general method employing semi-supervised machine learning and used light intensity,
cellular signal strength, magnetic variance and sound intensity [3]. They provided a detection accuracy
exceeding 90%, but their algorithm relied on several sensors, which is not energy efficient. Detecting
indoor/outdoor environments using widely available sensors with low energy consumption remains
a challenge for researchers.

Our research was motivated by these pioneering works, but we went further. We proposed to use
the GSM signal strength to detect four types of indoor/outdoor environments. Firstly, GSM is available
on all GSM-based smart phones. Secondly, it consumes minimal energy in addition to standard
cell-phone operation [21]. The basic idea was simple: the propagation of radio signals is affected by the
environment. Different environments result in different signal strength characteristics. By identifying
the signal strength’s characteristics, we can determine the user’s environment. We have investigated
a wide range of machine learning algorithms for classification, including Decision Tree (DT), Random
Forest (RF), Support Vector Machine (SVM), K Nearest Neighbor (KNN), Logistic Regression (LR),
Naive Bayesian (NB) [22], and Neural Network (NN). The classifiers were applied for recognition.

Experimental results showed that the proposed algorithm was capable of detecting open outdoors,
semi-outdoors, light indoors and deep indoors environments with 100% accuracy using four nearby
GSM stations’ signal strength. The required hardware and signals are widely available in our daily
lives, implying its high compatibility and availability.

2. Methodology

The proposed algorithm contains three processes: Data Input, Training, and Testing. An overview
of the indoor/outdoor detection process is illustrated in Figure 1.
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Figure 1. Framework of indoor/outdoor detection. This framework contains three processes:
Data Input, Training, and Testing. In the Data Input process, neighboring cellular base stations’
signal strength is recorded, and features are extracted. The data are classified in the Training phase.
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The classifier is applied to detect the user’s current environment in the Testing phase.
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2.1. Data Input

In the Data Input process, three sub-processes are included: Data Collection, Pre-Processing,
and Feature Extraction.

2.1.1. Data Collection

In this process, GSM signal strength is recorded in different environments. According to the GSM
standard, each smart phone records a vector of the detected power levels of the pilot signal from
at most seven cellular base stations, one of which the smart phone is associated with [21]. For the
Android Operating System, the received signal strength index (RSSI) for GSM is in asu, where 0 asu
means —113 dBm and 31 asu means —51 dBm. So we have:

rss = —113 + 2 x rssi 1)

The recorded signal strength is arranged from the strongest to the weakest. Assuming that the
sampling interval is T (s), the sampling frequency is 1/7 Hz. The data collected during T(s) is denoted
as S, where:

S={sili=0,1,---,[T/7|}, si = {rssi1,75Sip, -+ ,1SSiy } , TSSim > 155;,Ym > n )
where n; is the number of visible stations at time i.

2.1.2. Data Pre-Processing

The environment is changing continuously, therefore, we need to look at how a signal changes
over a specific period of time to identify the environment. A window is the most basic step and is
used by almost all researchers. At each time epoch, the signal involving the current measurement
and the previous N — 1 epochs, where N is a chosen integer that represents the length of the window.
Assuming the window length is AT(s), so we have N = | AT /7], the measurement is arranged as:

W={w;i=0,1,---,|T/AT|}, wherew; = {s;_;|i =0,1,--- , |AT/7| — 1} (©)]

Different window lengths contain different information used for detection. The wider the window
is, the more descriptive the features extracted from it can be. While the shorter the window, the less
information it contains for detection.

2.1.3. Feature Extraction

In each window, we can extract several features to describe the character of the environment.
These features include Mean, Standard Deviation, Maximum, Minimum and Range.

(1) Mean

Mean is the most basic character of a signal. It is calculated by summing the values and dividing
the numbers:

mean(wi) =Y w/|wy| (4)

where |*| is the number getting operation. Mean is a measure of the middle value of a signal.
(2) Standard Deviation

Standard Deviation is an indicator of how much a signal is dispersed around its mean. It is
calculated as follows:

Std(w;) = \/Z (s; — mean(wt))z/‘wt‘ ()

(3) Maximum and Minimum
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Maximum and Minimum values are the extreme values in the window:
Max(w;) =s; € wt, Vsj € wy,8; < sj, Min(wy) =s; € wt, Vsj € wy,sj > 8; (6)

(4) Range

Range is the difference between the Maximum and Minimum values:

Range(w;) = Max(w;) — Min(wy) 7)

2.2. Training

In the Training Phase, we investigate a wide range of machine learning algorithms to classify the
training data, including Decision Tree, Random Forest, Support Vector Machine, K Nearest Neighbor,
Logistic Regression, Naive Bayesian, and Neural Network. The classifiers are applied for recognition.
The training data can be raw data from the sensors, or the features in different window lengths.
The best classifier will be selected for indoors/outdoors detection.

2.3. Testing

In the testing phase, new samples are categorized using the classifiers created by the machine
learning algorithms. Different algorithms perform differently. Researchers have proposed a lot of
performance measures for multi-class classification.

Confusion matrix was proposed to evaluate the performance of a classification system for both
2-class and multi-class samples. Table 2 is a template of confusion matrix for a 3-class classifier.

Table 2. Template of a confusion matrix for a 3-class classifier.

Class Class 1 Class 2 Class 3

Class 1 ni1 nip ni3
Class 2 Nno1 nopo nop3
Class 3 ns3p ns3p nss3

In Table 2, the rows represent the true classes of the tested samples, and the columns represent
the predicted classes. n;; is the number of test samples of a class i recognized as class j. Sometimes
n;; would also be the percentage of the classification result. The nearer the confusion matrix is to
a diagonal matrix, the better the classification algorithm is. Based on the confusion matrix, there are
several widely used performance measures. Here we just introduce in Table 3 the ones we will use in
the experiments.

Table 3. Template of a confusion matrix for a 3-class classifier.

Definition Formula
True Positive (TP) Z:rer :Cliglzleis(s)ifﬁss?ples of a class which have been TP, = n;;
True Negative (TN) ;FC})IS :Clﬁ;ﬂ;is(;fi fsizglples of other classes which has been TN = S S nie
i wsive ) [hepunber o smele bl oo do s o,
Fae Negaive () [ el gl g oo ity
Accuracy Z:re; ;ﬁ;igﬁﬁzg all samples which have been Acc = e I\%TI‘;PﬁFM
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Table 3. Cont.

Definition Formula

The proportion of samples which have been TP,

Sensitivit i Sens; = v51rp
ensiivity correctly classified eI = TPFFP,
.. The proportion of sample predicted to belong to a class TP
Precision which is correct Preci = rrFp;
- The proportion of negative samples which have been TN:
f i . i = TP TN
Specificity correctly classified to be negative Speti = FrTTN
F-Measure the weighted average of the precision and sensitivity F1= m

3. Experiments

To test the context sensing algorithm, we implemented an Android smart phone application
capable of capturing nearby cellular base stations’ signal strength. The application is called DrawRSS.
This application was tested on a Meizu MX3 smart phone (MeiZu, ZhuHai, China), which is running
Android OS Version 4.4 (KitKat) (Google, Mountain View, CA, USA). A screen-shot of this application
is shown in Figure 2.

0% % @ Wl C1 26

DrawRSS

AV, \

No.

—_GSM Time
Cell1(dBrm) I12(dBm)

dBm.
dBm.

— Cell(dBm) Time — Cell2(dBm) Time
Cell3(dBm) el|2(dBm)

dBm.
dBm.

— Cell3(dBm) Time — Cell4(dBm) Time
CellS(dBm) ell1(dBm)

dBm.
dBm.

—— Cell5(dBm) Time — Cell6(dBm) Time

Exit Start Stop

Figure 2. Screenshot of the DrawRSS application. In this application, all the neighboring cellular base
stations’ signal strengths are drawn on the canvas and recorded in the phone’s memory.
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The signal strength is recorded every 0.5 s, and then drawn oin the user interface, so the sampling
rate is 2 Hz. The application records the number of cellular base stations and their signal strengths.
The data are called training data. The testing environments in this experiment are shown in Figure 3.

(c) light indoors

(b) semi-outdoors

(d) deep indoors

Figure 3. The four testing environments. These four environments are located on the same campus.

The largest distance between them is less than 400 m.

During the experiment, the volunteer stayed in the four environments mentioned above for about
10 min. He could use his phone in the same manner he naturally would. He kept moving around in
the environment. For example, in the light indoors environment, he walked in the room randomly.
The training data are collected during these 10 min. In the deep indoors environment (Figure 3d),
the volunteer moved from one side of the corridor to the other side several times.

Figure 4 is the number of cellular base stations in different environments recorded by the
application. This figure only shows the result beyond the first 200 s.

L
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Figure 4. The number of cellular base stations in different environments.

In Figure 4, we can see that the number of cellular base stations is quite different from the open
outdoors to deep indoors environment. In the open outdoors environment, we have seven stations



Sensors 2016, 16, 1563 8 of 15

most of the time, while in the semi-outdoors environment, we often have six stations. In the indoors
environment, the number of stations varies from 1 to 7. Figure 5 is the probability curves for different
environments. Every node (x, y) in Figure 5 means there is 1% probability of having at least x cellular

base stations.
100 _v\v .<$
90

\

80 1

70+

Probability(%)

—H-— Open Outdoor
60 -| —@— Semi Outdoor
Light Indoor

=W~ Deep Indoor
50 T T T T
1 2 3 4 5 6 7

Number of base station

Figure 5. The probability curve of the number of GSM cellular base stations.

From Figure 5, we can see that we have at least one station in the specified four environments.
If we want six cellular base stations, the probability is 98.02%, 100%, 91.87%, and 83.1% in the open
outdoors, semi-outdoors, light indoors and deep indoors environments, separately. On average,
the probability of having at least 1 to 7 base stations in any environment is 100%, 99.95%, 99.70%,
98.02%, 96.18%, 93.25%, and 79.17%, respectively.

We filtered out the samples with less than six cellular base stations and compare the signal
strength received in the different environments in Figure 6. The widely used Log-Distance Path Loss
(LDPL) signal propagation model [23] tells us that the signal strength is affected mainly by the distance.
As a result, we will have the same signal strength measures in different environments. In Figure 6,
we can find many examples, but if we take more stations’ signal strength into consideration, and
we look at how the signal strength changes with time, we will find that different environments
show different patterns. From Figure 6, we can see that the signal strength received in these
four environments is quite different. These results imply that it is possible to identify different
environments using the cellular base stations’ signal strength.

Before performing a classification using the raw data, we pre-process these data as mentioned
above. The raw data are grouped according to different windows varies from 1 to 20 s. We calculate
the features in each window, including Mean, Standard Deviation, Maximum, Minimum, and Range.

50 . . . 50 ——

Cellt Cell2 Cell1 Cell2
Cell3—— Cell4 Cell3—— Cell4

. Cells——Cell6 Cells—— Cell

£ 0 1 = 04 i

g &

£ )

S =

c [=2]
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@ -501 = -50

s @

f= [

2 3

7 »

100 -100
0 50 100 150 200 0 50 100 150 200
Time(S) Time(S)
(a) open outdoors (b) semi-outdoors

Figure 6. Cont.
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Figure 6. Six cellular base stations’ signal strength received in different environments.

4. Data Analysis

The input data, including measured data and the pre-processed data are both ready for
classification using the machine learning algorithms. In this section, we investigate the use of a wide
range of machine learning algorithms to classify the training data, including Decision Tree, Random
Forest, Support Vector Machine, K Nearest Neighbor, Logistic Regression, Naive Bayesian and Neural
Network. The classifiers are applied for recognition. The classification performance will be compared
between these Machine Learning algorithms.

In this paper, learning and classification is conducted by the Orange data mining toolkit [24].
Orange is an easy-to-use machine learning toolkit, which allows us to perform repeat model training using
a wide range of machine learning algorithms and employing standard performance testing techniques,
such as cross-validation without programming. Figure 7 shows the work flow of this experiment.

9% Machine Learning E=En X
File Edit View Widget Options Help
I ]
.
EZ] Data i =3
- A
4 | Visualize SVM /
‘2 Classify Naive Bayes < 'é a.:a@
& )
3% | Regression sgo %N‘ i Q;_z— ROC Analysis
I Evaluate s, 5
s lg
. Y - kMearest
e = Neighbs .
A = MHH / 3 D Data m elghbours  paia . A Ewmluation Resuts (2% =
*
Test .. Confw ROC o2 o
Lear- Matriz Anal- 3
EEe atriz hna File SelectAtributes . 4 & TestLearners % Confusion Matrix
& & -~ %
F ~ £ 3 k)
Logistic Regression g % 7?5_
3
Lift Cali- 2 %
Curve Flot @ i k\
«+ | Unsupervised ita o
) Meural Network Lift Ci
== | Associate - Classification Tree <andom Forest It Lurve
e

Figure 7. Workflow of the data classification using Orange toolkit.

In Figure 7, seven classification algorithms are created by dragging the corresponding widgets
to the canvas. The file widget reads data from disk. Firstly, we apply the raw data for classification.
The data are collected every 0.5 s in the four environments for 10 min, respectively. Figure 8 shows the
classification accuracy. In Figure 8, we can see that for most of the classification algorithms, the more
stations used, the better the accuracy is. KNN performs the best among the seven algorithms, followed
by Decision Tree and Random Forest algorithm. Neural Network performs the worst. We just need
four cells’ signal strength to get the best accuracy using KNN.
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Figure 8. Classification accuracy using raw data.

However, from Figure 5 we know that we cannot always receive signal from at least four stations.
On average, the probability of receiving at least four cellular stations is 98.02% for all the cases.
However, we will surely have at least one station in any case. In the following part of this section,
we are going to using just one cellular base station’s signal strength for classification.

As mentioned above, we can calculate the features for different window lengths and apply the
features for classification. The window length is varied from 1 to 20 s and we calculate the features in
each window length, including Mean, Standard Deviation, Maximum, Minimum, and Range. In each
window length, the number of instance is different. For example, there are 600 instances if the window
length is 1 s. Figure 9 shows the accuracy of classifying the features.

1.00
0.98 1
0.96 1
2 0.94
o
3 0.92-
<
0.90
0.88 et S\/M e KN N DT
s B e | R e NN
086 e RF
' 5 10 15 20
Windows(s)

Figure 9. Classification accuracy using features varying with window length.

From Figure 9, we can see that in most of the cases, the longer the window length is, the better the
accuracy gets. Once again, KNN performs the best among all the algorithms, followed by the Decision
Tree and Random Forest algorithms. Logistic Regression performs the worst. When the window length
is 8 s, we can correctly classify all four environments using the KNN algorithm.

For testing this algorithm under different conditions, we experimented during one week with
five different walking traces during the period from 9:00 to 17:00 under different weather conditions.
These traces are different from the environments where we collected the data to generate the classifier.
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These walking traces contain nine open outdoors segments, 11 semi-outdoors segments, 10 light
indoors segments, and 11 deep indoors segments. Figure 10 shows one of the walking traces that we

experimented with.

Semi outdoor

Figure 10. Testing trace located in the university campus. This trace contains two open outdoors
segments, three semi-outdoors segments, two light indoors segments, and one deep indoors segment.

The volunteer walks along the path in 10 min.

In the experiments, the volunteer walks along this path while using his phone in the same manner
he naturally would. The true environment type is manually labeled. Each day, these traces are tested

three times in the morning, noon and afternoon, respectively.
We first use the four cellular base stations’ signal strength for testing. The instances with less than

four stations are filtered out. Figure 11 shows the average accuracy for different classifiers.

1 -00 T T T T T T T

0.98+ .

0.96 i

Accuracy

0.94 -

0.92 -

0.90‘ T T
SVM KNN DT NB LR ANN RF

Machine Learning algorithm

Figure 11. Classification accuracy using four stations’ signal strength with different classifiers created
by different machine learning algorithms.

From Figure 11, we find that all the algorithms have accuracies better than 94%. KNN performs
the best, with an average accuracy is 97.27%. Random Forest performs the worst, as its accuracy is
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94.36%. The confusion matrix for KNN algorithm is shown in Table 4. The value a;; in this confusion
matrix is not the number of the sample, but the percentage, given by the following expression:

ajj = Tll']'/Tll' X 100% (8)

Table 4. Confusion matrix using four stations’ signal strength with KNN classifier.

Environment Deep Indoors Semi-Outdoors Light Indoors Open Outdoors
Deep Indoors 97.1% 0 2.9% 0

Semi Outdoors 0 98.6% 0 1.4%
Light Indoors 6.5% 0 93.5% 0

Open Outdoors 0 0 0 100%

Table 4 shows that we can detect open outdoors environments correctly. There is a 2.9% possibility
of identifying deep indoors as light indoors environments, and a 1.4% possibility of identifying
semi-outdoors as open outdoors environments. A light indoors environment might be classified as
deep indoors with a possibility of 6.5%. However, we can’t always have at least four cellular stations.
Figure 9 show that when the window length is 8 s, we can correctly classify all four environments
using the KNN algorithm. In Table 5, we apply the different classifiers to detect the environment using
8 s window length.

From Table 5, we can see that Random Forest algorithm performs the best in all the measures.
In the following comparison, we will apply the Random Forest algorithm for classification. Finally,
we compare the proposed indoor/outdoor detection algorithm with the IODetector [2], Co-Training [3]
and GPS based detection in terms of accuracy and energy consumption.

Table 5. Performance measures using 8 s window length with different algorithms.

Algorithm Accuracy Sensitivity =~ Specificity =~ F-Measure Precision
SVM 0.8095 0.8095 0.9365 0.8077 0.8087
KNN 0.8652 0.8652 0.9551 0.8638 0.8634

DT 0.8861 0.8861 0.9621 0.8856 0.8901
NB 0.8734 0.8734 0.9578 0.8719 0.8717
LR 0.7994 0.7994 0.9331 0.7932 0.8051
NN 0.8677 0.8677 0.9559 0.8658 0.8652
RF 0.8943 0.8943 0.9647 0.8938 0.8933

The app DrawRSS is updated to collect other required signal strengths, including light intensity,
cellular signal strength, magnetic variance, sound intensity, and visible GPS satellites. A screen shot of
the application is given in Figure 12.

We collect the required signal strength from the four environments for 10 min. The sampling rate
is 2 Hz. The IODetector use the light intensity, cellular signal strength and magnetic variance to detect
the indoor/outdoor environment. Co-Training uses the light intensity, cellular signal strength and
sound intensity for detection. Our proposed algorithm uses the Random Forest algorithm to classify
8 s window length features from one cellular station’s signal strength. These four algorithms can detect
different indoor/outdoor environments: co-Training and a GPS-based algorithm are proposed to detect
indoor and outdoor environments, while IODetector is capable of detecting outdoors, semi-outdoors,
and indoors; our proposed algorithm can detect four kind of different indoor/outdoor environment.
In this experiment, all four of these algorithms only detect indoors and outdoors environments.
Table 6 shows the results, confirming that the proposed algorithm performs the best among the
four algorithms.
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Figure 12. Screen shot of the updated application. The updated application records the light intensity,
cellular signal strength, magnetic variance, sound intensity, and visible GPS satellites in the memory.

Table 6. Accuracy comparison among the proposed algorithm, IODetector, Co-Training and GPS
based detection.

Random Forest =~ IODetector Co-Training GPS
Accuracy 95.3% 61.2% 93.14% 71.6%

Different indoor/outdoor algorithms require different sensors. As a result, they consume different
amounts of energy. According to [4], GPS consumes the most energy, followed by microphone,
light sensor, and magnetic sensor. GSM consumes the least energy. Compared with the other
indoor/outdoor detection algorithms, our proposed algorithm only needs the GSM sensor, which
consumes minimal energy in addition to standard cell-phone operation, so the proposed algorithm is
the most energy efficient among the four detection algorithms.

5. Discussion and Conclusions

Detecting the users’ current environment automatically is crucial for SNAL. In this paper we
propose a GSM-based indoor/outdoor detection algorithm. Some studies [25,26] show that both the
distance from the base station and the difference in a height of mobile phones influence the received
signal strength. Our idea is to not just rely on the signal strength. We apply a machine learning
algorithm to classify the neighboring GSM station’s signal in different environments, and identify
the users’ current context by signal recognition. We test the algorithm in four different environments.
The results show that the proposed algorithm is capable of identifying open outdoors, semi-outdoors,
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light indoors and deep indoors environments with 100% accuracy using four nearby GSM stations’
signal strength. Large scale experiments have proved the efficiency of the algorithm. The required
hardware and signals are widely available in our daily lives, implying its high compatibility and
availability. Future work will concentrate on real-time indoors/outdoors detection by introducing
new low energy consumption signals that exist pervasively. The proposed approach was tested on
only one phone. However, GSM RSSI may be different on different phones even for the same location.
The device diversity problem is the one we must focus on in the future.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/1424-
8220/16/10/1563/s1.
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