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Abstract: In recent years, Secondary Substations (SSs) are being provided with equipment that allows
their full management. This is particularly useful not only for monitoring and planning purposes but
also for detecting erroneous measurements, which could negatively affect the performance of the
SS. On the other hand, load forecasting is extremely important since they help electricity companies
to make crucial decisions regarding purchasing and generating electric power, load switching, and
infrastructure development. In this regard, Short Term Load Forecasting (STLF) allows the electric
power load to be predicted over an interval ranging from one hour to one week. However, important
issues concerning error detection by employing STLF has not been specifically addressed until now.
This paper proposes a novel STLF-based approach to the detection of gain and offset errors introduced
by the measurement equipment. The implemented system has been tested against real power load
data provided by electricity suppliers. Different gain and offset error levels are successfully detected.

Keywords: Short Term Load Forecasting (STLF); Artificial Neural Network (ANN); measurement
error detection; secondary substation (SS)

1. Introduction

In the past few decades, significant advances in communication and information technology
have accelerated the development and introduction of new broadband communication technologies
in power systems. This fact has facilitated the power system automation in primary and secondary
substations. With the aim of taking advantage of the current technology, there exists the IEC 61850
global standard for substation automation which is becoming particularly popular in recent years [1].

Nowadays, the development of Electronic Instrumental Transducer (EIT) and the importance
of communication and information technology are quickly gaining acceptance in SSs. Consequently,
traditional Substation Automation System (SAS) where Intelligent Electronic Devices (IEDs) were
hardwire-linked are being challenged by this new protocol standardized as IEC 61850. Different EITs
carry out the necessary current and voltage measurements, which are used to control and protect
the SSs. However, the advantages that this approach brings could be negatively affected by the
existence of erroneous measurements in the signal acquisition process [2].

On the other hand, the load profile and, therefore, the current consumption are strongly related
to their historical measurement data depending on different variables, such as economic factors and
environmental data. With the purpose of continuously maintaining the electricity generation and
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consumption balance, several approaches to load forecasting have been proposed during the last few
years and some good examples can be found in [3,4].

In this paper, by using load forecasting techniques and comparing the forecast load with that
from the measurement equipment in the SSs, different systematic error levels can be estimated, namely
gain and offset errors. The implemented system is tested against data from both an SS simulator and
electricity suppliers.

The scope of this work falls within two research fields: (1) short term load forecasting and
(2) erroneous and false measurement detection. With this in mind, what follows presents the literature
on both fields.

Different forecasting and prediction models have been employed in several fields, such as wind
power prediction models [5] and photovoltaic power forecasting models [6]. As far as load forecasting
is concerned, in literature, various approaches have been proposed to solve this issue. Load forecasting
involves estimating the future electric load, for a forecast horizon, based on the available information
about the state of the system. In this regard, this paper focuses on short term load forecast (STLF) to
estimate the load with a horizon from one hour to one week. In [7], authors propose a new neural
network approach to STLF based on a new modified learning algorithm. The results obtained are
compared with those from other works [8,9] with the aim of evaluating the validity of the proposed
approach. In [10,11], environmental variables are also employed, whereas in [12,13] only the historical
load consumption is considered without a detrimental impact on the accuracy. The latter is the strategy
adopted in this paper. In [12], the authors propose a solution for STLF in microgrids based on a
three-stage architecture, which consists of a Self Organizing Map (SOM), a clustering via k-means
algorithm, and a Multilayer Perceptron (MLP). A set of 29 inputs are provided to the MLP: 24 inputs
that represent the hourly load of the previous day; two inputs for the day of the week of the previous
day and two inputs for the month of the previous day in the form of sines and cosines; and lastly,
one more input that represents the next day total load estimation. Finally, a total of 24 outputs
corresponding to the estimated load for the forecasting day (d) are obtained.

In [13], a different approach to one-day ahead load profile prediction is presented. The mean
absolute percentage of the forecasting error is reduced between 0.5% and 16% by employing an
Artificial Neural Network (ANN). Three different scenarios with different inputs are considered.
The inputs to the ANN depend on the model implemented. For example, Model I requires 72 inputs,
namely: hourly load values of the last day available, load values of the same weekday of previous
week and load values of the same weekday two weeks before. The authors define a second model
(Model II) by including three more inputs: two inputs represent the day of the week and the third
one is used to distinguish between working day or vacation. In both models, 24 outputs are obtained
which form the hourly predicted load for the forecast day. These outputs along with the 72 inputs of
the first model could also be used as input of a new ANN with a total of 96 inputs (Model III).

Regarding erroneous measurement detection, this problem has been addressed in different papers.
For example, in [14], the sensor failure detection is discussed employing a neural network. In [15]
a method based on fractal dimension is implemented for sensor fault diagnosis. In [16], nonlinear
principal component analysis (NLPCA) method for faulty measurement reconstruction is proposed.
Finally, in [17], another neural-network-based algorithm is employed for sensor failure detection for a
flight control system.

Focusing on SSs, in [2], pattern identification is utilized to detect erroneous measurements. In an
attempt to achieve high pattern identification precision within the time limit imposed by the protection
systems, a Radial Basis Function Neural Network (RBFNN) and an Orthogonal Least Square (OLS)
learning algorithm are implemented. The neural network calculates the probability of fault occurrence
based on measurements from all the EITs.

In order to provide a way of detecting a malfunction of an EIT in a particular SS, this work
proposes a new approach to measurement error detection based on STLF. As mentioned before,
in the literature, there are many examples of using STLF for monitoring and planning purposes and
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various approaches have been proposed to solve this issue. Interestingly, STLF has not been used
for error detection until now. This strategy represents an innovative approach to error detection in
SSs. This strategy greatly facilitates the detection of gain and offset error, thereby allowing preventive
maintenance in the SSs to be performed. Particularly, the system presented in this paper could be
effectively employed in open SS Nodes that are described in [18,19]. The open SS node is based
on an architecture that combines smart metering with grid automation. While the EIT is operating,
the developed system allows errors to be detected. In the event of occurring an error level higher than
a threshold, an alarm can be raised and sent to the control center. Further tests for verifying the scope
of the error could then be conducted by an operator.

This paper is divided into four sections. After the introduction, in Section 2, a global description
of the system and the adopted methods are described. Section 3 analyzes both the data used to test the
implemented system and the results achieved. Finally, some conclusions are drawn and future works
are described in the final section.

2. Methodology and System Description

In this section, a general view on the employed system is discussed. Figure 1 shows an overview of
the system. The available information pertains to the historical measurements from different SSs. The
different electrical variables measured are: active and reactive power, voltage and current. However,
for the system under study, just the current historical measurements are considered. This is due to the
fact that the equipment for current measurement is more prone to errors on account of the considerable
variability of the current.

Figure 1. Overview of the general system.

The algorithm is divided into two steps: load forecasting and error estimation. Firstly, the
available data is used to provide one-day ahead load forecast on a hourly basis. Secondly, once the
measured load for the day under consideration is available, the error level is estimated by comparing
both data sets, i.e., forecast and measured load.

2.1. Load Forecasting

As mentioned previously, the load forecasting model uses only historical measurement data,
which consists of measurements from a set of SSs. Following one of the methods employed in [13],
the system effectively performs, providing an accurate forecast. The chosen data, whereby the load
profile on an hourly basis is estimated, is listed below:



Sensors 2016, 16, 85 4 of 14

• 24 h load of the previous available day (d-1)
• 24 h load of the previous week same day (w-1) (d)
• 24 h load of the two previous weeks same day (w-2) (d)
• Day of the week (sine and cosine)
• Month of the year (sine and cosine)

Therefore, a total of 72 samples corresponding to hourly load are used. Since there exists a strong
correlation among the 72 samples, a principal component analysis (PCA) procedure can be used to
reduce the number of dimensions. This technique has been successfully employed in different fields
such as face recognition [20], voice processing [21] and in ultrasonic sensors [22]. PCA basically is a
statistical approach that linearly transforms an original set of variables into a smaller set of uncorrelated
variables, which represent the largest variance from the multivariate input data.

The PCA algorithm has been described in [22,23]. Given a matrix X with dimension M × N,
the first step consists in subtracting the mean of the elements in a particular row from each element of
that row. Then, the covariance matrix from the previous matrix with the subtracted mean is obtained
(N × N) and the eigenvectors and eigenvalues for that matrix are calculated. The eigenvectors with the
highest eigenvalues represent the principal components (k), and the number of principal components
need to be determined. The set of eigenvectors corresponding to the principal components form the
feature matrix V and that can be expressed as:

V = [λ1, λ2, . . . , λk](N×k) (1)

Finally, the new compressed matrix (Y) is derived by multiplying the transposed feature matrix
with the transposed zero-mean matrix previously calculated, as shown in the following equation:

Y =
[
VT · XT

]
(k×M)

(2)

The principal components resulting from the PCA process are the inputs of the ANN along with
the data that represents the day of the week and the month of the year. Figure 2 shows the functional
diagram of the system.

Figure 2. Functional diagram of the load forecasting system.
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As mentioned before, a set of 72-dimensional data provides historical information for the
forecasting process of forecasting. Bearing in mind that the training process can be lengthy, the
smaller the data set, the faster the process will be. Due to the strong correlation among the inputs,
this data set can be described with only a few most significant components that hold 97% of the
information, i.e., 97% of the variance for the principal components selected. In the system discussed in
this paper, the number of principal components depends on whether the input data come from the
simulator or from real measurements. This value ranges from seven to 20 components, being higher
for the real data on account of less correlation.

The ANN used in this work is a one-hidden layer perceptron since it is the most frequently
employed in forecasting and time series due to its performance [24]. The output and the input signals
are related by the following equation:

y = ϕ

(
n

∑
j=1

xj · wj − θ

)
(3)

where y is the output, xj represents the input data, wj denotes the weight that is associated with each
xj, and θ is the threshold. Finally, ϕ is the transfer function that is usually expressed as:

ϕ =
1

1 + e−x (4)

An important issue is to define the number of neurons of the hidden layer since this significantly
affects the performance of the network in terms of execution time and accuracy. In this regard,
an iterative process, which consists in carrying out different tests is used. Varying the number of
neurons of the hidden layer from 1 to 100 and comparing the performance for each iteration, the ANN
that minimizes the test error is composed of a 15-neuron hidden layer. Figure 3 shows the obtained
mean square error (MSE) depending on the number of neurons in the hidden layer.

Figure 3. MSE depending on the number of neurons.

The Levenberg–Maquardt algorithm has been chosen for the ANN training for two reasons: (i) the
number of iterations required for the ANN training is smaller in comparison to other techniques;
(ii) this algorithm always guarantees the convergence of the training process [25,26].

Taking into consideration that every EIT to be checked by the described system generates its own
data, the ANN differs between the different EITs, hence the importance of selecting the algorithm that
best provides accuracy and fast convergence in equal measure.
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2.2. Error Measurement

Once the load forecasting has been carried out and the new measurements for the day (d) are
available, the process of error measurement detection for the different EITs can start. As stated in the
introduction, the errors to be detected are systematic [27] and can be classified into two different types,
namely: offset and gain errors.

Offset errors affect each acquired sample in a systematic way and hence they can question the
accuracy of the measurements in the SS. The offset error in percentage is compared against the full
scale. Figure 4 shows the load measurement deviation due to the offset.

Figure 4. Seven days with an offset error of −5%.

Unlike offset errors, gain errors are multiplicative and affect all the measurements proportionally.
Figure 5 shows a comparison between the measured, the forecast and the ideal load over a period of
seven days for a gain error percentage of −10%.

Figure 5. Seven days with a gain error of −10%.

Regarding their presence, offset and gain errors can occur simultaneously, which greatly hinders
the error detection. In this context, both errors must be detected independently. Interestingly,
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the system described in this paper performs well under worst-case scenarios such as the occurrence of
both errors with different signs. In this context, the most general possible scenario is considered when
both errors appear at the same time as described in the following equation:

mlp(t) = (ilp(t) · α) + β (5)

where mlp represents the measured load profile, ilp is the ideal measurement load profile, i.e., when no
error occurs, and α and β represent the gain and offset error, respectively.

By using the strategy described previously, the forecast load profile ( flp(t)) can be estimated.
Since the process of forecasting introduces a random error (e f (t)), Equation (5) can be rewritten as:

mlp(t) = (( flp(t) + e f (t)) · α) + β (6)

= flp(t) · α + e f (t) · α + β (7)

It goes without saying that the better the load prediction, the smaller the error introduced.
However, this error can be negligible on account of the fact that it is a random error with mean 0.
Therefore, by using different averaging processes, Equation (7) can be reformulated as:

mlp(t) = flp(t) · α + β (8)

Differentiating both terms in Equation (8) leads to Equation (9):

∆mlp(t)
∆t

=
∆( flp(t) · α + β)

∆t
=

∆ flp(t)
∆t

· α (9)

Then, the following equation can be obtained by solving for α:

α =
∆mlp(t)/∆t

∆ f lp(t)/∆t
=

∆mlp(t)

∆ f lp(t)
(10)

Finally, substituting the gain error into Equation (8), and solving for β leads to Equation (11):

β = mlp(t)− flp(t) · α (11)

The proposed system is able to estimate the value of gain and offset error independently. Since
there exists a considerable variability in the offset and gain measurement error estimation, the recursive
least squares algorithm with forgetting factors (FRLS) is employed for filtering. This algorithm has
been extensively utilized in the time-varying system as in [28] where a novel FRLS is developed. To be
more precise, in this paper, a forgetting factor of 0.83 has been employed due to the performance
enhancement on the trade-off between filtering and fast response.

3. Simulations and Experimental Results

With the aim of testing the system presented in this paper, two different data sets are used, namely:
simulated data set from a simulator, and real data from SSs.

As far as the first data set is concerned, the simulator has been developed by a distribution
operator, and it provides simulated measurements from different SSs located in the Henares Corridor,
in Madrid. This simulator provides four measurements: active and reactive power, voltage and
current. As mentioned in the introduction, only the current measurement is considered given that the
equipment for current measurement is more prone to errors. Nevertheless, this system can be applied
to the rest of the electrical variables.

A simulated data set based on current measurement is thus obtained every 15 min for two years
(from 1 January 2010 to 31 December 2011).
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On the other hand, the system has also been tested against a real data set obtained from different
SSs located in the Community of Madrid. This data set contains information half-hourly recorded
from several SSs in the period ranging from 1 January 2010 to 31 December 2011.

Although both data sets contain data acquired with different frequencies, they are analyzed in the
same way since only hourly average values are taken into consideration.

Then, the data sets are split into three groups: (i) the training subset (70%), which is used to train
the ANN; (ii) the validation subset (15%) used to ensure that the network is generalizing and to stop
training before overfitting; and (iii) the test subset (15%) employed for a completely independent test
of network generalization. Different error values of offset and gain are injected in the data set and then
they are correctly detected. Likewise, the training time depends on whether the data is simulated or
real. This stems from the fact that simulated data are more correlated and, therefore, fewer principal
components are required.

The test was carried out in a computer with Intel Core i7 CPU 860 @ 2.93GHz x8 processor and
the MATLAB neural network toolbox was employed.

3.1. Results Based on the Simulated Data Set

In Figures 6–8, the results obtained from testing the described system against simulated
data are depicted. In Figure 6, all the measurements recorded over a two-year period (730
days–17,520 measurements) are shown.

Figure 6. Simulated EIT—17,520 measurements obtained during 730 days.

Figure 7. Simulated EIT—forecasting error for one-day ahead.
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Figure 8. (a) 0% and −10% gain errors and (b) 0% and 10% offset errors during the days after training.

Figure 7 shows both the 24 hourly forecast load for the day d and the real measurements for the
same day. Clearly, the error between them is negligible.

In Figure 8a,b offset and gain measurement errors are injected respectively, and the system is
applied to identify the level of error. It can be seen that different values of error for gain (0% and −10%)
and offset (0% and 10%) are successfully detected.

3.2. Results Based on the Real Data Set

In Figures 9 and 10a,b, the results obtained from testing the described system against real data
are depicted.

Figure 9 shows for the same day d, both the 24 hourly forecast load and the available
measurements. In this case, the error between them is not negligible. However, given that the
forecasting error has a random nature and due to the different averaging processes, this error does not
greatly affect the system discussed in this paper.

Finally, by injecting the same error levels as was done with the simulated data set, the system is
applied to identify the error levels. Figure 10a,b represent the results achieved for offset and gain error
measurements, respectively.

Figure 9. Real EIT—forecasting error for one-day ahead.

An error analysis strategy has been implemented [29]. The mean absolute percentage error
(MAPE), the normalized mean bias error (NMBE) and normalized root mean square error (NRMSE)
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indicators are used to compare the results. These indicators show accuracy in terms of percentage and
can be expressed as:

MAPE =
1
n
·

n

∑
i=1

∣∣∣∣Ei − Ai
Ei

∣∣∣∣× 100 (%) (12)

NMBE =
1
n
·

n

∑
i=1

(
Ei − Ai

Ei

)
× 100 (%) (13)

NRMSE =

√√√√ 1
n
·

n

∑
i=1

(
Ei − Ai

Ei

)2
× 100 (%) (14)

where n denotes the number of samples, E stands for the error level injected and A represents the
hourly detected error level.

Figure 10. (a) 0 % and −10% gain errors and (b) 0% and 10% offset errors during the days after training.

Under normal operating conditions, the current measurement accuracy including all the
equipment involved in the measuring process (mainly current transformer and measurement
equipment) is below ±2%. The contribution to the error of the transformer is not higher than
±1% [30,31] and the measurement equipment [32] can introduce between ±0.5% and ±1% of error
depending on the manufacturer.

Within this context, for ensuring that a systematic measurement offset or gain error is occurring
without generating false alarms, a minimum threshold of ±5% is considered. Nonetheless, the results
have been analyzed until a maximum measurement error of ±10%.

MAPE and NRMSE indicators show that there exists considerable variability in the result.
However, the NMBE indicator is smaller, showing that the estimated error level oscillates around the
right value. As a consequence, by using a recursive least squares algorithm with forgetting factor,
the measured error estimation is filtered. Likewise, a comparison between the current and the filtered
estimated errors in absolute value is drawn:

abs =
∣∣E − F

∣∣ (15)

where abs represents the absolute estimation error, E stands for the injected error level and F is the
mean value of the filtered estimated error level along the different tests. Tables 1 and 2 summarize
the MAPE, NMBE, NRMSE and absolute errors indicators for gain and offset error in simulated data,
respectively. Tables 3 and 4 show the same indicators for real data.



Sensors 2016, 16, 85 11 of 14

Table 1. Error indicators for different gain error levels—Simulated data.

Simulated Data—Gain
Error Level MAPE (%) NMBE (%) NRMSE (%) Abs (%)

−10 % 20.915 17.021 25.857 1.705
−9 % 21.629 16.357 27.001 1.472
−8 % 22.871 15.718 28.786 1.264
−7 % 24.970 15.353 31.574 1.076
−6 % 27.958 14.930 35.393 0.895
−5 % 32.548 14.694 41.157 0.741
+5 % 34.706 11.770 42.908 0.586
+6 % 29.723 11.694 36.719 0.697
+7 % 26.193 11.641 32.346 0.814
+8 % 23.615 11.558 29.150 0.920
+9 % 21.613 11.508 26.644 1.039
+10 % 20.068 11.513 24.702 1.152

Table 2. Error indicators for different offset error levels—Simulated data.

Simulated Data—Offset
Error Level MAPE (%) NMBE (%) NRMSE (%) Abs (%)

−10 % 7.327 0.595 9.155 0.073
−9 % 8.146 0.903 10.170 0.085
−8 % 9.170 1.243 11.442 0.103
−7 % 10.486 1.662 13.078 0.122
−6 % 12.241 2.208 15.256 0.129
−5 % 14.664 2.839 18.269 0.140
+5 % 14.870 3.845 18.732 0.195
+6 % 12.487 3.354 15.742 0.202
+7 % 10.761 2.955 13.573 0.207
+8 % 9.455 2.633 11.931 0.211
+9 % 8.426 2.362 10.636 0.212
+10 % 7.597 2.132 9.592 0.213

Table 3. Error indicators for different gain error levels—Real data.

Real Data—Gain
Error Level MAPE (%) NMBE (%) NRMSE (%) Abs (%)

−10 % 29.476 11.584 35.924 1.156
−9 % 32.658 11.662 39.666 1.047
−8 % 36.603 11.560 44.344 0.925
−7 % 42.024 11.582 50.772 0.809
−6 % 48.871 11.561 58.913 0.690
−5 % 58.561 11.506 70.410 0.574
+5 % 62.436 12.890 74.999 0.641
+6 % 52.737 13.088 63.483 0.784
+7 % 45.686 13.172 55.110 0.924
+8 % 40.366 13.091 48.779 1.045
+9 % 36.504 13.218 44.210 1.188
+10 % 33.438 13.407 40.601 1.344

In order to carry out this test and in an attempt to enhance the versatility of this system, simulated
and real data from five EITs located in different SSs is used. In this regard, 20 different tests are set for
each EIT, which involves training a new ANN for each test.

Finally, with the aim of showing average results for each studied error under simulated and real
scenarios, an averaging process over the tests and over the different EITs is performed.
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Table 4. Error indicators for different offset error levels—Real data.

Real Data—Offset
Error Level MAPE (%) NMBE (%) NRMSE (%) Abs (%)

−10 % 12.932 0.568 16.230 0.072
−9 % 14.365 0.621 18.026 0.072
−8 % 16.153 0.681 20.268 0.071
−7 % 18.448 0.750 23.143 0.069
−6 % 21.503 0.829 26.968 0.066
−5 % 25.773 0.919 32.313 0.064
+5 % 25.576 3.271 31.930 0.146
+6 % 21.472 3.053 26.788 0.168
+7 % 18.517 2.822 23.090 0.183
+8 % 16.282 2.600 20.295 0.192
+9 % 14.527 2.394 18.103 0.198
+10 % 13.111 2.209 16.337 0.000

Table 5 details the results obtained when both offset and gain errors occur simultaneously. In the
authors’ view, these results represent an excellent initial step toward the implementation of the system
in open substation nodes for protection and security purposes.

Table 5. Combined error detection in real data

Offset Error Level

−10% −7.5% −5% 0% 5% 7.5% 10%

−10% −8.9 −10.3 −8.9 −7.8 −8.9 −5.3 −8.8 −0.4 −8.5 4.5 −8.5 7.0 −8.5 9.5
−7.5% −6.7 −10.2 −6.7 −7.7 −6.7 −5.2 −6.6 −0.3 −6.3 4.6 −6.3 7.1 −6.3 9.5
−5% −4.5 −10.1 −4.5 −7.6 −4.5 −5.1 −4.4 −0.2 −4.1 4.7 −4.1 7.1 −4.1 9.6
0% −0.1 −9.9 −0.1 −7.4 −0.1 −4.9 0.0 0.0 0.2 4.9 0.3 7.4 0.3 9.8
5% 4.2 −9.7 4.2 −7.2 4.2 −4.7 4.4 0.2 4.6 5.1 4.6 7.5 4.7 10.0

7.5% 6.4 −9.6 6.4 −7.1 6.4 −4.6 6.5 0.3 6.8 5.2 6.8 7.6 6.8 10.2

G
ai

n
Er

ro
r

Le
ve

l

10% 8.5 −9.5 8.5 −6.7 8.6 −4.5 8.7 0.4 8.9 5.3 9.0 7.8 9.0 10.3

Gain error level detected Offset error level detected

4. Conclusions and Future Works

Detection of measurement errors in electronic instrumental transducers (EITs) should play an
important part in SS automation. Early detection of errors in the EITs can help not only reduce the risk
of misoperation in the protection systems but also implement different preventive maintenance plans.

This paper has proposed a novel approach to measurement error detection based on short term
load forecasting (STLF). Historical measurements acquired from EITs along with data related to the
day and the month are the inputs to an ANN with the purpose of obtaining the forecast measurements
for the day under consideration. Real and forecast measurements are then compared in order to
independently detect offset and gain error levels.

The strength of the contribution made in this work lies in using STLF techniques to provide
electricity companies with a valuable tool that serves as a decision-making aid in the area of
maintenance and security. In this context, the system is designed to accurately detect offset and
gain error levels introduced by EITs in SSs. This allows electricity companies to implement possible
corrective and preventive actions.

Future work will concentrate on improving the forecasting model to deliver better results in
terms of random errors detection and increased accuracy. With this in mind, different data, such as
temperature, wind speed and economic rates could be included in the ANN training process.
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