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Abstract: A new fault diagnosis method for rotating machinery based on adaptive statistic test filter
(ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to
obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing
in the frequency domain to evaluate similarity between reference signal (noise signal) and original
signal, and remove the component of high similarity. The optimal level of significance α is obtained
using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor
Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and
robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is
proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By
this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A
three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief
Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates
the effectiveness of the proposed method.

Keywords: feature extraction; adaptive statistic test filter; Diagnostic Bayesian Network; evaluation
factor; condition diagnosis

1. Introduction

In the field of condition monitoring for rotating machinery, the vibration information, such as
vibration accelerometer signal, vibration velocity signal, and vibration displacement signal, is often
used for detecting faults and distinguishing fault types. Feature extraction of vibration signals is
important for condition diagnosis [1,2]. However, feature extraction for condition diagnosis is difficult
because the vibration signals measured for condition diagnosis contain strong noise component. Useful
information is buried under stronger noise. In such case, the feature of machine condition could not be
obtained and even the wrong conclusion will be induced. Thus, it is important that the feature of the
signal can be sensitively extracted at the state change of a machine [3].

Many studies based on vibration signal processing technology have been carried out with the goal
of machinery condition diagnosis [4–7]. Fourier analysis has been the dominating signal processing
tool for condition diagnosis. In [8], Fourier analysis was used to identify the gear faults in planet
cage. In [9], Fourier transform has been applied to detect rolling bearing faults. Unfortunately, there
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are some limitations of the Fourier transform, such as the fact that the signal to be analyzed must be
strictly periodic or stationary. However, in practice, machinery operate under unsteady condition,
such as varied rotating speed and operating load. In such case, even though the machinery is in
the normal state, the spectrum feature and the frequency components of vibration signal are always
changing with time. Thus the Fourier transform has no application to analyze non-stationary signal
and can not reveal the inherent information of non-stationary signals [10,11]. Time frequency analysis
methods, such as Wavelet Transforms (WT), Short Time Fourier Transform (STFT), etc., are effective
tools for analyzing the non-stationary signals. These technologies can simultaneously provide the joint
distribution information of signals in time domain and frequency domain, and describe the energy
density or intensity of the signal at different times and frequencies. In [12], STFT and Hilbert-Huang
transform (HHT) analysis were integrated to detect faults of ball bearings for wind turbine. However,
the result of the STFT method depends on the choice of the windows size. Moreover, computational
cost the STFT is high. WT has got huge success in fault diagnostics of rotating machinery for its ability
to focus on localized structures in time frequency domain. WT can decompose the signal into many
basis functions and extract signal features through change of the scales and time shifts of the basis
function. In [13], WT method was employed to extract fault features of external load changing and the
asymmetry of three-phase in induction motor. In [14], the broken-bar fault of induction motor was
detected based on discrete WT. However, the feature extraction results of WT rest with the choice of
wavelet basis function. Only selecting the appropriate basis function, the features of signal can work
well to detect faults. In addition, due to the limited length of the wavelet base function, energy loss is
inevitable [15]. Empirical mode decomposition (EMD) technique was proposed by Huang et al., for
non-linear and non-stationary signal processing. EMD is a self adaptive signal processing technology
that could decompose a non-linear and non-stationary signal into a set of intrinsic mode functions
(IMFs). However, undesired frequency components in results and undesired low amplitude IMFs at the
low-frequency region remain unsolved in EMD [16–19]. In addition, there are many noise cancelling
methods that have also been applied, such as band pass filter [20], Kalman filter [21], Wiener filter [22],
and so on. However, due to their flaws and shortcomings, these methods cannot always be applied to
failure feature extraction. For example, band pass filter cannot cancel the wide band noise; when using
Wiener filter and Kalman filter to process signal, the signal must follow the normal distribution.

The number of the artificial intelligence techniques, such as artificial neural networks (ANN),
ant colony optimization (ACO), Bayesian belief network (BBN) etc., have been widely applied
to fault diagnosis of plant machinery. In [23], three architecture NN, single-layer, multilayer
perceptron network and counter propagation network, were introduced to detect 10 faults of a heat
exchanger. In [2], an improved NN called partially-linearized neural network (PLNN) was presented
to distinguishing the three types defect occurred in a rolling bearing. However, NN is not suitable
for dealing with ambiguous diagnosis problems, and will never converge if SPs calculated by signals
measured in different states have the same value. ACO algorithm imitates the behavior to solve
optimization problems. In [24], ACO and DWT were integrated to detect faults of a rolling bearing
used in the centrifugal fan system. However, ACO method is easy to trap into local optimum. In
many cases, the optimization solution cannot be found. BBN is a powerful tool to represent and
reason about complex systems with uncertain, incomplete and conflicting information [25,26]. A BBN
enables us to model and reason about uncertainty, ideally suited for diagnosing real world problems
where uncertain incomplete data exist. Therefore, it is a suitable solution for troubleshooting complex
rotation machinery systems. In the last decades, BBN has been widely applied in condition diagnosis of
plant machinery. References [27–29] are successful cases of BBN being used to detect fault of complex
systems, such as nuclear power systems [27], aircraft engines [28], semiconductor manufacturing
systems [29], etc.

To extract the fault feature of signals more effectively and discriminate conditions of rotation
machinery more correctly, a novel method based on adaptive statistic test filter and Diagnostic Bayesian
Network algorithm (DBN) for condition diagnosis of rotating machinery is presented. Structure of this
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paper is as follows: Section 2 instructs feature extraction method based on ASTF and evaluation factor
Ipq. The optimal level of significance α is obtained by using PSO. In Section 3, the ten SPs for condition
diagnosis are defined and PCA is employed to obtain high sensitive SPs for condition diagnosis. In
Section 4, a three-layer DBN is built to identify condition of rotation machinery based on BBN theory.
Section 5 shows a practical example of fault diagnosis for verifying the effectiveness of the proposed
method. Summary and conclusions are given in Section 6.

2. Feature Extraction by ASTF

In this study, a new weak fault feature extraction method called adaptive statistic test filter
(ASTF) is proposed. Principle of ASTF is based on statistic hypothesis testing in the frequency domain
to evaluate similarity between reference signal (noise signal) and original signal, and remove the
component of high similarity. Otherwise, the optimal level of significance α is obtained using PSO.
The procedure for applying STF for the condition diagnosis is proposed, as shown in Figure 1.
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Figure 1. Procedure for applying the ASTF for the condition diagnosis.

The reference signal n(t) is measured in a normal state in advance. The original signal g(t) is
measured in the state to be detected and polluted by noise. µnp f q and µgp f q indicate the average value
of n(t) and g(t) in the frequency domain, respectively; and σ2

np f q and σ2
gp f q indicate the variance value

of n(t) and g(t) in the frequency domain, respectively. The two null hypotheses are as follows:

H1 : σ2
gp f q “ σ2

np f q (1)

H0 : µgp f q “ µnp f q (2)
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Firstly, σ2
gp f q “ σ2

np f q is verified by F test with m ´ 1 degree of freedom, and F = Sn
2/Sg

2.

S2
gp f q “

m
ÿ

j“1

gp f q2{pm´ 1q ´ gp f q2 (3)

S2
np f q “

m
ÿ

j“1

np f q2{pm´ 1q ´ np f q2 (4)

If σ2
gp f q “ σ2

np f q, µgp f q “ µnp f q is verified by t test with 2m ´ 2 degree of freedom, and
t “ tgp f q ´ np f qu {S

a

2{m.
here,

S2 “
!

pm´ 1qS2
g ` pm´ 1qS2

n

)

{p2m´ 2q (5)

If σ2
gp f q ‰ σ2

np f q, t “ tgp f q ´ np f qu {
b

Sg
2 p f q{m ` Sn

2 p f q{m .

m˚ “
´

Sg
2{m ` Sn

2{m
¯2
{

” !

Sg
4{m2 pm´ 1q

)

`

!

Sn
4{m2 pm´ 1q

) ı

(6)

If both null hypotheses would prove to be received, the spectrum component of the original signal
g(t) at the frequency f is similar to that of the reference signal n(t). The component at the frequency f
does not contain fault information and will be removed. If alternative hypothesis is denied, it means
that the spectrum component of the original signal g(t) at the frequency f is not similar to that of the
reference signal n(t). The component at the frequency f contains fault information.

After STF, the original signal g(t) is decomposed into estimated fault signal g*(t) and estimated
noise signal n*(t). In order to appraise the performance of STF, evaluation factor Ipq is defined. qi and
qi

* are the number that n(t) and n*(t) cross over some level i of the vertical coordinate of the power
spectrum Fn

2(fk) with a positive slope in unit time and can be calculated as follows:

qi “
σv

2πσx
e´ni

2{2σx
2

(7)

pi “

?
2π

σv
qi (8)

σx
2 “

ż 8

0
Fn

2p fkq d fk (9)

σv
2 “

ż 8

0
p2π fkq

2Fn
2p fkq d fk (10)

where i “ 1 „ K, ni “ min tnptqu „ max tnptqu.
Ipq is defined as follows:

Ipq “

K
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

log
ˆ

qi
qi*

˙
ˇ

ˇ

ˇ

ˇ

{K `
K
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

log
ˆ

pi
pi*

˙
ˇ

ˇ

ˇ

ˇ

{K (11)

It is obvious that the smaller the value of the Ipq, the more similar n(t) and n*(t) will be, and
therefore, the better the STF will be. Thus, Ipq is able to express the similarity degree between n(t) and
n*(t); that is to say, Ipq can be used to evaluate the performance of STF.

To obtain optimal level of significance α, an adaptive PSO algorithm is proposed in this paper.
PSO algorithm is based on groups, and solves an unconstrained D-dimensional optimization problem
by minimization of the objective or the fitness function [30–32]. In this study, the fitness function is the
evaluation factor Ipq (Equation (11)). In PSO algorithm, each particle keeps track of its own position
denoted by Ppiq.location “ rXi1, Xi2 ¨ ¨ ¨XiDs and velocity denoted by Ppiq.velocity “ rVi1, Vi2 ¨ ¨ ¨ViRs in



Sensors 2016, 16, 76 5 of 16

the problem space, according to its own and neighboring particle experience [22–24]. The best previous
position of particle is marked by the lowest fitness value and indicated by Ppiq.best “ rPi1, Pi2 ¨ ¨ ¨ PiRs.
The best position among all particles experienced discovered by the swarm, so far, is defined as
gpiq.best “ rgi1, gi2 ¨ ¨ ¨ giRs. Then, the new positions and velocities of the particles are updated by the
following equations:

Ppiq.velocitypt` 1q “ ω Ppiq.velocityptq ` η1r1rPpiq.bestptq ´ Ppiq.locationptqs
`η2r2rgpiqbestptq ´ Ppiq.locationptqs

(12)

Ppiq.locationpt` 1q “ Ppiq.locationptq ` Ppiq.velocitypt` 1q (13)

where r1 and r2 indicate random numbers between 0~1. η1 is the cognitive parameter (acceleration
coefficient). η2 is the social parameter (acceleration coefficient). The inertia weight ω controls the
previous velocity of particle, and ω adaptively adjust as follows:

ω “

#

k1 ` 0.5q R ą 0.05
k2 ` 0.5q R ď 0.05

(14)

where q is a random number with a uniform probability between 0~1; k1 and k2 are parameters, and
k1 > k2 , the choice of k1 and k2 is determined experimentally, here k1 = 0.5 and k2 = 0.2. R indicates
change rate, which defined as Equation (15); if R is greater than 0.05, PSO is in the exploration stage, a
large ω is beneficial to the algorithm’s convergence; if R is less than 0.05, PSO is in the development
stage, a small ω is beneficial to searching optimum point.

R “

ˇ

ˇIpqpt` 5q ´ Ipqptq
ˇ

ˇ

ˇ

ˇIpqptq
ˇ

ˇ

(15)

where Ipq(t) is minimization evaluation factor value of the t-th iteration. Ipq(t + 5) is minimization
evaluation factor value of the (t + 5)-th iteration.

In order to test and verify capability of ASTF, a simulation experiment is designed. Ten set signals
that consist of the impulsive signal with the period of 0.015 s and random white Gaussian noise are
produced using Matlab software to simulate a bearing fault. These noisy signals are processed by ASTF
and a high pass filter with 5000 Hz cut off frequency, respectively. The performances of denoising are
estimated based on SNR. Mathematical expression of the impulsive signal is shown in Equation (16).

xptq “ x0e´ξωntsinωn

b

1´ ξ2t (16)

where ξ indicates coefficient of damping and ξ = 0.2; ωn expresses natural frequency and ωn = 3 kHz;
and x0 denotes displacement constant and x0 = 2.

Figure 2 shows the SNR of denoised signals processed by ASTF and high pass filter. As shown in
Figure 2, all of the SNR values of denoised signals after ASTF are much greater than high pass filter.
Then, ASTF method is effective and has high robustness for signal denoising.
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3. Symptom Parameters for Fault Diagnosis and Sensitivity Evaluation

3.1. Symptom Parameters for Fault Diagnosis

The number of SPs reflect plant machinery condition have been defined in the pattern recognition
field [33]. In this study, ten SPs in the time domain are considered.

P1 “
σ

x
(17)

P2 “

N
ř

i“1
x2

i

σ2 (18)

P3 “

ˇ

ˇ

ˇ

ˇ

N
ř

i“1
pxi ´ xq3

ˇ

ˇ

ˇ

ˇ

Nσ3 (19)

P4 “

N
ř

i“1
pxi ´ xq4

Nσ4 (20)

where, xi is digital data of vibration signal. x is the mean value of xi, x “

N
ř

i“1
xi

N
. σ is standard deviation

of xi, σ “

g

f

f

f

e

N
ř

i“1
pxi ´ xq2

N ´ 1
.

P5 “
xp

x
(21)

P6 “
xp

σ
(22)

P7 “

ˇ

ˇ

ˇ

ˇ

ˇ

Np
ř

i“1
pxpi ´ xpq

3

ˇ

ˇ

ˇ

ˇ

ˇ

Npσp3 (23)

P8 “

ˇ

ˇ

ˇ

ˇ

ˇ

Np
ř

i“1
pxpi ´ xpq

4

ˇ

ˇ

ˇ

ˇ

ˇ

Npσp4 (24)
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where, xpi is the peak value of xi. xp and σp are the mean value and standard deviation of
xpi, respectively.

P9 “

ˇ

ˇ

ˇ

ˇ

ˇ

Nv
ř

i“1
pxvi ´ xvq

3

ˇ

ˇ

ˇ

ˇ

ˇ

Nvσv3 (25)

P10 “

ˇ

ˇ

ˇ

ˇ

ˇ

Nv
ř

i“1
pxvi ´ xvq

4

ˇ

ˇ

ˇ

ˇ

ˇ

Nvσv4 (26)

where, xvi is the valley value of xi. xv and σv are the mean value and standard deviation of
xvi, respectively.

3.2. High Sensitivity Symptom Parameters Obtained by PCA

PCA is a statistical analytical tool used to explore, sort and group data. PCA takes a large number
of correlated variables and transform these data into a smaller number of uncorrelated variables known
as principal components. The first few principal components contain most of the information and the
discriminatory features [34].

Define a data matrix with size m ˆ n, where m is the number of identifying states and n is the
number of SPs, whose covariance matrix has eigenvalue λi and eigenvector ai (a is loading of the
principal component and can express the importance of the SPs for each principal component) and
I = 1 ´ n with λ1 ě λ2 ě . . . ě λn. Principal components Zi and the cumulative contribution rate of the
principal components ηi can be calculated as follows:

$

’

&

’

%

Z1
...

Zn

,

/

.

/

-

“

»

—

–

a11 ¨ ¨ ¨ a1n
...

. . .
...

am1 ¨ ¨ ¨ amn

fi

ffi

fl

“ AP (27)

ηi “

i
ÿ

j“1

λj{

n
ÿ

k“1

λk (28)

where Pi indicates a symptom parameter, I = 1 ´ n.

4. Bayesian Belief Network

BBN is a probability network based on graphical network model for describing causal
uncertainties between variables. It is built for uncertainty modeling and reasoning, and has a great
advantage in diagnosing fault caused by uncertainty and correlation of the complex systems.

4.1. Bayesian Inference

Supposing A is a random event and B is the event that is root causes generating A, conditional
probabilities P(A|B) between A and B can be calculated as follows:

PpA| Bq “
PpABq
PpBq

“
PpAqPpB| Aq

PpBq
(29)

where P(AB) is the joint probability, P(AB) = P(B)¨P(A|B)=P(A)¨P(B|A).
Supposing Bi (i = 1, 2, ..., n) are mutually exclusive and complete set of root causes generating A,

the marginal probability of A is

PpAq “
n
ÿ

i“1

PpBiqPpA| Biq (30)
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The conditional and marginal probabilities of A and Bi is

PpBi| Aq “
PpABiq

PpAq
“

PpBiqPpA| Biq
n
ř

i“1
PpBiqPpA| Biq

(31)

In Equation (31), P(Bi) and P(A/Bi) express prior probabilities and prior conditional probabilities,
respectively. P(Bi/A) indicates posterior probability. When using the Bayesian inference for fault
diagnosis, Bi represents an equipment condition and A represents a SP. The prior probability of the
SPBi(P(Bi)) and the conditional probability of equipment condition A given BiP(A/Bi) can be obtained
from expert experience or statistical data. Then, the posterior probability P(Bi/A) can be obtained by
Equation (31). If this posterior probability is high, the condition Bi can be confirmed at the given A,
and the equipment condition is judged Bi.

4.2. Topology of Bayesian Belief Network

A BBN consists of a number of nodes, directed links, and probability tables. For a diagnostic BBN
model, nodes represent variables that can be SP, equipment condition or observations. Directed links
indicate casual relationships between the variables. In this paper, the purpose of building a diagnostic
BBN is to reason the most likely mechanical condition based on the values of SP, given one or more SP
values to calculate posterior probabilities of the cause. The calculus of posterior probability involves
calculating the joint probability for the model (probabilities of all combined states for all nodes within
the model). The network contains five nodes, X1, X2, X3, X4, and X5, with a structure of three layers
(see in Figure 3). In terms of the definition of the three types of conditional independence, X1 is
independent of X2; X1 is parent of X3 and X4. Given X1, X3 and X4 are conditionally independent of
each other, X5 is independent of X1, X2, and X3. The following derivation indicates how to calculate
the posterior conditional probability P(X4 = true|X5 = true).

PpX4 “ true|X5 “ trueq “
PpX4 “ true|X5 “ trueq

PpX5 “ trueq
“

ř

x1x2x3

PpX1, X2, X3, X4 “ true, X5 “ trueq
ř

x1x2x3x4

PpX1, X2, X3, X4, X5 “ trueq
(32)

where P(X1, X2, X3,X4 = true|X5 = true) and P(X1, X2, X3,X4 ,X5 = true) involve calculating the joint
probability of the model. The joint probability of this model P(X1, X2, X3, X4, X5) can be calculated
as follows:

PpX1, X2, X3, X4, X5q “

5
ź

i“1

PpXi|X1, ¨ ¨ ¨ , Xi´1q

“ PpX1qPpX2|X1qPpX3|X1X2qPpX4|X1X2X3qPpX5|X1X2X3X4q

(33)

Applying the independence assumption, the joint probability distribution can be simplified
as follows:

PpX1, X2, X3, X4, X5q “

5
ź

i“1

PpXi|Paiq

“ PpX1qPpX2qPpX3|X1qPpX4|X1X2qPpX5|X4q

(34)
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4.3. Framework of Diagnostic Bayesian Network

In this study, Diagnostic Bayesian Network (DBN) is constructed for intelligent condition
diagnosis. As shown in Figure 4, the proposed DBN consists of three layers. The first layer is
normal and abnormal states. The second layer is fault states, and the last layer is SPs calculated from
the signals processed by ASTF.

In the proposed DBN, prior probabilities of root nodes are needed and conditional probabilities
are also needed to represent direct probabilistic dependences among nodes in the three layers. Here, all
machine states are regarded as parent nodes, and the prior probabilities of state i (Si) can be obtained
as follows:

PpSiq “
NSi

N
(35)

where NSi represents the sample size of state i, and N indicates the total number of samples.
The conditional probabilities of each node are obtained as follows

PpSP “ xi| Siq “
Nxi

Si

NSi

Nxi
Si
‰ 0

PpSP “ xi| Siq “
1{N

NSi ` Nxi{N
i f Nxi

Si
“ 0

(36)

where SP represents the values of symptom parameters, and Nxi
Si

indicates the sample size of state i,
when SP = xi.
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5. Diagnosis and Application

5.1. Condition Diagnosis by Proposed Method

In this section, an experimental setup is designed to evaluate the effectiveness of the method
proposed in this paper. The flowchart of the condition diagnostic procedure is shown in Figure 5.

Figure 6 shows the experimental bench for condition diagnosis test, which includes a servo motor,
rotor system and loading equipment. The NSK 205 ball bearing is used for bearing condition diagnosis.
As shown in Figure 7, three types fault: the outer defect, the inner defect, and the roller element defect
were artificially made by using electro discharge machining with fault width was 0.3 mm, and fault
depth was 0.025 mm.

In the present work, the original vibration signals in each state were measured by the accelerometer
(PCB MA352A60, PCB Piezotronics Inc., New York, NY, USA) with 50,000 Hz sampling frequency.
The accelerometer was fixed on vertical direction of the bearing. While the vibration signals were
being obtained, the speed of servo motor was 800 rpm, and a 150 kg load was also transported on
the rotating shaft by the loading equipment (RCS2-RA13R, IAI Co. Ltd., Shizuoka, Japan). All the
data were recorded and transformed by a collection system includes a sensor signal conditioner (PCB
ICP Model 480C02, PCB Piezotronics Inc., New York, NY, USA) and a signal recorder (Scope Coder
DL750, YOKOGAWA Co. Ltd. Tokyo, Japan). Obtained data was divided to two sets, one set includes
80 samples and was used to train diagnosis system; the other set includes 20 samples and was used for
condition identification test. Figure 8 shows the original vibration signal in each state, and Figure 9
shows the vibration signal after ASTF.
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In this study, the SPs that contain the most information and have high sensitivity for each state 
are selected by PCA. As an example, parts of the selection results are shown in Tables 1 and 2; P1, P2, 
P6, P8 and P9 have high sensitivity for distinguishing normal state and abnormal state. Because the 
weight coefficients for P1, P2, P6, P8 and P9, the first principal component, are larger than those of the 
other, the contribution rate of the first principal component is larger than 0.86, which contains 
enough information and discriminatory features to identify the normal state and abnormal state. 
Similarly, the SPs for other states can also be selected. 

In this paper, the DBN for distinguishing conditions of a rolling bearing was built as shown in 
Figure 10. The proposed DBN consists of three layers. The first layer is normal and abnormal states. 
The second layer is main failures such as outer-race defect, inner-race defect, and roller element 
defect, which often occurred in a rolling bearing. The last layer is SPs shown in Table 2. The prior 
probabilities and the conditional probabilities were obtained by Equations (35) and (36). All of the SPs 
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In this study, the SPs that contain the most information and have high sensitivity for each state
are selected by PCA. As an example, parts of the selection results are shown in Tables 1 and 2; P1, P2,
P6, P8 and P9 have high sensitivity for distinguishing normal state and abnormal state. Because the
weight coefficients for P1, P2, P6, P8 and P9, the first principal component, are larger than those of the
other, the contribution rate of the first principal component is larger than 0.86, which contains enough
information and discriminatory features to identify the normal state and abnormal state. Similarly, the
SPs for other states can also be selected.

In this paper, the DBN for distinguishing conditions of a rolling bearing was built as shown in
Figure 10. The proposed DBN consists of three layers. The first layer is normal and abnormal states.
The second layer is main failures such as outer-race defect, inner-race defect, and roller element defect,
which often occurred in a rolling bearing. The last layer is SPs shown in Table 2. The prior probabilities
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and the conditional probabilities were obtained by Equations (35) and (36). All of the SPs were divided
into five levels, 1, 2, 3, 4 and 5, which indicate very small, small, middle, big and very big levels,
respectively. As an example, parts of the training sample data are shown in Table 3.
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Table 1. First principal component of SPs.

Weight Coefficients for Each Symptom Parameter Contribution
Rate

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 η1

N:O 0.99 0.91 ´0.62 ´0.75 ´0.33 0.85 ´0.69 0.88 0.79 0.21 0.88
N:I 0.93 0.87 ´0.53 ´0.32 ´0.65 0.78 0.11 0.92 0.81 ´0.42 0.86
N:R 0.99 1.0 ´0.9 ´0.36 ´0.75 0.9 ´0.22 0.86 0.91 ´0.36 0.89
O:I 0.87 1.0 ´0.56 0.99 0.88 ´0.66 ´0.71 0.98 -0.56 0.38 0.90
O:R 0.99 0.99 ´0.37 0.93 0.95 ´0.58 ´0.62 0.98 -0.79 0.86 0.85
I:R 0.97 0.86 ´0.78 0.36 0.91 ´0.55 ´0.11 0.87 -0.91 0.95 0.86

Table 2. Selection result of the SPs for distinguishing each state.

State Selection result

Normal P1, P2, P6, P8, P9
Outer-race defect P1, P2, P4,P5, P8,
Inner-race defect P1, P2, P5, P8,

Roller-element defect P1, P2, P5, P8, P10,

Table 3. Training sample data.

State
Non-dimensional Symptom Parameters

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Normal

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 1 1 1 2
1 1 1 1 1 2 1 2 1 1
1 1 1 1 1 1 1 1 1 2
... ... ... ... ... ... ... ... ... ...

Outer-race
defect

2 3 1 4 4 3 1 3 2 3
3 3 1 4 4 3 1 3 2 4
2 2 1 3 4 3 1 3 2 5
3 3 1 4 4 3 1 3 2 3
... ... ... ... ... ... ... ... ... ...

Inner-race
defect

3 1 2 1 1 2 1 3 4 4
4 1 2 2 1 5 5 4 5 4
3 1 1 2 2 4 3 4 4 4
3 1 1 1 1 3 3 3 3 2
... ... ... ... ... ... ... ... ... ...

Roller element
defect

5 5 1 3 5 5 3 4 4 5
4 4 2 4 5 5 3 5 5 5
4 4 5 3 5 5 3 4 3 5
4 4 2 3 5 5 3 4 4 5
... ... ... ... ... ... ... ... ... ...
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To verify the diagnostic capability of the diagnosis methods proposed in this paper, we used
the data measured in each state had not been used to train the DBN system. They can correctly and
quickly diagnose those faults with the possibility grades of the corresponding states. In the test of
normal state, the successful diagnosis ratio is 100%. In the test of each faults, the successful diagnosis
ratio of outer-race defect, inner-race defect and roller element defect states are 100%, 94% and 86%,
respectively. Some diagnosis results are shown in Tables 4–7.

Table 4. Diagnosis results of normal state.

Non-Dimensional Symptom Parameters State Judge
P1 P2 P6 P8 P9 Normal Abnormal

1 1 1 1 1 0.96 0.04 Normal
1 1 1 2 1 0.89 0.11 Normal
1 1 2 1 1 0.91 0.09 Normal
... ... ... ... ... ... ... ...

Table 5. Diagnosis results of outer-race defect state.

Non-Dimensional Symptom Parameters State Judge
P1 P2 P4 P5 P8 Outer-Race Defect Other Faults

3 3 4 4 3 0.99 0.01 Outer-race defect
2 2 4 4 3 0.89 0.11 Outer-race defect
2 3 5 4 3 0.86 0.14 Outer-race defect
... ... ... ... ... ... ... ...

Table 6. Diagnosis results of inner-race defect state.

Non-dimensional Symptom Parameters State Judge
P1 P2 P5 P8 Inner-Race Defect Other Faults

4 1 2 3 0.85 0.15 Inner-race defect
3 2 1 4 0.79 0.21 Inner-race defect
3 1 2 4 0.88 0.12 Inner-race defect
... ... ... ... ... ... ...

Table 7. Diagnosis results of roller element defect state.

Non-dimensional Symptom Parameters State Judge
P1 P2 P5 P8 P10 Roller-Element Defect Other Faults

4 4 5 5 5 0.75 0.25 Roller-element defect
3 3 4 5 5 0.68 0.32 Roller-element defect
3 4 5 4 5 0.66 0.34 Roller-element defect
... ... ... ... ... ... ... ...

5.2. Condition Diagnosis by NN

In this study, a back propagation NN shown in Figure 11 is also constructed for condition
diagnosis of the roller bearing. The NN consists of three layers, the SPs calculated by vibration signals
are entered into input layer, hidden layer includes 80 units, output layer is the possibility grades of
each condition of roller bearing. Table 8 shows the parts of diagnosis results of NN. N, O, I and R
indicate the normal, outer race defect, inner race defect and roller element defect states, respectively.
The symbolˆ expresses the case that NN is incapable of identifying the fault type. As shown in Table 8,
the normal and outer race defect states of roller bearing were correctly identified by NN. However,
NN is incapable of identifying inner race defect and roller element defect states of roller bearing. The
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main reasons are that the vibration signals measured for condition diagnosis contain strong noise,
there exist ambiguous relationships between the SPs and the fault types, and NN cannot deal with
incomplete and conflicting information.Sensors 2016, 16, 76 14 of 16 
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Figure 11. The back propagation NN for condition diagnosis.

Table 8. Diagnosis results of NN.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 N O I R Judge

0.02 0.06 0.13 6.13 2.24 1.0 1.98 4.72 2.01 11.9 0.868 0.001 0.135 0.012 N
0.02 0.07 0.11 5.87 2.58 1.03 1.75 5.73 1.15 10.1 0.895 0.001 0.098 0.169 N
0.03 0.16 0.15 103 4.85 2.01 2.33 66.3 3.05 105 0.063 0.805 0.177 0.055 O
0.03 0.17 0.19 106 4.62 2.15 2.68 72.5 3.66 99.7 0.087 0.796 0.206 0.036 O
0.02 0.11 0.25 33.4 2.91 3.06 10.8 80.7 8.49 109 0.056 0.071 0.532 0.405 ˆ

0.04 0.09 0.32 48.9 3.65 1.95 9.67 85.6 8.98 94.9 0.095 0.041 0.501 0.386 ˆ

0.05 0.32 0.47 93.9 5.29 3.57 8.87 115 10.8 124 0.011 0.095 0.406 0.513 ˆ

0.06 0.26 0.68 106 5.47 3.26 9.13 123 10.2 139 0.032 0.086 0.366 0.572 ˆ

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

6. Conclusions

In order to detect the condition of rotating machinery at an early stage, a novel fault diagnosis
method based on ASTF and DBN was presented. The main conclusions of this paper are summarized
as follows:

1. The method of ASTF for extracting weak fault features under background noise was presented.
The optimal level of significance α was obtained using PSO. To evaluate the performance of ASTF,
evaluation factor Ipq was also defined. In addition, a simulation experiment was designed to
verify the effectiveness and robustness of ASTF.

2. PCA based on statistical analysis theory was also presented to evaluate the sensitivities of SPs
calculated via vibration signals measured in each state for condition identification.

3. A three-layer DBN was developed to identify condition of rotation machinery based on the BBN
theory. It is effective and efficient in condition diagnosis based on uncertain, incomplete and
conflicting information.

4. Study examples of diagnosis for a bearing were shown to demonstrate the effectiveness of the
methods proposed in this paper. The verification results show that the bearing faults that often
occur in roller bearings, such as the Outer race, the Inner race and the roller element defects, have
been effectively identified by the proposed method in this paper. However, these bearing faults
are difficult to detect using NN technology, because the vibration signals measured for condition
diagnosis contain strong noise, there exist ambiguous relationships between the SPs and the fault
types, and NN cannot deal with incomplete and conflicting information.

In summary, this paper verifies the capability of condition diagnosis method based on ASTF
and DBN. In addition, soft sensor technique establish inference model of symptom parameters based
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on state-space model, and solves inference model of symptom parameters by parameter estimation
method, such as Kalman filter and Bayesian filter. The condition diagnosis system includes two parts:
feature extraction and condition identification. Soft sensor technique can be used of feature extraction
and fusion, and condition identification can adopt artificial intelligence techniques, such as DBN, NN,
etc. In the future, we will consider using soft sensor technique to extract features of signals.
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