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Abstract: Wireless sensor networks equipped with rechargeable batteries are useful for outdoor 
environmental monitoring. However, the severe energy constraints of the sensor nodes present 
major challenges for long-term applications. To achieve sustainability, solar cells can be used to 
acquire energy from the environment. Unfortunately, the energy supplied by the harvesting 
system is generally intermittent and considerably influenced by the weather. To improve the 
energy efficiency and extend the lifetime of the networks, we propose algorithms for harvested 
energy prediction using environmental shadow detection. Thus, the sensor nodes can adjust their 
scheduling plans accordingly to best suit their energy production and residual battery levels. 
Furthermore, we introduce clustering and routing selection methods to optimize the data 
transmission, and a Bayesian network is used for warning notifications of bottlenecks along the 
path. The entire system is implemented on a real-time Texas Instruments CC2530 embedded 
platform, and the experimental results indicate that these mechanisms sustain the networks’ 
activities in an uninterrupted and efficient manner. 
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1. Introduction 

Wireless sensor networks (WSNs) consist of several embedded devices, known as sensor nodes, 
which are used to measure environmental phenomena in real time and send data back to 
workstations through a wireless component. Without a wire connection, they are suitable for use in 
applications under harsh environment conditions, such as inpatient care [1], smart buildings [2], 
coal mining [3], bridge monitoring [4] and agricultural production [5]. A sensor node is typically 
powered by a limited-capacity lithium battery, which supplies the circuitry by providing the 
current required to sustain each component of the node. The total energy consumption is the sum of 
each component on a node (e.g., sensor, microcontroller and radio), and each part may operate at 
different states of energy. Hence, the lifetime of a sensor node is the time taken to discharge its 
battery below a sustainable level for operation. 

Numerous studies have been conducted to develop energy harvesting systems for powering 
the sensor nodes for a potentially infinite node lifetime [6], and solar cells are a typical solution [7]. 
Unfortunately, in real-world environments, the energy supplied by such a harvesting system is 
generally intermittent and insufficient for all components of the node. Thus, batteries are still 
indispensable for compensating power when the energy production of the harvesting system is 
insufficient. However, the battery level may be too low to maintain node function, and the 
harvesting system may be unable to provide sufficient energy to recharge the battery, which could 
lead to the temporary unavailability of the node and cause the entire WSN to be non-operational.  
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In this report, we consider a WSN for environmental monitoring, in which the sensor nodes 
are exposed to sunshine to harvest energy. However, under actual conditions, the node may be 
sheltered from the sun by the shadow of a building or a tree. The shadow region is not static, and it 
moves and changes its shape based on the incidence angle of the sun. Figure 1 depicts an 
illustration of the moving and changing shadow situation for the WSN. In Figure 1a, there are only 
four sensor nodes covered by the shadow cast by the trees, whereas after half an hour, seven nodes 
are covered by the shadow region. The area and the shape of the shadow increased over 30 min, 
which may lead to a sudden significant decrease in the harvested energy and affect the scheduling 
plan of the node system. Thus, shadow detection and movement prediction methods are required 
to avoid this risk. 

 
Figure 1. (a) Illustration of a shadow region at some time; (b) Illustration of the moving and 
shape-changing shadow region half an hour later. 

To control the energy consumption and achieve a longer lifetime, we built a model to describe 
the energy status of the sensor node and used suitable methods for harvesting prediction, shadow 
detection, task scheduling, and routing optimization. The primary contributions of this report can 
be described as follows: (1) a piecewise least squares curve fitting with extended Kalman filter is 
introduced for harvested energy prediction on a sensor node to improve its task schedule;  
(2) shadow detection and movement prediction algorithms are proposed to avoid an energy risk;  
(3) node clustering and routing algorithms with bottleneck warnings at structural level are 
introduced to optimize the data transmission; and (4) methods are implemented on a Texas 
Instruments (TI, Dallas, TX, USA) CC2530 WSN platform to validate their effect. The remainder of 
this report is organized as follows: after reviewing related studies in Section 2, we provide a node 
energy management model in Section 3. Section 4 describes the task schedule method based on 
energy prediction using shadow detection. In Section 5, we present clustering and routing methods 
for saving energy at the nodes. Experiments are performed on real-time embedded hardware 
implemented on the TI CC2530 platform, and the results are presented in Section 6. Finally, the 
conclusions are stated in Section 7. 

2. Related Work 

Green computing is a new term that refers to minimizing the negative impact of equipment on 
the environment. The concept of self-powered wireless sensor networks using green energy has 
attracted a lot of attention in recent years [8], especially in opportunistic routing [9] and energy 
control [10]. Solar power is an important type of green energy that can be acquired from sunshine to 
support WSNs in the wild. However, because the energy harvested from the sun is unstable and 
depends considerably on the weather, dynamic power management [11,12] should be considered to 
solve this problem. Due to the fact that power modelling is the first issue in energy management, 
SIVEH [13] and EFCon [14] were introduced to describe the energy harvesting and consuming 
conditions of the sensor nodes. Furthermore, the task schedules could be adjusted based on the 
real-time energy levels. The Prediction FREE Energy Neutral (P-FREEN) method [15], which is 
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based on budget assigning principles, and the adaptive packet transmission period method [16] 
were proposed to improve the energy efficiency. Additionally, a few studies attempted to extend 
the network lifetime using advanced hardware design, e.g., PWM control [17] and Maximum 
power Point Tracking (MPPT) [18]. Most of these mechanisms only consider the remaining battery 
level or harvested energy at the right time for the task plan; however, the energy acquired in the 
future will also influence the trends of the total energy. Some studies have shown that the 
Exponentially Weighted Moving Average (WCMA) is a low computational algorithm with 
relatively high accuracy using simulation [19]. In this study, we predict the energy on sensor node 
hardware with a piecewise least squares curve fitting, which may result in energy use being more 
targeted and anticipatory. 

Data transmission is another primary task in WSNs, and it is more energy-consuming than 
sampling tasks. A data transmission reduction strategy is one of the few ways to reduce energy 
consumption [20,21]. Hence, reducing the consumption related to clustering and routing plays an 
important role in several research plans. Low-Energy Adaptive Clustering Hierarchy (LEACH) [22] 
is a clustering protocol that utilizes randomized rotation of clusterheads to distribute the energy 
load. However, it only performs well under the homogeneous network, but poorly in 
heterogeneous environments. The Hybrid Energy-Efficient Distributed clustering (HEED) [23] is 
another distributed clustering algorithm which selects the clusterheads according to the residual 
energy of each node. But under heterogeneous environments, the low-energy nodes may own 
larger election probability than the high-energy ones in HEED. The Stable Election Protocol (SEP) 
scheme [24] is designed for two-level heterogeneous wireless sensor networks, which is composed 
of two types of nodes according to different initial energy. The advanced nodes have more energy 
than the normal ones at the beginning. The SEP is not fit for widely used multi-level heterogeneous 
wireless sensor networks due to the fact that it includes two types of nodes [25]. The Deterministic 
Energy-efficient Clustering Protocol (DEC) [26] and Distributed Energy-Efficient Clustering 
algorithm (DEEC) [25] are two self-organizing clustering protocols for heterogeneous networks. 
The DEC uses the sensor node’s residual energy solely as the election criterion, while the DEEC 
takes the ratio between residual energy of each node and the average energy of the network into 
consideration. These two methods both use the residual energy without the consideration of the 
variation trend of harvested energy in an energy harvesting system. Enhanced developed 
Distributed Energy-Efficient Clustering (EDDEEC) [27] was introduced to prolong network lifetime. 
Unlike previous methods, this method considers the effects of the radio environment and changes 
the clusterhead selection probability in a dynamic manner. The simulation results confirm the 
performance of the method. The Distributed Clustering Protocol Using Voting and Priority (DCPVP) 
[28] method, which is based on the mean distance from the neighbours and the remaining energy, 
can decrease the construction time as well as the energy consumption of the clustering process in 
sensor networks. The simulation results confirm its effectiveness with limited resources and 
battery-powered nodes in harsh and inaccessible environments. Unfortunately, there are no 
experimental data to further validate that the computational complexity of these methods can be 
handled by sensor nodes with limited computing ability. 

Advanced routing algorithms have also been developed for energy savings. Wastage-aware 
routing [29] is a route selection scheme that considers energy wastage in addition to residual 
battery power and forecasts the energy harvest information of the nodes. Zone-based routing [30] is 
another novel method that uses a parallel and distributed broadcasting technique to reduce 
redundant transmission and save energy. Meanwhile, the intelligent energy protocol [31] uses 
reinforcement-learning techniques to enhance its effects. Recently, the ant colony algorithm was 
used to optimize the deployment of sensor nodes in the network [32]. Furthermore, an 
energy-efficient topology control mechanism [33] could be an important contribution to 
transmission power savings. An appropriate task scheduling plan could also markedly prolong the 
lifetime of the network, and weather forecasting [34] and Quality of Service (QoS) [35] could be 
involved in this optimization. All of these methods are beneficial for improving energy efficiency 
but may not be deployed successfully on sensor nodes due to limited energy and computing 
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abilities. Thus, in this study, we use a series of simple algorithms for efficient clustering and routing 
on real-time hardware. The experimental results indicate their contribution to energy savings. 

3. Energy Harvest and Consumption Models 

We consider a WSN for environmental monitoring applications, especially in agriculture and 
wooded areas. The sensor nodes are powered by lithium batteries, which are recharged using solar 
cells. The current is drained from the batteries based on the applications under which the nodes are 
operating [12]. To analyse the harvesting situation and battery consumption, relative models need 
to be constructed for the solar cells and lithium batteries on a sensor node. 

3.1. Solar Cells 

Solar cells are composed of semiconductor materials in a crystalline state and can convert the 
energy of photons into electricity via the photovoltaic effect. The efficiency of a solar cell (σ ) is 
defined as a measure of the conversion efficiency for the incident light absorbed by a solar cell 
converted into electric power, which can be calculated as follows: 

max /S D Sσ = ×  (1) 

where Smax is the maximum output power provided by the solar cell (in Watts); D is the irradiance, 
defined as the density of the incident power on a surface (in W/m2); and S is the surface area of the 
solar cell (in m2). In our study, we selected the KINGRO-004V solar cell (KINGRO, Shaoxing, China), 
which is a 70 × 70 mm2 monocrystalline cell that provides a maximum current of 120 mA. Table 1 
lists the specifications of this cell. 

Table 1. Specifications of the KINGRO-004V solar cell. 

Parameter Value
Specified load voltage (Vld) 4 V 
Typical current at Vld (Ild) 120 mA 
Open circuit voltage (Voc) 4.5 V 
Short circuit current (Ioc) 130 mA 

Maximum output power (Pmax) 500 mW 
Surface area (S) 49 cm2 

The solar cell efficiency depends on the brightness conditions of its location, its geographical 
coordinates, the solar time, and its inclination with respect to the Sun’s rays. In this study, we 
attempted to keep the cell positioned approximately perpendicular to the Sun’s rays to maximize 
efficiency. 

3.2. Lithium Battery 

The battery discharge condition depends primarily on the power requirements of the sensor 
node. In this study, we use a LP903158 lithium battery manufactured by ZONCELL Corporation 
(Shenzhen, China) with a storage capacity of 2500 mAh on our sensor node. Furthermore, Table 2 
presents the specifications of this battery. To illustrate the battery discharge procedure, we select 
three typical sample tasks for the sensor node. The battery consumption procedures are illustrated 
in Figure 2, with average current draws of 30, 50 and 80 mA, respectively. Furthermore, in this 
study, the batteries are charged from the solar cell when the harvested energy is sufficient. 
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Table 2. Specifications of the LP903158 lithium battery. 

Parameter Value Parameter Value 
Battery capacity 2500 mAh Maximum discharge current 1 C 
Nominal voltage 3.7 V Discharge cutoff voltage 2.75 V 
Product weight 30 g Discharge temperature −10 °C~+60 °C 

Standard charge current 0.2 C Charge and discharge times ≥ 800 
Maximum charge current 0.5 C Self-discharge current ≤ 400 µA 

Continuous discharge current 0.5 C   

 

Figure 2. Illustration of battery discharge. 

3.3. Energy Model 

Let Pmax represent the maximum battery capacity of the WSN node and Pmin be the minimum 
capacity necessary to sustain the node operation. Without considering the power leakage, the 
energy production and consumption of a sensor node can be described using Equation (2) as 
follows [12]: 

0 0 0
[ ( ) ( )] [ ( ) ( )] [0, )
t t

t h c c hP P E t E t E t E t dt tθ + += + − − − ∀ ∈ ∞   (2) 

where Pt denotes the battery power level at time t, Eh(t) represents the energy produced by the solar 
harvesting component at time t, Ec(t) is the energy consumed by the sensor node at time t, and 

[0,1)θ ∈  denotes the charging efficiency of the battery. The rectifier function [ ]x + in the formula 
can be defined using Equation (3) as follows: 

, 0
[ ]

0, 0
x x

x
x

+ ≥
=  <

 (3) 

The first part of this formula denotes the initial energy of the battery, and the second term 
accounts for the energy needed to recharge the battery, which is produced by the solar cell and not 
consumed. Moreover, the last term represents the power drained from the battery by the sensor 
node. Additionally, the energy model considers that the battery is not an ideal energy tank and that 
it may dissipate part of the redundant energy as heat. Once this energy model is constructed, 
energy management and prediction for sensor nodes can be conducted. 

4. Harvest Prediction and Energy Control 

Due to its high energy density, solar energy is a popular kind of energy harvested from Nature, 
being widely utilized. However, the energy produced by the solar cell depends on the weather, 
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location and time of day, and it is typically difficult to precisely predict [14]. Figure 3 indicates the 
energy curve harvested by two solar cells located at different places from noon to night. It is evident 
that the solar cell cannot supply stable energy for equipment because it is considerably influenced 
by the sunlight intensity and location. The voltage of the cells increases gradually in the morning, 
peaks at noon due to direct sunlight conditions, and then declines in the afternoon; it may fluctuate 
due to the passage of clouds across the sky and shadows across the ground. Furthermore, the 
voltage does not depend linearly on the luminous intensity. When the solar cell reaches saturation 
conditions, the energy cannot increase, even if the solar radiation is yet to reach its peak value 
(which occurs at 12:00). 

 
Figure 3. Illustration of the harvested energy of two solar cells at different locations. 

Additionally, location plays an important role in a solar-powered system. Solar cells deployed 
at different places will be influenced by the environment at their positions and then produce 
different harvesting energies. The shadows of trees or buildings constitute a primary reason for the 
difference in energies. The shadow shields the solar cell from sunshine and decreases the voltage. 
Thus, when a node is shielded by a shadow, it should be slowed to save energy. However, the 
position of a shadow is not static, and its position and area vary according to the angle of incidence 
of the sunlight. Therefore, it is difficult to estimate which node should be set to save energy and 
which should be removed from the energy saving group at the next interval. In this section, we 
propose a novel estimation algorithm to track the shadow based on the correlation between the 
region and the harvesting energy. 

4.1. Time Correlation Prediction 

Because the energy harvested from the solar cell is greatly influenced by the luminous 
intensity, it is possible to develop an energy-consumption plan by predicting the location of the 
sunlight at the next time point. By reducing the current consumption before sunset or bad weather, 
the WSN node can remain active for a longer duration and operate more efficiently. Because the 
volume of solar radiation exhibits continuity over time, a piecewise least squares curve fitting 
estimation [36,37] based on previous sensing data is used to predict sunlight conditions in the 
future. Because the real-time voltage level of the solar cell is positively correlated with the 
harvested current energy, it can be viewed as an observation of the solar energy. There are several 
base formulas for fitting, such as linear functions, quadratic functions, cubic functions, fourth-order 
polynomial functions, fifth-order polynomial functions, B-spline curves and Bezier curves. 
However, the computational ability of the sensor node is limited; thus, the selected formula should 
be efficient and save time.  
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Figure 4 illustrates the experimental results of the fitting estimation for six different formulas. 
The sensor data are acquired from the solar cell on a node in an open lawn from 14:10 to 15:30 in 
October in Fuzhou, China. The evaluation is performed on a computer with an Intel i5 3.4 GHz 
CPU and 4 GB memory using MATLAB. Piecewise fitting for each 5-min section is applied to the 
curve after using a mean filter with a window parameter of 25 s.  

As illustrated in Figure 4, the fourth-order or fifth-order polynomial functions provide better 
approximations than the linear and quadratic functions, and their mean absolute differences 
(MADs) are lower than those of the linear and quadratic methods. Moreover, the B-spline and 
Bezier curves have the lowest MAD values in the fitting procedure, as indicated in Figure 5b, but 
they require considerably more time than the polynomial methods. Due to the limited 
computational and storage abilities of a sensor node, the fifth-order polynomial functions, which 
have a relatively low time cost and MAD value, are most suitable for use at an embedded node. 

 
Figure 4. (a) An example of the piecewise linear curve fitting estimation; (b) An example of the 
piecewise quadratic curve fitting estimation; (c) An example of the fourth-order polynomial curve 
fitting estimation; (d) An example of the fifth-order polynomial curve fitting estimation; (e) An 
example of the B-spline curve fitting estimation; (f) An example of the Bezier curve fitting 
estimation. 
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Figure 5. (a) Time cost of the fitting methods; (b) Mean absolute difference for the fitting methods. 

4.2. Extended Kalman Filter (EKF) 

As illustrated in Figure 3, the energy acquired from the environment varies strongly with the 
luminous intensity, and the voltage of the solar cell can be viewed as an observation. However, due 
to noise, the observation cannot reflect the actual energy conditions at the right time. To improve 
the robustness of the sampling data, filter tools should be used to smooth the curve before 
prediction. A mean filter, also known as a linear filter, is the most commonly used filter tool, and 
the basic principle is to replace the original value of each point with the mean value within a short 
scope. In the previous section, it was used to smooth the curve before the fitting estimation. 
However, the mean filter only reduces the fluctuation within a certain range and cannot decrease 
the process and observation noise. Thus, a more powerful Kalman filter is considered to solve  
this problem.  

The Kalman filter [38] is a recursive algorithm that uses a series of noisy measurements over 
time to yield optimal estimates of the states of a linear stochastic process. It can minimize the mean 
square of the estimation error under white noise. Because of its low computational load and 
optimal performance, it is widely used in digital systems and online applications. The standard 
Kalman filter involves a two-step process that consists of predicting and updating. In the predicting 
step, the filter produces estimates of the current state variables ˆkx

−  along with an a priori estimate 
of their covariance 

kP
− . The updating step refreshes the a posteriori estimate state x̂  and the a 

posteriori estimate covariance kP  based on the a priori estimates. Because the algorithm only uses 
the current input measurements, the previously calculated state and its uncertainty matrix, no 
additional past information is required; thus, it can be used in real-time applications. 

The standard Kalman formulas can only address linear problems; however, the voltage tested 
from the solar cell does not follow a linear relationship over time. Thus, an extended Kalman filter 
(EKF) [39,40] is selected to adjust this nonlinear curve. As depicted in Figure 6, the EKF first 
constructs a linear system to approximate the nonlinear system near the current estimated state, and 
the standard Kalman filter equations can then be used for the linearized state. Equations (4) and (5) 
describe the nonlinear process in the form of discrete stochastic differential equations as follows:  

1 1 1( , , )k k k kx f x u w− − −=  (4) 

( , )k k kz h x v=  (5)

where xk represents the process state at time k; wk and vk denote the excitation noise and the 
observation noise, respectively; zk is the observed variable; and uk is the control vector at time k. 

The entire EKF estimation procedure consists of four steps: initialization, linearization, 
prediction and update. In the first step, the initial values are assigned to ˆkx

−  and kP
−  for further 

estimation, where the symbol—represents the a priori element and the symbol ^ denotes the 
estimation value. 
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Figure 6. Estimation procedure of the extended Kalman filter (EKF). 

After initialization, the linearization step is used to develop an approximate linear process for 
the nonlinear system. The prediction step can then be used to estimate the a priori value of x using 
Equations (6) and (7) as follows: 

1 1ˆ ˆ( , ,0)k k kx f x u−
− −=  (6) 

1 1
T T

k k k k k k kP A P A W Q W−
− −= +  (7) 

where the notation ˆkx
−  represents the estimate of x at time k given observations up to and 

including time k − 1; kA  is the state transition model, which is applied to the previous state ˆkx
− ; 

kP
−  denotes the a priori estimate covariance at time k given observations up to and including time  

k − 1; Qk represents the covariance of the process noise, which is assumed to be drawn from a zero 
mean multivariate normal distribution; Wk is the Jacobian matrix of the process at time k; and uk is 
the control vector at time k: 

( )k k k kP I K H P−= −  (8) 

1( )T T T
k k k k k k k k kK P H H P H V R V− − −= +  (9) 

ˆ ˆ ˆ( ( ,0))k k k k kx x K z h x− −= + −  (10) 

Here, ˆkx  is the a posteriori state estimate; kP  is the a posteriori estimate covariance at time k 
given observations up to and including time k; zk is the observation of the true state xk; Kk is the 
Kalman gain at time k; Hk and Vk are the Jacobian matrices of the observations, which map the true 
state space onto the observed space; and Rk denotes the covariance of the observation noise, which 
is assumed to be zero mean Gaussian white noise. 

Then, Equations (8)–(10) refresh the a posteriori state estimates of x at the update step based on 
the a priori estimate, which results in a new state estimate that lies between the predicted and the 
measured state and that has a better estimated uncertainty than either of them. The prediction and 
update steps are repeated at each round, and the new estimate and its covariance updating the 
prediction are used in the next iteration. This indicates that the filter requires only the last estimate 
value rather than the entire history to calculate a new state. The entire prediction procedure is 
shown in Figure 7. The A/D converter of the MCU on a WSN node measures the voltage of the solar 
cell in real time, and the EKF tool is then used to minimize the effect of noise on the sampling data. 
Then, the data are stored in an array for curve fitting, and the future voltage value is estimated 
using the curve parameters acquired at the last step. Considering the shadow conditions and the 
harvested energy in the future, the scheduling plan of the sensor node can be adjusted for a longer 
operation time. An example of this prediction procedure is presented in Figure 8. This evaluation is 
operated on the dataset from 6:00 to 18:00 on a sunny October day using the EKF tool and 
fifth-order polynomial function fitting. The operating window is selected as 2 hours for each unit, 
and the final MAD value is 18.9 mV. The evaluation reveals that the prediction procedure provides 
accurate estimations and is suitable for use at the sensor nodes.  
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Figure 7. Prediction procedure of the solar harvested energy. 

 
Figure 8. Example of the prediction procedure 

4.3. Region Correlation and Shadow Detection 

Because the WSN sensor nodes for environmental monitoring are widely used outdoors, they 
may be subjected to complex illumination patterns. Shadows produced by obstacles in the path of 
sunlight cover a small illuminative area on the field, which decreases the harvested energy 
compared with the surrounding areas. Furthermore, the shadow areas generated by trees or 
buildings move based on the angle of incidence of the sun throughout the day. When a sensor node 
initially enters the shadow area, its harvested energy suddenly decreases sharply. Thus, the 
coverage area of the shadow can be detected according to the differences of the harvested energy 
level between normal node and the node under the shadow. Furthermore, the movement and area 
change can be predicted by the movement history analysis.  

Due to the absence of location equipment in popular WSN chips, the shadow area cannot be 
detected based on the exact positions of the nodes. However, the relative region correlation 
provides a method for approximately determining the area on an abstract level. The proposed 
algorithm clusters the nodes with low-level harvesting energies into a group of Density-based 
Spatial Clustering of Application with Noise (DBSCAN) [41,42] and then uses the bound of the 
group as the area of the shadow. DBSCAN is a density-based clustering method that creates 
clusters of objects in dense regions and divides the clusters into sparse regions. Unlike several other 
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clustering methods, which can only determine clusters of convex shapes, DBSCAN can determine 
clusters of any shape, which is an advantage for detecting a variable shadow area with an 
unpredictable shape. Furthermore, another advantage of DBSCAN is its fast operating time, which 
is suitable for real-time applications. 

DBSCAN is briefly described in Algorithm 1. The density-connected relationship between two 
arbitrary objects is defined by two input parameters, ε and MinPts. A set including all objects 
within a distance ε from an arbitrary object p is defined as an ε-neighbour ( )N pε

. If the number of 
objects within ( )N pε  achieves or exceeds MinPts, p is named a core object, and the object q in 

( )N pε  is defined as directly density-reachable from p. For two arbitrary objects p and q, if there 
exist objects p1,…,pn-1 such that pi+1 is directly density-reachable from pi ( 00 , , ni n p p p q≤ < = = ), 
then q is called density-reachable from p. For two arbitrary objects p and q, if there exists another 
object o such that both p and q are density-reachable from o, then p and q are called 
density-connected. Figure 9 illustrates an example of the relationship between p and q, where MinPts 
= 5. As indicated in Figure 9a, q is density-reachable from p, and p and q are mutually 
density-connected in Figure 9b. 

Algorithm 1. DBSCAN procedure  
Input: a set of objects S 
Output: a cluster of objects C 
Set all the objects in S to be unprocessed, C ← ∅ ; 
while there is an unprocessed object in S 

      Choose an arbitrary unprocessed object p S∈ and calculate ( )N pε ; 

      if  ( )N p MinPtsε ≥  

          Build a new cluster E containing the only object p and add E into C; 

          ( )Child N p pε← − ; 

          while there exist unprocessed or noise objects in Child 
              for each unprocessed or noise object q Child∈  

                   Insert q into E and compute ( )N qε ; 

                   if ( )N q MinPtsε ≥  

                        ( )Child Child N q qε← ∪ − ; 

end if 
               end for 
           end while 
      else 
           Set the object p to be noise; 
      end if 
end while 

Algorithm 1 presents the DBSCAN procedure. Because it is necessary to compute the distance 
between each pair of objects, the time complexity of DBSCAN is O(n2), where n is the number of 
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objects of the input set S. However, if there is a spatial structure for indexing all objects within a 
certain distance, the calculation time for ε-neighbour can be reduced to O(log n). 

 
Figure 9. (a) q is density-reachable from p; (b) p and q are density-connected. 

Therefore, the time complexity of the entire DBSCAN algorithm with a spatial index is O(nlog n), 
and it is suitable to be deployed on high-powered embedded equipment or workstations, e.g., the 
ARM Cortex series. Figure 10 illustrates two examples of the DBSCAN algorithm for addressing 
200 random nodes in MATLAB. This proves that the DBSCAN clustering algorithm can efficiently 
identify the intensive area of suitable nodes and is competent for detecting the shadow region. 

 

Figure 10. (a) An example of the DBSCAN algorithm addressing 200 random nodes; (b) Another 
example of the DBSCAN algorithm addressing 200 random nodes. 

The position and shape of the shadow region vary with the angle of incidence of the sun. To 
detect the moving position of the shadow, a two-tuple is defined to code the deployed node, as 
indicated in Figure 11. Figure 11a illustrates the sensor node coding from west to east using the first 
number in a two-tuple in blue. All of the sensor nodes in the field should be first divided into 
several groups using a set of virtual dividers based on their location coordinates recorded at 
deployment. The width of the gap between two virtual dividers is set by the user, and the nodes in 
the same gap can be coded from west to east sequentially. Figure 11b illustrates the coding style 
from north to south by the second number in the two-tuple in red, and the gap between two virtual 
lines is set by the designer. After coding, the movement of the shadow can be described by the 
change in the average codes. Let the average two-tuple <ƩFC/CN, ƩSC/CN> denote the current 
position of the shadow region, where FC represents the first number for each sensor node in the 
region coding from west to east, SC is the second number for each sensor node coding from north to 
south, and CN is the total number of nodes.  

As indicated in Figure 11c, the shadow area moves from west to east and the average 
two-tuple changes from <3, 3> to <5.17, 3.33>, where the blue circle indicates the initial position and 
the red circle denotes the position after movement. Because the first code value difference 5.17 – 3 = 
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2.17, i.e., greater than 1, the shadow is considered to move from west to east. Figure 11d illustrates 
another example of movement, where the average two-tuple changes from <2.5, 3> to <5.5, 2>. 
Because the differences in the first and second codes are both greater than 1, the shadow is 
considered to move from west to east and south to north simultaneously. 

 

Figure 11. (a) Sensor node coded from west to east; (b) Sensor node coded from north to south;  
(c) Example of shadow moving from west to east; (d) Example of shadow moving by a certain angle. 

Moreover, the shape and area of the shadow region are described by the geographical 
coordinates recorded at the deployment of the nodes in the shadow group determined by DBSCAN. 
The shadow region can be viewed as an approximately circular area, and the radius is used to 
describe the size of the region. Thus, the predictions of the shadow movement and size variation 
are based on the value change of the two-tuple and the radius. The changing volume of the average 
number in the two-tuples reveals the moving direction, speed and future location of the shadow. 
The radius extracted for the coordinates of the nodes reveals the shape and size change of the entire 
shadow region. 

4.4. Task Schedule 

To schedule the task of the sensor nodes, the energy status of each node should first be  
estimated [14]. A structure with four elements, i.e., <Ep(t), Ec(t), Pt, Rt>, can be used to describe the 
conditions at time t, where Ep(t) and Ec(t) represent the average predicted harvested energy defined 
in Equation (12) and consumed energy at time t, respectively; Pt is the energy stored in the battery; 
Pmax is the maximum storage of the battery; and Rt denotes the variation rate of the total energy, 
which can be calculated using Equation (11) as follows: 

max[ ( ) ( )] /t p cR E t E t P= −  (11) 

( ) ( ) /t win

p solart
E t E s win

+=   (12) 

where Esolar(s) denotes the predicted harvested energy at time s acquired by curve fitting procedure 
in Section 4.1, win is a window width parameter for average computing which is often set to 30 min 
in our experiments. Thus, Ep(t) is an average value for the predicted harvested energy of a short  
time interval. 

Based on the harvesting and consumption conditions, the nodes can be separated into four 
different working statuses: 

(1) Redundant status (RS): The RS occurs when the environment provides a considerable 
amount of energy to fully charge the battery and power the consuming device simultaneously. 
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In other words, the battery cannot contain the large amount of energy harvested. In this mode, 
all of the operations on a sensor node, such as sampling, communication, and calculation, can 
be performed without limitations. When Ep(t) ≥ Ec(t) and Pt = Pmax on a node, it can be viewed as 
being in a RS. 

(2) Sufficient status (SS): The SS mode is a pattern where the solar cell provides sufficient 
power to maintain the general operation of a sensor node and the residual energy can be used 
to charge the battery for future use. Under these conditions, energy accumulates in the battery 
over time, and the task scheduler has a relatively free choice. When Ep(t) ≥ Ec(t) and Rt < Pmax, a 
node is run under the SS. 

(3) Lack status (LS): Under this pattern, in which Ep(t) < Ec(t), the weak energy produced by the 
solar cell cannot single-handedly maintain the sensor node. To fill the energy gap, the battery 
has to supply a certain amount of energy. When operating under this pattern, the node is 
required to shutdown certain unnecessary functions to save energy. 

(4) Empty status (ES): This mode is often activated at night or in bad weather, when there is no 
energy acquired from the solar cell and the battery fully powers the sensor node. Under this 
circumstance, most of the operation should be limited to maintaining the accessibility of the 
node as long as possible. 

Based on the prediction of the environmental energy supply and the voltage condition of the 
battery, the transition between these four modes can occur automatically using the schedule 
program in Algorithm 2.  

Algorithm 2. Transition procedure for four energy modes 
Input: Average predicted harvested energy: Ep(t), device consuming energy: Ec(t), residual energy 

level of the battery: Pt, maximum battery capacity: Pmax, luminous intensity of the sunlight: 
Lsun, luminous threshold: Lthreshold 

Output: Working mode of the node  
while True  
      Delay TDelay; 
      Acquire Ep(t), Ec(t) and Lsun; 
      if  Ep(t) ≥ Ec(t)  
          if  Pt < Pmax 
              Mode: Sufficient status (SS); 
          else   
              Mode: Redundant status (RS); 
          end if 
      else 
          if  Lsun≥ Lthreshold 

              Mode: Lack status (LS); 
          else 

Mode: Empty status (ES) 
          end if 
      end if 
end while 

After determining the working modes, the system can limit its energy use by adjusting the 
duty cycle. The duty cycle is a period parameter for sampling and transmission tasks. When a 
shorter duty cycle is set for the system, the data are sampled and transmitted back to the 
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workstation more frequently. Furthermore, more energy is required in a certain time interval. 
Figure 12 illustrates the energy consumption of our hardware for several different components. 
Without loss of generality, three typical duty cycles of the sensor node are selected to test the 
energy pressure. It is determined that the energy consumed by different active components is also 
different, and the sending component uses approximately 1.5 mA more current than the idle 
listening component. The light sample component consumes nearly 0.4 mA, and the LED uses 
approximately 4 mA. Furthermore, the duty cycle plays an important role in the energy usage. The 
adjustment of the duty cycle based on the working mode determined by Algorithm 2 can reduce 
the energy use dynamically. The luminous threshold Lthreshold is a parameter for making a distinction 
between LS and ES mode. A high Lthreshold can prolong the working time of sensor node during a day 
and increase the energy consumption of battery. In order to maintain the sampling work at night, 
the parameter should be well set so that the harvested energy acquired in day time can be fully 
used. The setting principle depends on the real environment and hardware of the system. In our 
experiments, this parameter is set to 200 W/m2 or solar cell voltage of 0.5 V. The duty cycle can be 
set to fixed values for simple use, e.g., 100% in RS mode, 70% in SS mode, 30% in LS mode and 10% 
in ES mode. Additionally, it can be set to be a continuously adjustable value as a linear function of 
the prediction energy and the remaining battery level for precision. 

 
Figure 12. (a) Energy consumption of the 10% duty cycle with the LED on; (b) Energy consumption 
of the 10% duty cycle with light sampled once; (c) Energy consumption of the 50% duty cycle with 
idle listening; (d) Energy consumption of the 100% duty cycle with the sending of data. 

5. Routing Optimization and Bottleneck Warning 

The task schedule optimization intends to allow the node to be accessible as long as possible, 
but it is unable to extend the lifetime of the entire sensor network. Data transmission accounts for 
large amount of energy consumption in a wireless sensor network. Thus, the routing efficiency 
plays an important role in the energy control of the entire WSN. A suitable routing selection 
algorithm and a bottleneck warning mechanism are introduced to improve the energy balance of 
the network as a whole. 
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5.1. Sensor Node Cluster  

Clustering is the first step for reducing the energy consumption for transmission. The sensor 
nodes within a certain physical distance can be organized as a group, and a clusterhead node is 
selected from them. The clusterhead gathers the sensing results from all of the other nodes in its 
cluster and then sends them to the next hop in the WSN. Due to the intensive data communication, 
clustering is a clearly proven method for saving energy. To distribute sensor nodes into each cluster, 
several algorithms have been proposed in previous studies [22,23,43,44]. These methods can be 
primarily divided into two categories: location methods, which are based on the geographical 
coordinates of the nodes before operating the network, and heuristic methods, which generate the 
cluster during network operation. Without GPS equipment at the sensor nodes, the network 
designer may need to arrange each node into a specific cluster by its placement on the map before 
performing it manually. Due to its low time complexity, this method is also implemented in our 
experiment. 

Selecting the head node in a cluster after clustering is an important matter. A clusterhead 
involves the extra process of routing decision, data aggregation and communication. These tasks 
cost the head node more power compared with the general nodes. Thus, for nodes equipped with 
the same battery capacity, the clusterhead may lose its power significantly faster. Thus, the network 
should use a clusterhead rotation algorithm to address this problem by replacing the clusterhead 
after a period of time. An energy adaptive clusterhead selecting method is introduced to select the 
head node, and we use the average predicted harvested energy Ep(t) at time t defined in Equation (12), 
device consuming energy Ec(t) at time t and existing battery energy Pt at time t as the parameters for 
the decision. Equation (13) presents the formula for calculating the selection score of each sensor 
node as follows:  

Vscore = Pt + γ·(Ep(t) − Ec(t))·Δt (13) 

where γ is a weighting coefficient, and Δt is the time interval for replacing the clusterhead. At the 
end of each time interval Δt, the system computes the voting score Vscore for each sensor node in a 
cluster and inserts it into a queue in descending order. Then, the first node in the queue with the 
largest voting score is selected as the clusterhead in this round, and it should gather information 
from all of the other nodes in this cluster and send them back together. To what extent the 
predicated harvested energy involved in the clusterhead selection depends on the parameter γ. A 
high value of γ is suitable for stable climate conditions, while a low one is adapted to changeable 
climate. Considering the weather condition at our experimental places, we chose γ = 0.6 in our 
experiment according to preliminary testing. Figure 13 depicts an illustration of the clustering 
mechanism. All of the nodes in a WSN are divided into three clusters, and each cluster has its own 
clusterhead. The general nodes in a cluster are only allowed to communicate with their clusterhead, 
and the head node gathers sensor information from the general nodes and sends it to other clusters 
in the next hop. 

 

Figure 13. Illustration of a clustering mechanism. 
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5.2. Routing Optimization 

After the clustering operation, the sensing information can be transferred as packets between 
the clusters until it reaches the gateway equipment. Generally, there is more than one technique for 
sending the packets, and the selection of the method is known as routing optimization. The 
construction of the WSN is not for mass data transmission but rather for sensing or monitoring. 
Thus, the primary target of the entire network is to execute its monitoring mission for as long as 
possible. The total transmission power is a commonly used metric considered in previous studies 
with the critical disadvantage of not directly reflecting the lifetime of the nodes in the WSN. 
Furthermore, the battery energy level of the nodes is a more accurate metric for describing the 
lifetime of the nodes. Thus, the Minimum Battery Cost Routing (MBCR) algorithm [45] was 
introduced for routing selection in previous studies using the battery level metric. Let i

tP  denote 
the battery power level at time t for the node coded as i, and assume that a node’s willingness to 
forward packets is a function of its remaining battery energy level. Therefore, the less battery 
energy the node has, the more reluctant it is to transmit. The MBCR algorithm uses the reciprocal of 
the battery power as the cost i

tC to select the transmission path, which can be expressed using 
Equation (14) as follows: 

1 /i i
t tC P=  (14) 

When the battery level decreases, the cost of the node will increase to obstruct route selection. 
The total cost of route j, consisting of N nodes, can be calculated using Equation (15). Therefore, to 
identify the transmission path with the maximum remaining battery level, we can choose a route s 
with a minimum battery cost using Equation (16), where E is the set containing all of the  
possible routes: 

1
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(17) 

Because the battery level is directly incorporated into the routing method, this metric prevents 
the sensor nodes from being overused. Moreover, if all of the nodes have similar battery energy 
levels, the method will select a shorter-hop route. However, because only the summation of battery 
use is considered, the network route may pass a node with a battery energy shortage on a rich total 
energy path. Furthermore, the battery of this node will be eventually exhausted, and the node will 
become inaccessible because of route interruption. To make sure that no node will be overused, 
Equation (15) can be transformed into Equation (17) to select the least value for battery energy on 
the path as the cost of the entire route. This transformation produces a new method known as 
Min-Max Battery Cost Routing (MMBCR) [46]. This new metric always attempts to avoid the route 
with nodes that have the least battery energy, and it can be used more fairly than the previous 
method. However, further study revealed that this new metric can consume more power in 
transmitting user data from a source to a destination because there is no guarantee of a minimum 
total transmission power, thus reducing the lifetime of all of the nodes. In summary, selecting 
between MBCR and MMBCR should involve considering both the application environment and the 
actual energy consumed. 

Furthermore, the two methods mentioned above only use the remaining battery energy as the 
metric; however, the harvested energy dynamically influences the battery level. Thus, the 
prediction of the harvesting conditions should also be considered. Additionally, Equation (14) can 
be improved as Equation (18), where λ is a weighting coefficient, similar to γ in Equation (13), and 
where ΔT is the time interval for updating the route. Hence, the corresponding proposed methods 
are known as Minimum Battery Cost Routing with Harvesting Prediction (MBCRHP) and Min-Max 
Battery Cost Routing with Harvesting Prediction (MMBCRHP): 
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1/ [ ( ( ) ( )) ]i
t t p cC P E t E t Tλ= + ⋅ − ⋅ Δ  (18) 

After selecting the metric, the system needs to determine the path on the map. To solve this 
problem, a minimum spanning tree algorithm can be introduced. A minimum spanning tree of an 
undirected graph G is a tree formed from graph edges that connects all of the vertices of G at the 
lowest total cost. Furthermore, this tree can be used as the route of data transmission in the network. 
The Prim [47,48] algorithm is a classical method used to build the minimum spanning tree. At any 
point in the Prim algorithm, there is a set of vertices that have already been included in the tree; the 
rest of the vertices have not. The algorithm then determines, at each step, a new vertex to add to the 
tree by selecting an edge (u, v) such that the cost of (u, v) is the smallest among all edges where u is 
in the tree and v is not. Thus, each step adds one edge and one vertex to the tree. Then, after all of 
the vertices are added to the tree, the algorithm finishes its task, and the transmission route is built. 
Figure 14 presents an illustration of the route selection algorithm where the Prim algorithm is run 
on clusterheads in the WSN. 

 

Figure 14. Illustration of the route selection algorithm. 

5.3. Bayesian Networks and Bottleneck Warning 

After node clustering and route selection, the sensing data can be gathered from each node and 
transmitted to the workstation. However, similar to a crowded road in the city, there are certain 
clusterheads in the network that require more transmission work compared with others, such as the 
centre node in Figure 14. This type of node is often called a bottleneck node, and it is typically 
located at the connection of two or three clusters. Even if this type of node initially has more power 
than the general nodes, its transmission consumption will be several times greater than that of the 
others. Finally, the bottleneck node will have no energy left, and the connection will be interrupted. 
If the bottleneck nodes can be detected in an evaluation before the system operates, the mechanism 
of double clusterheads in the bottleneck cluster can be used to improve the situation. It should be 
indicated that the traditional clustering algorithms [25,26] also have the latent mechanisms to rotate 
the clusterheads to avoid overuse, but these mechanisms mainly involve the factors inside a cluster. 
However, the bottleneck problem defined in our work is presented as a transmission problem 
caused by structure of the network, and it is the problem among different clusters. Actually, there 
may be a cluster on the only way by which other clusters transfer their data to the workstation. And 
then the clusterhead in this key cluster will take more transmission work than clusterheads in other 
ones. Thus, our bottleneck warning algorithm is mainly proposed to improve this problem outside 
a certain cluster. Bayesian networks (BNs) [49,50] are probabilistic graphical models used for 
classification and are useful for predicting complex engineering problems, such as traffic congestion 
[51]. Because of their powerful reasoning ability, they are introduced to evaluate the bottlenecks in 
our study. 

A BN formally consists of Directed Acyclic Graphs (DAGs). It is an easy method for 
representing the structure of a probabilistic model and the conditional independence relationships 
between the nodes. The nodes in a BN are used to represent random variables, and the arrow 
linking two nodes, which is quantified by their conditional probabilities, indicates the dependency 
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between them. For example, an arrow from node A to B indicates the conditional dependence of B 
given A, which can be quantified as P(B|A). Thus, once the structure of the model is specified and 
the conditional probability is set for each link, the BN can be fully described by a set of parameters 
μ, which indicate the conditional probabilities between the nodes. For each node, a Conditional 
Probability Table (CPT) is available that records its relationship with its parent nodes. The BN use 
Bayesian methodology to quantify the changes in the node CPT values for introducing new 
evidence or updating old evidence. This procedure is known as “uncertainty propagation” or 
“belief updating”, and an existing algorithm allows its efficient computation [49]. 

Before the prediction procedure of the BN, the network should learn to estimate the sets of 
conditional probabilities. The learning procedure aims to compute the conditional probabilities 
between the nodes using the training data, i.e., it aims to construct the CPTs for each node in the 
network. This procedure can be accomplished using the Expectation Maximization (EM)  
algorithm [52], an iterative algorithm that provides the new maximum likelihood estimate (MLE) of 
model parameters μ when certain variables are missing at random. The EM algorithm is described 
in Algorithm 3 [49]. 

Algorithm 3. Expectation maximization algorithm for BN learning 
Step 0: Initiate μ to μ0 and set μt = μ0 and then continue; 
Step 1: To compute μt+1 once μt is known, complete Step2 and Step3; 
Step 2: Expectation step: compute the data set based on μt: 

a) Compute the conditional probability distribution of missing values v* using the Bayesian 
formula as follows: 
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, where v is the set of observed values. 

b) Obtain the fractional value by assigning a weight, given as ( * , )tP v v μ , to the missing 

values v*, and add the value into the incomplete data set to construct the completed data 
set. 

Step 3: Maximization Step: To obtain the MLE of the model parameters μt+1, compute the set of 
parameters that maximize the likelihood of the completed data set acquired in Step 2b. 

Step 4: If convergence is obtained, the algorithm stops; if not, make t = t+1 and μt = μt+1, and return 
to Step1. 

After the learning step, the Bayesian network can be used to predict the unknown data. Hence, 
the prediction phase in the BN is typically referred to as probabilistic inference [53]. The inference 
yields the posterior probability distributions based on the given evidence, and the posterior 
probability reveals the problem results that need to be solved. There are two typical inferences used 
in BNs, exact and approximate. The Junction Tree (JT) algorithm [54] is one of the most popular 
algorithms used for exact inference in BNs, and it is based on a thorough analysis of the connection 
between graph theory and probability theory. The JT algorithm can be summarized in three 
primary steps in Algorithm 4 [49]. In this study, we used BNs and the JT algorithm to predict the 
bottleneck clusterhead in the sensor network on a workstation before each time interval. Then, the 
double clusterhead mechanism can be used to avoid energy overuse at the bottleneck node. 

Algorithm 4. Junction tree algorithm for BN inference 
Step 1: Construct a junction tree based on the existing BN; 
Step 2: Propagate messages along the junction tree using a message passing algorithm; 
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Step 3: Answer queries when evidence is introduced. 

In the first step of this application, the CPT should be built for each clusterhead using the 
learning procedure in the network. For example, consider the routing situation presented in  
Figure 15a, which is generated from Figure 14 using the Prim algorithm. There are seven 
clusterheads from A to G. We use three nodes, A, B, and D, to illustrate how to build a CPT. Table 3 
presents an illustration of the historical statistics of the clusterhead data flow, and the value 5 
appears five times in the first row for node A at t2, t3, t5, t7, and t8, while value 3 appears three times 
at t1, t6, and t10. All of the values are counted in Table 4, and the CPT can be calculated for node B in 
Table 5 using Algorithm 3. After the CPT building procedure is performed for each node in the 
network, Algorithm 4 is used for BN inference.  

 
Figure 15. (a) Illustration of the routing situation. (b) Illustration of double clusterheads. 

Table 3. Illustration of the previous statistics of the clusterhead data flow. 

Data flow   Time 
 
 
Node 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

A 3 5 5 2 5 3 5 5 6 3 
B 5 4 6 6 3 6 3 6 4 5 
D 3 6 5 8 7 5 8 5 7 6 

Table 4. Illustration of the statistics of the data flow for node A. 

Data Flow in Unit 
Intervals

Times of the Data 
Flow

2 1 
3 3 
5 5 
6 1 

Table 5. Illustration of the conditional probability table for node B. 

 

2 3 5 6 

3 1 0.50 0 0 
4 0 0.50 0.25 0 
5 0 0 0 1 
6 0 0 0.75 0 

AP(B|A) 

B 
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At the inference stage, new evidence is transferred to the father and sons of the node and then 
gradually broadcasted along the route of the network. An update is performed at each node in the 
CPT, and the posterior probability of each possible transmission flow can be acquired. Based on the 
probability of a large flow, we can detect the risk of congestion in data transmission by comparing 
the value to a preset threshold. In our system, the threshold is set to three times as large as the 
average transmission load of all clusterheads. Before the system is formally used, a testing 
procedure is run on the whole network to evaluate the transmission load for each clusterhead. Then, 
the relevant clusterhead with a transmission load above the threshold can be viewed as the 
bottleneck node in the sensor network, and the mechanism of double clusterheads can be used to 
improve the situation. Figure 15b presents an illustration of the double clusterhead mechanism. The 
clusterhead node D is detected as the bottleneck node in the network, and D’ is selected as a 
standby node in the same cluster using a queue to share the data transmission task of D. The queue 
is built according to the Vscore defined in Equation (13), which is sorted in descending order. The 
second element of the queue is selected as the standby node. This mechanism will reduce the 
energy load of node D and prolong the lifetime of the entire network. The relevant experiments are 
implemented on real-time hardware, and the results are presented in the next section. 

6. Implementation and Experiments 

The sensor network is implemented on the TI CC2530 platform, which is a true system-on-chip 
(SoC) solution for the IEEE 802.15.4, Zigbee and RF4CE applications. The CC2530 combines a 
leading RF transceiver with an industry-standard enhanced 8051 MCU. A TI BQ25505 chip with 
TPS62737 is used to manage the harvested energy on-board. This is an integrated Nano-Power 
management solution that is well suited for meeting the special needs of ultra-low power 
applications. It is specifically designed to efficiently acquire and manage the microwatts (µW) to 
milliwatts (mW) of power generated from solar or thermal electric generators. Moreover, a MAXIX 
DS2780 chip is used to measure the remaining energy level of the battery. The DS2780 is a 16-bit 
professional measure IC for estimating the available capacity for rechargeable lithium batteries. The 
hardware illustration of the sensor node is presented in Figure 16. 

 
Figure 16. Hardware illustration of the sensor node. 

All of the experiments were performed in Fuzhou, a city in Southeast China, from April to 
November to ensure ample sunshine. The harvesting prediction experiments were conducted in 
three groups, and each group included 50 sensor nodes to construct a WSN. Each sensor node was 
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programmed under a C51 compiling system at the protocol level based on the clustering and 
routing algorithm presented in this study. The three groups were deployed in similar places and 
used different energy management methods for task scheduling: (1) task scheduling with energy 
prediction (TSEP): task scheduling based on the harvested energy prediction using the EKF filter 
proposed in Section 4; (2) dynamic task scheduling (DTS): task scheduling that depends only on the 
remaining energy level of the battery; and (3) static task scheduling (STS): sampling and sending 
during a fixed time interval of 10 minutes without energy feedback, where the night duty cycle is 
extended to 30 minutes. In order to employ task scheduling in TSEP and DTS groups, the Lthreshold 
defined in Algorithm 2 is set to 200 W/m2 or solar cell voltage of 0.5 V. The voltage of the solar cell 
and residual battery energy were sampled at a 5-minute interval, and the consuming of energy was 
estimated by the differences between two neighbour sampling values. Piecewise fitting with the 
extended Kalman filter of 60-min section was employed in the TSEP group to predict the harvested 
energy. The duty cycles for dynamic task scheduling for each sensor node defined in Algorithm 2 
are set as below: 5 min for SS mode, 10 min for RS mode, 20 min for LS mode and 30 min for ES 
mode. When there is not sufficient energy harvested from sunlight, the sensor node will be slowed 
down to decrease energy consumption. Furthermore, The clustering and routing optimization were 
run on all three groups with γ = 0.6, Δt = 1 h in Equation (13) and λ = 0.6, ΔT = 3 h in Equation (18), 
which means the clusterhead rotation time interval is 1 h and the routing valid period is 3 h. The 
bottleneck warning mechanism was used to improve the transmission structure of the network. The 
threshold is set to 3 times as large as the average transmission load of all clusterheads. Figure 17 
shows the deployment of TSEP sensor nodes in a 200 m × 100 m garden area. The green pentagon 
represents the approximate location of intensive grove in this area. There are also some small 
bushes in the region and it is hard to point them out one by one. The 50 sensor nodes are scattered 
in the region avoiding intensive grove manually, and numbered from east to west. The red circles 
indicate a probable situation for clustering acquired by our method in experiment, and the place of 
workstation is also shown. The deployment of DTS and STS groups is according to the TSEP, and 
the area is also 200 m × 100 m. However, the location of intensive groves is similar but not the same 
as it is difficult for us to find two garden areas with the same tree locations. The experiments were 
performed for 24 weeks from April to September and results are provided in Figure 18.  

 
Figure 17. Illustration of the deployment of TSEP sensor nodes.  
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Figure 18. Average battery energy levels of the three experimental groups. 

At the end of the 24-week test period, TSEP, DTS, and STS have an average remaining energy 
of 1057 mAh (42.28% of 2500 mAh), 823 mAh (32.92%) and 381 mAh (15.24%), respectively. It is 
determined that TSEP uses 1443 mAh of energy during the entire procedure, which is 68.1% of the 
2119 mAh of energy used by STS. It is confirmed that the nearly 30% of the energy consumption 
was saved by the prediction and dynamic task scheduling mechanisms, and the EKF filter 
improved the precision of this procedure. The extra prediction mechanism caused the TSEP to use 
9.4% less energy compared to DTS without the mechanism. Furthermore, Figure 18 shows that the 
energy difference between TSEP and the STS rapidly increased in the first 8 weeks because of the 
rainy weather conditions in spring in southern China. Additionally, July and August have the 
largest solar energy radiation in the year, and the difference decreased during this time. It has been 
proven that the dynamic scheduling mechanism with energy prediction plays an important role in 
the energy management of the WSN, especially under complicated weather conditions. The 
differences are probably caused by the task scheduling mechanism employed in this study, as it can 
slow duty cycle of nodes in bad weather or under shadow environment promptly. 

Figure 19 depicts the standard deviation of the battery level for the three experimental groups, 
which indicates the balancing ability of the algorithm for all of the sensor nodes. Harvested solar 
energies at different locations are different, and without the task scheduling mechanism the energy 
differences between nodes will be accumulated over time.  

 

Figure 19. Standard deviation of the battery levels of the experimental groups. 
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After the 24-week test, STS, DTS, and TSEP had standard deviations of 57.1, 29.6 and 24.3 mAh, 
respectively. The standard deviation of TSEP was only 42.6% of that of STS. It is proven that the 
energy prediction and dynamic task scheduling mechanisms can balance the energy consumption 
in the WSN. The dynamic task scheduling can reduce the loss rate of sensor nodes in the whole 
network, as a results, the robustness of the system can be increased and the sensoring area can be 
kept during the work time. 

To test the effects of the shadow detection mechanism, we used 60 nodes in two groups to 
explore the energy management for a period of 60 days. Each group included 30 sensor nodes 
deployed in the region of a grove shadow as Figure 20 shows. In this experiment, we changed the 
node number to 30 in order to have the circled deployment, and we think it’s enough. It can be 
found in Figure 20 that the sensor nodes are uniformly deployed on circles around the intensive 
grove, and the radii of the circles are 1, 2, 3, 5, and 8 m respectively from the inside to the outside. 

All sensor nodes are distributed by an angle of 60 degrees on the circles, which can relate to the 
shadow area in all directions. In fact, the size and shape of the shadow changed during the day 
based on the angle of incidence of the sun, and there were different nodes in the exact region of the 
shadow at different times. Hence, it is difficult to estimate the energy situation of an exact sensor 
node using the shadow detecting method. The average battery energy level can be viewed as an 
approximate measure for shadow detection because the duty cycle is reduced by the algorithm to 
save energy based on the shadow detection results. Another measure is the detection rate DRate, as 
defined in Equation (19), where Numshadow represents the total number of nodes in the shadow region 
and Numright is the number of nodes detected correctly.  

 

Figure 20. Illustration of deployment for the shadow experimental groups. 

/right shadowDRate Num Num=  (19) 

During the experimental period, the energy data were gathered through the network every  
6 days, and the detection rate was calculated using the detecting algorithm and the shadow region 
observation. When a node’s harvested energy is 50% less than the average value of the entire 
network, it can be assumed to be in the shadow region. In the test, the Task Scheduling with 
Shadow Detection (TSSD) group used the task scheduling, including harvested energy prediction 
and shadow detection proposed in this study, whereas the Group with Task Scheduling (GTS) only 
used the general task scheduling, considering the remaining battery level. Figure 21 presents the 
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experimental results; after the 60-day experiment, the GTS had an average battery capacity of 1154 
mAh, whereas the TSSD group had an average battery capacity of 1721 mAh and used 42.1% less 
energy than the GTS. The detection rate was calculated by observation three times daily, and the 
average value was obtained after the test. The final DRate value was 82.7%, which indicates that 
most of the nodes in the shadow region were detected correctly using the proposed method. 

 

Figure 21. Average battery energy levels of the shadow experimental groups. 

For the clustering and routing algorithms, we have introduced new metrics for clusterhead 
selection and a bottleneck warning mechanism to avoid overuse of the clusterheads. To explore the 
effects of these methods, we conducted an experiment with two groups. A measure of the loss rate 
defined in Equation (20) was used to follow the effects of the algorithm, where Numclusterhead  
represents the total number of clusterheads in the WSN and Numlost is the number of lost nodes: 

/lost clusterheadLRate Num Num=  (20) 

When a node’s battery level is 10% below its total capacity, it is considered to be lost. Two 
groups of 50 nodes each, which used a single clusterhead method (SCM) and a double clusterhead 
method (DCM) with bottleneck warning, were used to test for differences. The sensor nodes of each 
group are exposed to sunlight in a 200 m × 100 m open space without trees for acquiring harvested 
energy fully. Figure 22 shows the transmission topology of SCM and DCM groups respectively, and 
clusterheads are arranged intentionally to construct a transmission link with congestion risk. For 
simplicity, the other general nodes are omitted to be shown. Furthermore, at the beginning of 
experiment, the SCM group uses fixed clusterheads which can not be replaced until their energy is 
exhausted. When its residual energy is lower than 10%, the clusterhead is marked as the lost node 
and replaced by other general node in its cluster. However, the DCM group employs the bottleneck 
warning mechanism proposed in this paper which arranges standby clusterhead for node 1, 2 and 3 
notated as 1’, 2’ and 3’ in Figure 22b. Both two groups use dynamic task scheduling methods 
proposed in this paper but do not employ the clusterhead rotation method. The duty cycles for each 
sensor node are set as below: 10 min for SS mode, 20 min for RS mode, 40 min for LS mode and 60 
min for ES mode. Extension of the duty cycle is in order to observe the phenomenon more clearly. 
Other necessary parameters are the same as the experiment of task scheduling motioned above. The 
experiments are performed for 8 months from April to November to consume the energy of 
clusterheads fully, and then the differences between mechanisms can be shown obviously. 
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Figure 22. (a) Illustration of transmission topology of SCM group; (b) Illustration of transmission 
topology of DCM group. 

Figure 23 presents the results of the experiment over 8 months. It is determined that after  
this time months, the SCM loss rate reached 45.5%, whereas the DCM loss rate was only 14.3%. 
Additionally, the DCM has an average battery capacity of 773 mAh, which is greater than the 
corresponding value of 283 mAh for SCM. It is evident that without the clusterhead rotation 
method the bottleneck warning mechanism can share part of the workload for the clusterhead to 
extend its lifetime, and it may prolong the total lifetime of the entire network. The WSN using fixed 
clusterheads are often deployed for simple applications due to its easy implementation. So the 
bottleneck warning method and double clusterhead mechanism can be employed in these situations 
for improving the robustness of WSN. However, for advanced usage, the clusterhead rotation 
mechanism can achieve better performance in sophisticated environment. A 90-day short-term test 
is performed to explore the performance of the double clusterhead mechanism under clusterhead 
rotation setting. The circumstance in this test is the same as before, except the clusterhead rotation 
mechanism is added into SCM and DCM groups. Hence, the single clusterhead method with 
rotation (SCMR) and the double clusterhead method with rotation (DCMR) are built for testing.  

 
Figure 23. (a) Loss rate of the clusterheads during the experiment; (b) Average battery capacity of 
the clusterheads during the experiment. 

After 90-day testing, the average battery capacity for these two groups are shown in Table 6. It 
is found that during the whole 90-day test the DCMR costs 770 mAh average battery capacity 
which is 97.7% of the one cost by SCMR. The performance of double clusterhead method with 
bottleneck warning is not obviously better than the traditional single clusterhead method for 
short-term applications. But its advantages can be accumulated as time goes on. During that 90-day 
test, the energy cost by the double clusterhead mechanism is 2.3% lower than the traditional 
method. So in a longer application, more energy can be saved. According to our analysis, the saving 
energy is probably caused by two reasons: (1) the double clusterhead mechanism has higher 
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efficiency of energy use; (2) the standby clusterhead shares transmission data from clusterhead on 
Medium Access Control (MAC) layer to avoid frequent collision. In Equation (2), we have 
introduced θ as a parameter to describe the charging efficiency. When we convert harvested electric 
energy to chemical energy in battery, part of the energy will be lost according to θ. So if the nodes 
are able to use the harvested electric energy as possible as they can and avoid storing them into 
battery, the efficiency of energy use can be improved. Let E represent the harvested energy from 
solar cell on a clusterhead, and e denote the transmission energy consumption for it. So the 
formulas for three energy circumstances in the above test are shown in Table 7 according to 
Equation (2). Due to the fact that there may be two clusterheads in a same cluster of DCMR, we add 
a general node into calculation of SCMR for fairness. When E ≥ e, the harvested energy is sufficient 
for transmission work on the clusterhead, and the redundant energy should be stored in battery.  

Table 6. Results of the clusterhead selection test with rotation mechanism. 

Time (days) 
Average Battery Capacity 

for DCMR (mAh) 
Average Battery Capacity 

for SCMR (mAh) 
0 2500  2500 
10 2418 2418 
20 2329 2328 
30 2235 2233 
40 2148 2145 
50 2067 2062 
60 1991 1983 
70 1909 1898 
80 1823 1808 
90 1730 1712 

Table 7. Formulas for three energy circumstances in test. 

Method Node Situation 
Harvested 

Energy 
Energy 
Request 

Saved Energy 
When E < e/2 

Saved Energy 
when e/2 ≤ E < e 

Saved Energy 
When E ≥ e 

SCMR 
1 clusterhead, 
1 general node 

E, 
E 

e, 
0 

(E − e), 
θE 

(E − e), 
θE 

θ(E − e), 
θE 

DCMR 
1 clusterhead, 
1 clusterhead 

E, 
E 

e/2, 
e/2 

E − e/2, 
E − e/2 

θ(E − e/2), 
θ(E − e/2) 

θ(E − e/2), 
θ(E − e/2) 

A1 = (E − e) + θE ; B1 = 2(E − e/2) (21) 

A1-B1 = (E − e) + θE − 2(E − e/2) = (θ − 1)E<0 (22)

A2 = (E − e) + θE ; B2 = 2θ(E − e/2) (23) 

A2−B2 = (E − e) + θE − 2θ(E − e/2) = E – e + θE − 2θE + θe = (1 − θ)E − (1 − θ)e =  
(1 − θ)(E − e) < 0 (24) 

A3 = θ(E − e) + θE ; B3 = 2θ(E − e/2) (25)

A3 − B3 = θ(E − e) + θE − 2θ(E − e/2) = 0 (26) 

As Table 4 shown, when E < e/2, the saved energy for the two nodes in SCMR (1 clusterhead 
and 1 general node) can be calculated by A1 in Equation (21), and the saved energy for the two 
clusterheads in DCMR can be calculated by B1. Due to θ < 1, the A1-B1 is below zero as Equation (22), 
and then A1 < B1. When e/2 ≤ E < e, the formulas for calculating saved energy in SCMR and DCMR 
are shown in Equations (23) and (24). For θ < 1 and E < e, the A2-B2 is also below zero according to  
Equation (24), and then A2 < B2. However, when E ≥ e, the calculation for saved energy is shown in 
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Equations (25) and (26), and A3 = B3. Based on the above, it has been known that when E < e the 
DCMR can acquire more saved energy in battery than SCMR, and when E ≥ e the saved energy for 
these two methods are equal in formula. Thus, the double clusterheads can improve the efficiency 
of energy use for harvested energy under certain circumstance. However, employing double 
clusterheads in a cluster results in an extra computational load for the system, so the standby 
clusterheads should be kept in an appropriate number. To avoid frequent collision on MAC layer is 
another reason for saving energy. The frequent collisions produced by large data transmission will 
make the general nodes to access clusterhead for more than once in a duty cycle, and that will lead 
to the increase of energy consumption. 

7. Conclusions 

In theory, an energy-harvesting system should allow sensor nodes to have a potentially infinite 
lifetime. However, the harvested energy is intermittent in practice, and it may not even be sufficient 
to constantly satisfy the demand of outdoor applications. Thus, the energy harvesting procedure 
should be modelled, and the task schedule of the sensor node should be optimized to prolong the 
lifetime of the WSN as much as possible. To obtain a higher energy efficiency, a harvesting 
prediction algorithm with shadow detection is proposed in this report. Furthermore, advanced 
clustering and routing methods are introduced to save energy for communication. A real-time 
system is implemented on a TI CC2530 platform, and the experimental results demonstrate the 
improvement in these algorithms. 
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