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Abstract: In this paper, we consider the state estimation problem for flexible joint manipulators that
involve nonlinear characteristics in their stiffness. The two key ideas of our design are that (a) an
accelerometer is used in order that the estimation error dynamics do not depend on nonlinearities at
the link part of the manipulators and (b) the model of the nonlinear stiffness is indeed a Lipschitz
function. Based on the measured acceleration, we propose a nonlinear observer under the Lipschitz
condition of the nonlinear stiffness. In addition, in order to effectively compensate for the estimation
error, the gain of the proposed observer is chosen from the ARE (algebraic Riccati equations) which
depend on the Lipschitz constant. Comparative experimental results verify the effectiveness of the
proposed method.

Keywords: flexible joint manipulators; state estimation; acceleration; nonlinear stiffness; Lipschitz
constant; FPD transfer robot

1. Introduction

Flexible joint manipulators are widely used in industrial applications that require high
productivity [1,2]. Furthermore, they can deal with many kinds of assembling, manufacturing, and
moving jobs with low costs. Thus, for several decades, a lot of effective control methods have been
proposed [1–8]. While the majority of the proposed controllers require exact state information, such as
the position and the velocity of the motor and the link, it is not easy to obtain this exact state information
due to the high nonlinearity, high coupling, and model uncertainty. In particular, the estimation of link
states is important because most industrial manipulators are not usually equipped with sensors. To
this end, research has been conducted [4,9,10]. However, it is still difficult to obtain link information
because the motor position is only measurable and the manipulators demonstrate flexibility between
the motor and link.

Recently, observers based on the acceleration information have been proposed to obtain more
accurate states [11–15]. By the accelerometer which is mounted on the link of the robot manipulator,
the observer uses information of link acceleration, and thus the complexity of the link part can be
eliminated. As a result, the estimation error can be made globally asymptotically stable for flexible
joint manipulators with linear stiffness. However, as shown in Figure 1, the flexible joint manipulators
actually have nonlinear characteristics in stiffness that appear when the torsional angle between the
motor and the link increases [16–18].

Sensors 2016, 16, 49; doi:10.3390/s16010049 www.mdpi.com/journal/sensors



Sensors 2016, 16, 49 2 of 10

Torsional angle (arcmin): θm − θl

-3 -2 -1 0 1 2 3 

T
or
q
u
e
(N

m
):

K
(θ

l,
θ
m
)

-2000

-1500

-1000

-500

0

500

1000

1500

2000

Nonlinear stiffness

Linear stiffness

Figure 1. Nonlinear stiffness.

In this paper, we propose an acceleration based nonlinear observer that takes into consideration
the nonlinear stiffness of the robot manipulator. We transform the robot model with nonlinear stiffness
into a Lipschitz nonlinear system [19], and then design the observer of the transformed system. The
observer gain is designed by the ARE (algebraic Riccati equations) in order that the observer error
asymptotically converges to zero.

The paper adheres to the following organizational structure: In Section 2, we present the problem
formulation. Section 3 provides an observer design method and stability analysis. Then, in Section 4,
the proposed observer is experimentally tested in terms of real industrial robots. Finally, conclusions
are laid out Section 5.

2. Problem Formulation

While the eventual goal of this paper is to estimate the states of the multiaxis flexible joint
manipulator, we consider the observation problem for a two-inertia system since it appropriately
describes the dynamic characteristics of a single manipulator with a flexible joint [20]. The two-inertia
system is described by [16]

θ̇l = ωl
ω̇l = J−1

l (θl) (D(ωm −ωl) + K(θl , θm)− C(θl , ωl)− G(θl))

θ̇m = ωm

ω̇m = J−1
m (D(ωl −ωm)− K(θl , θm)) + J−1

m τ

(1)

where θl and θm are the angular positions of the link and motor, and ωl and ωm are the angular
velocities of the link and motor, respectively. The signal τ is the torque applied to the motor. The link
inertia Jl(θl) and the gravity term G(θl) depend on the position of the link, and Coriolis and centrifugal
term C(θl , ωl) depend on the position and angular velocity of the link, while the motor inertia Jm and
damping D have constant values. The nonlinear stiffness function K(θl , θm) is given by

K(θl , θm) =


−k1θB − k2θ3

B − (k1 + 3k2θ2
B)(−θm + θl − θB), if θm − θl < −θB

k1(θm − θl) + k2(θm − θl)
3, if ‖θm − θl‖ ≤ θB

k1θB + k2θ3
B + (k1 + 3k2θ2

B)(θm − θl − θB), if θm − θl > θB

(2)

where the positive numbers k1 and k2 represent the linear and nonlinear coefficients of spring stiffness,
respectively. The breakpoint deflection θB is a positive constant, which refers to the physical limit of
the torsional angle between the motor and link.
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Our goal is to design an observer that guarantees the estimation performance of all the states of
the Equation (1). In particular, it is important to estimate the states of the link part because of the lack
of the available position sensors on the link side.

Now, some assumptions are made, on which the proposed observer will be designed in the
next section.

Assumption 1. The motor position θm and the link acceleration ω̇l are measurable while θl , ωl , and ωm

are not. ♦

Assumption 2. The system parameters Jm, D, k1, k2, and θB are known. ♦

3. Main Results

3.1. Observer Design

Define θd := θm − θl . Then, the Equation (2) is divided into a linear part and a nonlinear part of
θd, and thus it follows from Equations (1) and (2) that

ẋ = Ax + Y + Φ(x) + Bu

y1 = Cx
(3)

where u := τ is the input, x :=
[

x1 x2 x3 x4

]T
:=

[
θl ωl θd ωm

]T
are the states,

y :=
[
y1 y2

]T
:=
[
θm ω̇l

]T
are the measurable outputs, and

A =


0 1 0 0
0 0 0 0
0 −1 0 1
0 J−1

m D −J−1
m k1 −J−1

m D

 , Y =


0
y2

0
0



Φ(x) =


0
0
0

−J−1
m φ(x3)

 , B =


0
0
0

J−1
m

 , C =


1
0
1
0


T

φ(x3) =


φ1(x3) = 3k2θ2

Bx3 + 2k2θ3
B, if x3 < −θB

φ2(x3) = k2x3
3, if ‖x3‖ ≤ θB

φ3(x3) = 3k2θ2
Bx3 − 2k2θ3

B, if x3 > θB

Note that the matrix Φ(x) is a nonlinear function of φ(x3), and thus we obtain the following.

Lemma 1. The function Φ(x) is globally Lipschitz, i.e., there exists a Lipschitz constant γ(= J−1
m 3k2θ2

B) > 0
such that the following property holds.

‖Φ(x)−Φ(x̂)‖ ≤ γ ‖x− x̂‖ , ∀x, x̂ ∈ R4

♦

Now, we propose a nonlinear observer for the System (3) as follows:

˙̂x = Ax̂ + Y + Φ(x̂) + Bu + L(y1 − ŷ1)

ŷ1 = Cx̂
(4)

where L is a suitable observer gain (which will be designed in the following).
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Define the estimation error by e := x − x̂. Then, the estimation error dynamic is seen to be
given by

ė = (A− LC)e + (Φ(x)−Φ(x̂))

=: Aobe + (Φ(x)−Φ(x̂)) (5)

In order to stabilize the error System (5), it is of great importance to design an appropriate observer
gain L. When the nonlinear term (Φ(x)−Φ(x̂)) is zero, the stability of error dynamics is guaranteed
if the observer gain L is designed such that the matrix A− LC is Hurwitz (i.e., all its eigenvalues have
negative real parts). However, since the Equation (5) has a nonlinear term, the Lipschitz function,
we have to use a different method. There are some results on the study that consider the stability of
Estimation Error Dynamics (5) [19,21]. We briefly introduce a result in [19] to design the observer gain
matrix L. For some small ε > 0, if the following the ARE (algebraic Riccati equation)

AP + PAT + P
(

γ2 I − 1
ε

CTC
)

P + I + εI = 0 (6)

has a symmetric positive definite solution P. Then, the observer gain

L =
PCT

2ε
(7)

stabilizes the Estimation Error Eynamics (5).
We shall now proceed to state the main results of this paper.

Theorem 1. Suppose the observer is given by Equation (4). Then, under Assumptions 1 and 2, the Estimation
Error Dynamic (5) is asymptotically stable if the algebraic Ricaati Equation (6) has a symmetric positive definite
solution P and the observer gain is designed by Equation (7). ♦

Proof. From the Equations (6) and (7), we obtain

AobP + PAT
ob + γ2PP + I < 0 (8)

Then, by [19] (Lemma 1), we have

AT
obP1 + P1 Aob + γ2P1P1 + I < 0 (9)

where P1 is any symmetric positive definite matrix. Consider the Lyapunov function candidate

V = eT P1e

By Lemma 1, its derivative is given by

V̇ = eT(AT
obP1 + P1 Aob)e + 2eT P1 (Φ(x)−Φ(x̂))

≤ eT(AT
obP1 + P1 Aob)e + 2‖P1e‖‖ (Φ(x)−Φ(x̂)) ‖

≤ eT(AT
obP1 + P1 Aob)e + 2γ‖P1e‖‖e‖

≤ eT(AT
obP1 + P1 Aob)e + γ2eT P1P1e + eTe

= eT(AT
obP1 + P1 Aob + γ2P1P1 + I)e (10)

It follows from the Equation (9) that V̇ < 0, and so the Estimation Error Dynamics (5) is
asymptotically stable by [22] (Theorem 4.1).
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Remark 1. Instead of the results from [19], we can consider the high gain observer proposed in [23] because the
proposed Observer (4) does not guarantee the solution of the ARE exists. In fact, the observer gain of [23] does
not require the resolution of any equation and is explicitly given. However, the System (3) does not satisfy the
necessary assumptions of [23] because of the nonlinear term Φ(x). ♦

3.2. Coordinate Transformation

Since the manipulator systems in industrial fields usually have large coefficients of spring stiffness
function, the magnitude of γ also has a large value. If γ is too large to satisfy the conditions in which
the ARE (6) has a symmetric positive definite solution, then we cannot find the positive definite
solution P satisfying the ARE since the real values of the eigenvalues of the Hamiltonian matrix for
the ARE are close to zero [24]. Thus, in order to reduce the Lipschitz constant, we use the coordinate
transformation method proposed in [21].

Let us define a transformation matrix

T :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 β

 (11)

where β is any small positive number. Suppose z := Tx, then, the System (3) becomes

ż = TAT−1z + TY + TΦ(T−1z) + TBu

y1 = CT−1z
(12)

where z1 = x1, z2 = x2, z3 = x3, z4 = βx4, and TΦ(T−1z) =
[
0 0 0 −βJ−1

m φ(z3)
]T

. Similarly,
with ẑ := Tx̂, the Equation (4) becomes

˙̂x = TAT−1ẑ + TY + TΦ(T−1ẑ) + TBu + TL(y1 − ŷ1)

ŷ1 = CT−1ẑ
(13)

Then, with ez := z − ẑ, the estimation error dynamics in the new coordinate are seen to be
given by:

ėz = T(A− LC)T−1ez + T
(

Φ(T−1z)−Φ(T−1ẑ)
)

=: Ãobez + T
(

Φ(T−1z)−Φ(T−1ẑ)
)

(14)

Here, the Lipschitz constant γ in Lemma 1 is changed by the transformation matrix T as follows:

‖TΦ(T−1z)− TΦ(T−1ẑ)‖

=

∥∥∥∥∥∥∥∥∥


0
0
0

−βJ−1
m φ(z3)

−


0
0
0

−βJ−1
m φ(ẑ3)


∥∥∥∥∥∥∥∥∥

≤ βJ−1
m ‖φ(z3)− φ(ẑ3)‖

≤ βγ‖z3 − ẑ3‖‖ =: γ̃‖z3 − ẑ3‖ (15)
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Then, similar to the Equation (6), we obtain the following the ARE with the new Lipschitz constant
γ̃ = βγ

ÃP̃ + P̃ÃT + P̃
(

γ̃2 I − 1
ε

C̃TC̃
)

P̃ + I + εI = 0 (16)

where Ã := TAT−1 and C̃ := CT−1. Therefore, if the ARE (16) has a symmetric positive definite
solution P̃, then the new observer gain

L = T−1 P̃C̃2

2ε
(17)

stabilizes the Estimation Error Dynamics (5), and also stabilizes the System (5) by e = T−1ez.

4. Experimental Results

In this section, an experiment on a real industrial robot was carried out in order to verify the
effectiveness of the observer proposed in this paper. As shown in Figure 2, the FPD (flat panel display)
transfer robot is used in this experiment. As a matter of fact, most of the industrial manipulators just
have an encoder in the motor part and not the link part, but the FPD robot also has an encoder in
order to measure the link position. Consequently, without any position measurement system, we can
compare the actual link position and the estimated value from the designed observer. This is why we
used the FPD robot instead of the typical six-joint manipulator shown in [1,2,15]. The parameters of
this robot system are given in Table 1. To obtain the acceleration information of the link side, we also
use Miniature DeltaTron Accelerometer Type 4508B (manufactured by Brüel & Kjr). The design parameters
for the proposed Observer (4) are selected as shown Table 2. The observers are implemented through
Matlab xPC Target and the sampling rate is 2 kHz.

Figure 2. FPD (flat panel display) transfer robot.

Table 1. System parameters.

Parameter Value Unit

motor inertia (Jm) 0.001027 kg·m2

damping (D) 600 Nm·s/rad

k1 1.5 ×106 Nm/rad

k2 9.85 ×1011 Nm/rad3

θB 2 arcmin

gear ratio 144
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Table 2. Design parameters.

Parameter Value

observer gain (L) [−15968, − 8506, 19896, 154]T

ε 1.0× 10−6

β 1.0× 10−5

Now, as shown in Figure 3, we compare the estimation performances of the proposed observer
and the observer with the linear stiffness proposed in [11]. Specifically, we force on the estimation
performance of the link states (position and velocity) since the motor states are typically obtained
from the sensors such as encoders. Figure 4 shows the trajectory of the link position for cases of
multi motion. The positive angle means that the robot arm rotates in a clockwise direction, whereas
the negative angle implies a counter-clockwise direction. The black solid line is the measured
value from the encoder, and the red dash-dot line and the blue dashed line are the estimated
value of the conventional observer and proposed observer, respectively. In order to examine the
performance in more detail, we magnify Figure 4 at 4.7 s and 6.7 s, respectively, as shown in
Figures 5 and 6. In addition, Figure 7 shows the estimation error of the link position of Figure 4.
We note that the estimation performance of proposed observer is better than the conventional observer.
In particular, it is observed that the estimation error is better suppressed with the proposed observer in
transition response because the torsional angle increased in transition is the cause of the characteristic
of the nonlinear stiffness as shown in Figure 1. On the other hand, the characteristic of nonlinear
stiffness weakens in the steady-state since the torsional angle approaches the origin. Similarly,
as shown in Figure 8, the estimation performance of the link velocity is also better than the
conventional observer.

Robot dynamics 

(1)

link acceleration:

2 ω= ɺly
[ ]

1

2

1

1

ˆ( )ˆ ˆ ˆ( )

ˆ ˆ,  0 0 0

= + + + + −

= =

Φɺ

T

xx Ax Y B L

Y

u

y y

y

Cx

y

[ ]

1

1

1

2

ˆ ˆ ˆ( )

ˆ ˆ,  0 0 0

= + + + −

= =

ɺ

T

x Ax Y B L y

x Y yy C

u y

Proposed observer

Conventional observer in [11]

motor angle: 1 θ= mymotor torque:
τ=u

(4)

Figure 3. Block diagram of the robot system with the conventional and proposed observer.
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Figure 8. Trajectory of the link velocity ωl .

5. Conclusions

In this paper, we have presented a state observer for flexible joint manipulators using the
acceleration information of the link side. The observer has been designed on the basis of the
Lipschitz nonlinear system, and the stability and performance have been analyzed. In particular,
unlike conventional approaches, the study has dealt with the nonlinear stiffness in order to estimate
real systems more closely. Therefore, the proposed observer has improved performance compared
to that of the conventional observer considering the linear stiffness. Finally, the proposed observer is
applied to the real industrial robot, and its effectiveness is confirmed via experiments.
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