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Abstract: This paper describes an optimal sampling approach to support glider fleet operators
and marine scientists during the complex task of planning the missions of fleets of underwater
gliders. Optimal sampling, which has gained considerable attention in the last decade, consists in
planning the paths of gliders to minimize a specific criterion pertinent to the phenomenon under
investigation. Different criteria (e.g., A, G, or E optimality), used in geosciences to obtain an
optimum design, lead to different sampling strategies. In particular, the A criterion produces paths
for the gliders that minimize the overall level of uncertainty over the area of interest. However,
there are commonly operative situations in which the marine scientists may prefer not to minimize
the overall uncertainty of a certain area, but instead they may be interested in achieving an acceptable
uncertainty sufficient for the scientific or operational needs of the mission. We propose and discuss
here an approach named sampling on-demand that explicitly addresses this need. In our approach
the user provides an objective map, setting both the amount and the geographic distribution of
the uncertainty to be achieved after assimilating the information gathered by the fleet. A novel
optimality criterion, called Aη , is proposed and the resulting minimization problem is solved by
using a Simulated Annealing based optimizer that takes into account the constraints imposed by
the glider navigation features, the desired geometry of the paths and the problems of reachability
caused by ocean currents. This planning strategy has been implemented in a Matlab toolbox called
SoDDS (Sampling on-Demand and Decision Support). The tool is able to automatically download
the ocean fields data from MyOcean repository and also provides graphical user interfaces to ease
the input process of mission parameters and targets. The results obtained by running SoDDS on
three different scenarios are provided and show that SoDDS, which is currently used at NATO STO
Centre for Maritime Research and Experimentation (CMRE), can represent a step forward towards
a systematic mission planning of glider fleets, dramatically reducing the efforts of glider operators.

Keywords: glider networks; sensor networks; sampling on-demand; optimal sampling;
MyOcean forecasts provider; data assimilation

1. Introduction

The capability to understand, predict and reconstruct accurately the ocean dynamics is crucial for
many oceanic applications, such as eco-system based fisheries, pollution management and effective
planning and execution of naval/underwater operations.
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Oceans, however, are extremely complex dynamical systems. Turbulence, typical of marine
environments, involves large interactions between a wide range of spatiotemporal scales [1].
Physical spatiotemporal variability deeply affects oceanic chemical and biological processes, [2,3].
Furthermore, the importance of the interactions between the physical, chemical and biological fields
increases the difficulty in the study of the marine environment.

These factors define harsh requirements for measurement strategies in order to acquire
meaningful information from the data collected at sea:

• Simultaneous measurements of the different physical, chemical and biological parameters
are required.

• The measurements need to be taken with adequate spatiotemporal resolution according to the
phenomena under investigation.

These requirements make the task of planning and executing sampling campaigns difficult
and expensive.

Recent advancements in the field of sensing technologies, micro-electronics and
micro-fabrication have enabled the miniaturization of sensors and devices. These results, together
with the maturing of robotics and advanced ICT-based technologies, made it possible in the last
two decades for the development of new systems for sampling the oceans with an increased
spatiotemporal measurement resolution and at lower costs with respect to traditional methods
(traditionally, field measurements have been carried out by using dedicated vessels with expert
personnel onboard, fixed monitoring stations, e.g. buoys, and, more recently, by remote sensing
from space). These new systems (drifters [4], autonomous surface vehicles (ASVs) [5], autonomous
underwater vehicles (AUVs) [6] and gliders [7]) are characterized by different range and mobility
features and are more and more employed by oceanographers to complement traditional methods.
Their features offer new possibilities in collecting measurements in a sustained way and over large
geographical areas. This new way of acquiring measurements opens new horizons in sensing
and modeling oceans. Trends in research suggest that future ocean observations systems will be
constituted of heterogeneous, small, intelligent and cheap platforms [8] constituting networks able
to provide sustained synoptic observations (i.e., ability to map ocean structures at adequate spatial
resolution faster than significant changes occur).

AUVs propelled by traditional thrusters can cover limited areas due to their intrinsic endurance
limits and are well suited to provide hints on local phenomena such as fronts, algae blooms or
hydrothermal vent activity [9,10]. Gliders, on the other hand, are characterized by an extended
endurance and offer the possibility of long-time sampling mission (in the order of months) in open
ocean waters [7]. Gliders do not have propellers for their propulsion, but use buoyancy changes,
their hydrodynamic shape, fins and controllable movement of the battery pack to perform vertical
zig-zag motions between the surface and a predetermined depth with a net horizontal displacement.
The gliders emerge at some locations and communicate via satellite link with a control station: in this
way the pilot or software can command the vehicle the next waypoint to be reached. The nominal
horizontal speed is approximately 2 km·h−1. Coastal versions of gliders are limited to operate
between 10 and 200 m depth while deep ocean versions can reach 1000 m depth. However, the
capability of long range missions is paid with a low achievable maximum speed: this may be a big
issue for the glider navigation and their navigation planning since water currents can modify their
path or may also avoid the possibility to reach some commanded waypoint. This needs to be carefully
considered in the generation of the glider path to guarantee the reachability of the planned waypoints.

Theoretical and field research has been conducted in recent years on glider mission planning
taking into account their peculiar features [11,12]. Multi-glider approaches are particularly effective in
sampling missions to increase the coverage of the mission area and to acquire a synoptic view of the
oceanographic field of interest. The problem of effectively coordinating the movement of a fleet of
gliders arises. This was investigated in [13,14] with the main idea of keeping a given fleet formation
during coordinated movements of the group of vehicles.
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The key challenge to fully exploit glider capabilities is therefore how to plan the vehicle
trajectories to maximize the information content collected by means of the available measurements.
The measurements, in fact, are limited in number if compared to the geographical extent of the area
of study.

To approach this challenge, adaptive sampling strategies have been proposed. In adaptive
sampling approaches previous measurements influence the evolution of the sampling survey to
increase the amount of acquired information concerning a phenomenon under investigation [15]. This
kind of data-driven sampling approaches has been investigated and applied in different scenarios: for
measuring with gliders the temperature field in the Ligurian sea [16], for reconstructing a lake surface
temperature with an ASV and fixed sensors [17] and for hydrothermal vents prospecting along
oceanic ridges with an AUV [9,10]. Adaptive sampling aims at increasing the acquired information
by driving the sampling process in the most “interesting” areas.

A key factor in supporting and optimizing the planning can be represented by mathematical
models of the oceans [18]. Mathematical ocean models can forecast ocean properties such as
currents, salinity, temperature or plankton concentrations, or help in reconstructing fields of ocean
parameters [18] from data collected at sea. Research in past decades on ocean models has improved
the quality of currently adopted models [19–22]. Nowadays oceanographic models represent much
of the relevant physics [23] and the accuracy in their predictions has notably increased. Nevertheless,
numerical models cannot represent all the complexity of ocean dynamics and errors in initial and
boundary conditions may be present, potentially compromising the prediction quality. Recent
advancements in data assimilation and optimal interpolation showed that models can provide better
forecasts if measurements taken on field are assimilated into the running model [24].

Combining modeling and sensing is an effective way to provide useful tools and support to
science, engineering and industry. In current research trends, sampling and modeling are more and
more related and interconnected. The two processes can offer useful feedback to each other:

• From one side, on field measurements can improve the quality of models through data
assimilation and/or data-driven parameters adaptation.

• On the other, models, by quantifying the uncertainty related to their predictions, can guide the
sampling campaigns.

Measurements, in fact, can be taken at the locations suggested by the models to maximize the
information content and reduce the uncertainty over a certain region.

A possible approach to maximize the information content given a limited number of
measurements consists in selecting the sampling locations to optimize some cost functions. A cost
function, or sampling metric, must be defined and sets the objectives of the survey (e.g., sampling
of regions with the highest oceanography variability, or regions where the model uncertainty is
higher). This approach, known as optimal sampling, can use the forecasts of expected uncertainty over
the quantity under investigation provided by the ocean models. Cost function can be designed to
plan paths to minimize the a posteriori uncertainty produced after the assimilation of the information
brought by the planned measurements. The complexity in optimization of the selected cost function
determines if the process can be performed in real-time allowing to change dynamically the path
of the vehicles as new information becomes available. Otherwise, if a large time is needed to find
a solution, an off-line computation needs to be used to plan the paths before the beginning of
the mission.

Bretherton and co-workers [25] provided the first structured approach to optimize the sampling
performance of a network of oceanographic sensors. Stimulated by the need to design a current meter
array, they used objective mapping to determine the current meter array configuration that produced
a mapped field with minimum mean square expected error.

The problem of optimizing the sampling performance of a network of drifters was considered
in [4]. In that work, the launching positions of 25 drifters are decided with a Genetic Algorithm based
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optimization to achieve homogeneous coverage of a portion of the Azores region in space and time.
Drifters guarantee extremely long range missions and high endurance, but they cannot control their
motion so that a high-level planning of their measurement strategy cannot be achieved.

More recently the maneuverability offered by autonomous underwater vehicles (AUVs) can be
used for driving the vehicles to sample along optimal paths. In [26] an approach based on Mixed
Integer Linear Programming was used to mininize the path integral of the uncertainty values along
the path vehicles. In [23] genetic algorithms are used to find paths for the vehicles minimizing a cost
function composed of different components such as oceanographic variability along the trajectory,
oceanographic temperature range or integrated uncertainty along the paths.

More recent studies have adopted optimal sampling strategies to minimize uncertainties in
the predictions produced by ocean models. Cost functions are built on predicted errors when
observations by the vehicles are assimilated into the numerical model [20,27].

Alvarez and Mourre [28] investigated an optimal approach with one fixed mooring and one
glider for measuring a temperature field in an area in the Ligurian Sea. In the approach the path
of the glider was designed to minimize various norms of the posterior covariance matrix after the
assimilation of the measurements considering, at the same time, the constraints imposed by the
vehicle’s dynamics and the sea currents. Three different criteria were used to minimize posterior
covariance matrix: minimizing the trace (A optimal), the maximum diagonal value (G optimal) and
the maximum eigenvalue (E optimal). The results based on model data for the scenario under
investigation indicate that the most appropriate strategy for environmental characterization using
gliders employs the A optimal criterion, minimizing the overall uncertainty over the study area.

A limitation of the A optimal criterion is that it does not allow us to specify distinct levels of
tolerated uncertainties in different areas. Defining the levels of target uncertainties is a quite common
need for marine scientists. In many operative situations they may prefer not to minimize the mean
uncertainty of a certain area, but they may be interested in achieving distinct acceptable levels of
uncertainty in different regions, considered sufficient to meet the scientific and/or operational needs
of the overall mission. This may be due, for instance, to the limited number of available sensing
assets with respect to the size of the area to cover, or to operational requirements setting a certain
pre-fixed uncertainty over some regions which is sufficient for the mission objectives. As an example,
it may happen that in some peripheral regions the tolerated maximum uncertainty is higher than that
required in the core region of the mission.

This adds the need to drive the sampling to reach an objective uncertainty that may vary
geographically in the area of interest. We name this kind of approach sampling on-demand, since the
sampling strategy is driven by the needs of the mission planners to better meet the real requirements
of scientific/operational missions.

In this work we propose a framework for the mission planning of a fleet of gliders based
on the sampling on-demand paradigm [29]. To formalize the sampling on-demand paradigm we
introduce a variant of the A criterion that we have named Aη . In Aη the classical A optimal index is
modified to take into account a desired map of target (tolerated) uncertainty, provided by the user
at the beginning of the mission planning. The resulting optimization problem is solved by using a
Simulated Annealing [30] based optimizer that produce the waypoints for the paths of the gliders of
the fleet. The algorithm takes into account the constraints typical of the vehicles and the problems
of reachability caused by ocean currents. The proposed method is validated on sea currents and
temperature data coming from an ocean mathematical model of an area of study covering the Western
Mediterranean Sea.

Our approach provides a method to plan glider missions tailored to the needs of scientists.
Furthermore, pursuing the idea of creating an operational tool for scientists, we have integrated the
proposed sampling on-demand algorithm in a Matlab (®MathWorks) toolbox, named Sampling on
Demand and Decision Support (SoDDS) [31]. SoDDS is capable of downloading the forecasts of the
ocean fields of interest and the ocean currents from the public available MyOcean repository [32]. The
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tool provides two graphical user interfaces that allow the user-friendly definition of the sampling
area and to define the desired target uncertainties. This tool provides an integrated, effective and
operational system for glider operators to ease the whole mission planning process and post-mission
analysis.

The paper is organized as follows. In the next section we describe the mathematical formalism of
the sampling on-demand approach. In Section 3 we detail the optimization algorithm used to produce
the paths of gliders. In Section 4 we describe the software architecture of SoDDS Matlab toolbox and
the associated graphical user interfaces to be used by the fleet operators. In Section 5 we discuss the
results of the sampling on-demand algorithm by using the SoDDS toolbox in three different scenarios
in a study area covering the Western Mediterranean Sea. We conclude by discussing the implications
of the presented study and future work in Section 6.

2. Mathematical Formalism

The problem addressed here is how to plan glider trajectories to provide the best representation
of the mesoscale field in a synoptic scale. Oceanographically, the adequacy of a glider sampling
strategy can be measured in terms of the dynamical information that can be extracted from the
measured field. This is achieved by estimating, from the data acquired at the sampling locations,
the best values at grid points of a regular grid.

To proceed with the mathematical description of the problem, we make the assumption that the
measurements are synoptic. No time dependence is thus considered in the following analysis and the
quantities related to the field to be investigated are considered static. Procedures could be extended
to the case of nonsynopticity, however the computational burden and the information needed about
the physical processes in a certain area would be increased without adding significant insight to the
addressed problem. Two interesting operational cases are considered corroborating our assumption.

One case considers surveys in the Mediterranean Sea covering a timespan of less than
4–5 days. This time period is generally considered the local synoptic time scale [28], so the acquired
measurements can be assimilated and used to reconstruct the field of interest.

Another possibility is to carry out a covariance analysis on a larger time-scale (10–20 days). In
this case, even if the temperature field will change in the mission timespan, we can assume with a
good approximation that the uncertainty of the model is not changing considerably in the considered
time length. Since we are interested in a covariance analysis in the proposed Aη criterion, we can
adopt the same approach and consider a static prior covariance and static mean values for the field
under investigation. This is the case of interest for our application that will be considered in this
work.

Under static conditions, a common procedure in oceanography to estimate the values of a
scalar field at unobserved points is the Gauss-Markov smoothing (also known as linear minimum
variance estimate or objective analysis [33]). The sampled field is interpreted as a weakly stationary
or second-order stationary process [28] defined by known background ψ(x) (mean values of the field
at the grid points x) and covariance matrix

Cov(ψ(x)) = E[(ψ(x)− ψ(x))(ψ(x)− ψ(x))T ] = Σ (1)

We assume the observations ψo are in the form of a linear combination of the state ψ(x), that is
ψo = Hψ(x) + v, with v the unobservable observation noise, assumed as zero-mean and Gaussian,
and H the observation matrix, that is, a matrix operator that interpolates from the regular grid to
measurement locations. The method computes the linear minimum variance estimate ψ̂(x) for the
field ψ(x) (and the relative error covariance Σ̂) at given unsampled locations of the regular grid
from the observations, the locations where they are collected and the a priori knowledge or in situ
estimation of the mean/covariance of the sampled field. The analyzed field and covariance error
matrix are obtained by
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ψ̂(x) = ψ(x) + K(ψo−Hψ(x)) (2)

Σ̂ = Σ−KHΣ (3)

where ψ̂(x) and ψ(x) are respectively the state vectors of analyzed and background fields at gridpoint
locations; ψo is the vector of observations; H is the observation matrix, and K is the gain matrix
defined as

K = ΣHT(HΣHT + V)−1 (4)

The superscript T indicates the transpose operation, and V is the observation error covariance
matrix. The latter will be assumed diagonal. It is important to note that to compute the posterior
covariance Σ̂ we need to know only the locations of the measurements, while the knowledge of the
values of the observations is not necessary. This allows its computation by planning the sampling
locations before the mission is executed. In the present work the ergodic hypothesis is assumed, that
is, the average of simulated oceanographic processes over a relatively long period of time and the
average over the statistical ensemble are considered equivalent.

The posterior covariance matrix Σ̂ is a measure of the reliability of field estimates when
observations are available at certain locations. For this reason the minimization of some norm of this
matrix reduces the uncertainty of the model estimates. A measure of the “magnitude” of a matrix is
usually described by a scalar function of the matrix. An optimal design can be therefore described as

ψΓ = arg min
ψo

Γ(Σ̂), ψo ∈ Ω (5)

where Γ(•) is a scalar function of the covariance matrix and Ω represents the set of possible
measurements given the operational constraints (number of gliders, possible path due to glider
navigation features or the influence of sea currents). It remains to define:

• the numerical discretization of the problem into forms that are solvable using linear algebra
methods (implying how to build the H matrix);

• a suitable metric of the posterior covariance to be minimized (the Γ(•) function);
• an algorithm that optimizes this metric by selecting the fleet observation locations. In this

process, glider operational constraints must be respected along with geometric constraints on
the generated paths to produce “smooth” paths.

2.1. Discretization Procedure of the Problem

For our scenario, a two-dimensional finite-element mesh regular grid is adopted with the
physical domain subdivided into a finite number of quadrilateral area elements. The intersection
of two elements is an edge, a corner, or empty. A corner of an element cannot lie on the edge of an
adjacent element. The corners of the elements are called the nodes.

A continuous scalar function ψ(x) is then approximated in terms of the nodal values and some
interpolation functions within each element,

ψ(x) =
4

∑
k=1

Nk(r, s)ψk (6)

where ψk is the value of the function at node or grid point k, and Nk(r, s) represents the interpolation
functions expressed in a local coordinate system {r, s} [34]. Piecewise polynomials of low-order
or spline functions are usually employed as the interpolation functions. The specific mathematical
expressions of these functions can be found in dedicated textbooks (see [34]). A continuous piecewise
linear approximation of the continuous function ψ(x) is defined through Equation (6). The advantage
of this approach is that the computational cost depends on the total number of nodes of the mesh
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and not on the size of the dataset. Discrete expressions of the vector of state variables, background
field and covariance are then defined by their values at the grid nodes. Furthermore, the values of
the background field at sampling locations can be computed via Equation (6) providing a means to
compute the H matrix needed in Equations (2)–(4).

2.2. A Metric Suitable for a Sampling On-Demand Strategy (Aη Criterion)

A metric for the posterior covariance has to be selected. In this work we propose a modifed A
criterion that well suits to the sampling on-demand paradigm. A criterion implies the minimization
of the trace of the posterior covariance matrix Σ̂. The optimization process, in this way, aims at
decreasing the overall uncertainty over the whole operative area. We propose a new criterion, named
Aη , with the cost function to be minimized created on the basis of a map of desired uncertainty
provided by the operator. The cost function is defined as

Jη =
N

∑
i=1, i∈∆

(σ̂i,i − ηi), ∆ = {k : σ̂k,k − ηk > 0} (7)

where σ̂i,i is a diagonal element of Σ̂ and η is the vector of the desired posterior objective variances of
the mesh nodes provided by the user to be achieved by the minimization. The sum is over the number
of grid nodes N (in the sum we include only the elements in which the posterior variance value σ̂k,k is
larger than the relative desired objective variance ηk). This criterion produces observations reducing
the uncertainty according to the map provided by the user (η). The desired uncertainty map provides
the user with a way to drive the sampling campaign defining both the desired amount of reduction
of the uncertainty and the geographical distribution of the resulting Σ̂ (more information about the
field may be required in some areas than in others). These features make the Aη criterion particularly
appealing for the on-field design of missions in which it is mandatory to achieve a certain degree of
uncertainty only in some specific areas by means of a limited number of available assets.

3. Optimization Procedure for Multiple Gliders

It remains to design an algorithm to minimize Equation (5) with the selected Aη criterion by
planning the glider observations. The created paths must respect glider operational constraints and
have to take into account the effects of the ocean flow field on the vehicle navigation. Furthermore,
additional geometric constraints need to be included to avoid sensor clustering problems and to
produce “smooth” routes.

Solving Equation (5) implies the solution of a nonlinear optimization problem, with the
nonlinearity being introduced by the fact that the posterior covariance Σ̂ is nonlinear with respect
to the observation matrix H, which depends on sampling locations, through Equations (3) and (4).
These problems are hard to solve when a cost function is too complicated or not differentiable. Soft
computing optimization methods offer a possible solution to the problem. Soft computing embeds
those techniques that exploit tolerance for precision and uncertainty to provide approximate but
timely solutions to computationally hard problems.

To solve our problem, we propose a method based on Simulated Annealing (SA) [30]. Simulated
Annealing is a random search method that perturbs the search parameters θ to minimize a cost index
J as a function of θ. The perturbations are always accepted if they cause a decrease of J. To explore
the solution space and avoid local minima, the perturbations are probabilistically accepted if they
make J increase. This acceptance probability is proportional to the so-called temperature parameter
T and decreases with time passing (T decreases as in the annealing process in metallurgy giving the
inspiration to the algorithm). The algorithm [30] converges in the limit to a globally optimal solution
with probability 1.

In our problem, by planning different glider paths we define different sets of observations (ψo).
At each SA step, new paths are built from which the ψo are computed. By using Equation (6), the H
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matrix is computed and then, by using Equations (3) and (4), the index Jη is computed. The change
in the cost function can be evaluated and the next step is run. The process goes on until a pre-defined
timeout has expired or until some conditions on the cost are met.

Several parameters/constraints related to the glider navigation features influence the creation
of paths:

• number of gliders (Ng) and their starting locations;
• nominal glider surge speed (Vg);
• total mission time (Ta), time between two waypoints (Tg) (the number of waypoints is therefore

Nw = Ta/Tg)
• the time between consecutive surfacings (Ts).

The glider paths are described as a series of waypoints that the gliders try to reach through
straight-line segments. In an operative way, to create these paths, SA perturbs the commanded

headings (θ parameters of our optimization) of the gliders at waypoints, that is χ
j=1,...,Ng
i=0,...,Nw−1 (where

index i runs on the waypoints, i = 0 corresponds to the starting location and j runs on the gliders).
Tentative paths are then built by starting from the glider initial positions. For each heading a straight
line of length Lg (Lg = Tg ×Vg) is planned to define the location of the next waypoint; the procedure
is repeated until Nw waypoints are produced for each vehicle.

3.1. Perturbation Strategy of the Simulated Annealing Parameters

A key point of the Simulated Annealing optimization is the perturbation strategy that modifies
the parameters. In our case, we adopt a perturbation law in which the magnitude of the
perturbation values depends on the current annealing temperature T: as the temperature decreases,
the perturbations values are decreased. The underlying idea is that when the temperature is low
the geometry of the glider paths has to be modified in a slighter way. The paths, in fact, have
likely already reached an almost “optimal” shape, and the small adjustements aim to locally explore
the search space to further improve the solution in our constrained scenario (see Section 3.3 for the
geometric constraints on the created paths). Experimental results with different datasets demonstrate
this strategy can produce better solutions (lower values of the cost function) in the addressed problem
than using a perturbation policy in which the magnitudes are independent of T.

A new heading χi+1 is produced as follows

χi+1 = χi + β Kt χmax + δ Kt χmin (8)

where χi is the heading at the previous step, χi+1 is the heading after the perturbation, χmax and χmin
are the maximum and minimum allowed perturbations, β and δ are two values extracted randomly
from standard normal distributions. Kt is a value depending on the Simulated Annealing temperature
T as Kt = ε log10(T/T0) + 1 with ε a constant and T0 the starting annealing temperature.

3.2. Influence of Water Currents

Water currents highly influence the glider navigation due to the low maximum horizontal speed
achievable by the vehicles. The tentative waypoints may not be reached, and, in general, are different
from the real ones due to the influence of water flows. For this reason, in the optimization process,
we modify the tentative waypoints on the basis of the predictions provided by a mathematical model
of the water current field following a procedure detailed in [28]. Water flow model predictions are
depth averaged up to the maximum diving depth of the gliders. To compute a realistic trajectory of
each jth glider between two consecutive waypoints {xj

i, xj
i+1}, we consider a point-like model of the

platform subjected to a velocity field resulting from adding the local current field vc(x), produced by
the water flow model, to the nominal speed Vg in the heading direction χ

j
i . A heading correction is

applied at every time interval determined by the surfacing time parameter Ts. At each surfacing, the
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glider j estimates the current field by comparing the simulated surfacing position xj
S (including the

effects of the predicted currents) with that expected from dead-reckoning, x̂j
S = xj

S0 + vj
S0Ts, where

xj
S0 and vj

S0 = Vg[sin(χj
S0), cos(χj

S0)] are respectively the location and velocity derived from previous
surfacing point. The current field is then estimated by

v̂c =
xj

S − x̂j
S

Ts
(9)

and it is used by the glider to correct the heading to navigate to the tentative waypoint xj
i+1. The new

χ
j
S0 will be computed as

χ
j
S0 = tan−1

vj
SWx
− v̂cx

vj
SWy
− v̂cy

 (10)

with vj
SW being the speed vector of the glider in the path from the current surfacing point to the next

tentative waypoint xj
i+1, assuming the nominal glider speed Vg and is computed as

vj
SW = Vg

(xi − xS)

||xi − xS||
(11)

The surfacing position may differ from the tentative waypoint xj
i+1 after the navigation time

Tg. In this case, xj
i+1 is updated with this surfacing location and the process is repeated for the next

navigation segment {xj
i+1, xj

i+2}. Thus, final waypoints defining the mission are determined from the
surfacing locations at each time interval Tg defined by the navigation time parameter. The procedure
ensures that the final set of waypoints are likely to be achievable in real-world missions.

Glider observations with a certain spacing (Ds) are then located on the designed glider path.
This would correspond to the horizontal sampling resolution of the considered glider.

3.3. Geometric Constraints on Created Paths

Geometric constraints on the produced glider paths are added with two objectives: to generate
“smooth” trajectories for the gliders and to avoid the problem of sensor clustering (large amount of
measurements located in restricted areas).

First of all, to avoid sharp turns in consecutive legs of the path, a limit on the minimum angle
between two successive segments is fixed. The minimum angle is set to ±30°. The produced χ

j
i

headings are therefore modified to respect this condition.
To avoid sensor clustering problems and “knots” in the paths two conditions are also imposed:

1. The distance between the different waypoints are required to be larger than a certain minimum
distance D1. This condition aims at avoiding clustering of the sensors and minimizes possible
collisions between vehicles.

2. A second constraint is set on the waypoints belonging to the same path. The waypoints
belonging to the same path (with the exclusion of two consecutive ones) are required to be
distant from each other by more than D2 (with D2 > D1). This condition aims at avoiding
“knots” arising in the paths of gliders potentially hampering an effective search of the solution
space during the optimization.

The described constraints are introduced as penalty factors into the cost function.
Mathematically, the two constraints are modeled as

c1 =


max

ij
(D1/dij + 1) i f max

ij
(D1/dij + 1) > 2

2 i f max
ij

(D1/dij + 1) ≤ 2
(12)
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where dij is the distance between all the produced waypoints and the maximum is considered over
all the possible waypoints combinations (i, j) with i 6= j. And the second constraint is,

c2 =


max

ij
(D2/dij + 1) i f max

ij
(D2/dij + 1) > 2

2 i f max
ij

(D2/dij + 1) ≤ 2
(13)

where dij is the distance between the waypoints belonging to the path of a single glider and
the maximum is considered over all the possible combinations of non-consecutive waypoints (i, j)
belonging to the vehicle paths. We set a minimum value of 2 for c1 and c2 when dij are larger than
the required distances to avoid that the SA forces an increase of dij when all dij are larger than the
set distances. In that case, in fact, the penalty function does not change when dij is larger than the
requested constraints, thus not modifying the objective cost function.

Algorithm 1: The used Simulated Annealing algorithm.

1 Result: θ∗ = χ
j=1,...,Ng
i=0,...,Nw−1, the best found commanded headings for the glider fleet;

2 T = Tinit ; % initializing the starting temperature
3 Set θ0; % initial random values for commanded headings
4 θ = θ0;
5 θ∗ = θ0; % setting the parameters relative to the lowest value of the cost function found so far
6 J=computeNewCostFunction(θ); % cost function computed on the basis of the headings according to the procedure detailed in Sections 2

and 3.3
7 J∗ = J; % setting the minimum value of the cost function found so far
8 tries = 0; % counter for the number of perturbations at a certain temperature
9 success = 0; % counter for the updates of the cost function

10 isEnd = f alse;
11 while isEnd == f alse do
12 tries = tries + 1;
13 if tries > maxTries ‖ success > maxSuccess then
14 if T < Tmin ‖ timeExecution > maxTime then
15 isEnd = true; % reached the minimum temperature or the maximum allocated execution time expired. We terminate the

optimization
16 continue;
17 else
18 T = T ∗ (1− α); % decrease T according to cooling schedule
19 tries = 1;
20 success = 0;
21 end
22 end
23 θnew = computeNewHeadings(θ); % new headings computed according to the procedure detailed in Sections 3.1–3.3
24 Jnew=computeNewCostFunction(θnew); % cost function computed on the basis of the headings according to the procedure detailed in

Sections 2 and 3.3
25 if Jnew < J∗ then
26 θ∗ = θnew ; % new best result found so far
27 J∗ = Jnew ;
28 end
29 if Jnew ≤ Jmin then
30 isEnd = true; % we have reached a pre-fixed target minimum. We terminate the optimization
31 continue;
32 else
33 if rand() > exp (J−Jnew )

T then
34 θ = θnew ;
35 J = Jnew ;
36 success = success + 1;
37 end
38 end
39 end
40 Return the best found headings θ∗ for the glider fleet;

The penalty functions are added to the cost Jη to be minimized. Thus, the final cost function J
comprises two components:

J = Jη + γJ Jc (14)
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with Jη defined in Equation (7) and representing the part related to the minimization of the posterior
covariance, Jc is the cost due to the geometric constraints and γJ a normalization factor. Jc is taken
as the maximum value of the two geometric penalty components, that is Jc = max(c1, c2). In this
way, the Simulated Annealing takes into account the geometric constraints directly by optimizing the
resulting J cost index.

The resultant Simulated Annealing algorithm is reported in Algorithm 1.

4. SoDDS: A Matlab Toolbox for Sampling on Demand and Decision Support

The optimization algorithm described in the previous sections has been implemented in Matlab
(®MathWorks). To ease its daily use in the CMRE Command and Control Room during monitoring
campaigns it has been integrated in the SoDDS (Sampling on-Demand and Decision Support) toolbox.
SoDDS is provided with the capability of automatic data download and, through graphical user
interfaces, supports the operators in planning missions. Effective tools to support the operators in
planning and conducting oceanographic missions are more and more needed due to the increasing
complexity of requested tasks (see [35]). In the next sections we will describe how SoDDS is organized
and its features.

4.1. Automatic Download of Ocean Field Forecasts from MyOcean

4.1.1. The MyOcean Service

The MyOcean service [32] is a marine core service that aims at providing users the best
generic information available on the state of the oceans. MyOcean (2009–2012) and now MyOcean2
(2012–2014) are committed to develop and run an European service based on a worldwide capacity for
ocean monitoring and forecasting, using observation data, modeling and assimilation systems. The
service is particularly valuable since it provides a single catalog for all the products, like analyses,
reanalyses, and forecasts. MyOcean is a gateway to products provided by external research centres,
where each product is a collection of different datasets. Each dataset contains different variables (sea
currents, temperature, salinity, etc.). Within a product and a dataset, the user can download a portion
of the data using the motu-client, as described in next subsection.

4.1.2. Motu-Client: The Python Script for Downloading Forecasts

Motu-client is a Python script (mou-client.py) that runs from the shell and that allows to
download the sub-dataset of interest within a specific dataset contained in a particular product. Each
sub-dataset is characterized by: the spatial range (expressed as a rectangular area), the temporal
range and the depth range. Doing this, the user is able to download only the data he is interested
in, thus saving storage disk space and gaining in downloading speed. The parameters that can
be specified from the command line of a motu-client call are shown in Table 1. The sub-dataset is
retrieved as a NetCdf binary file. Next section describes the implemented Matlab toolbox, named
Sampling on-Demand and Decision Support.

4.2. The SoDDS Matlab Toolbox Structure

SoDDS wraps the Python motu-client script and provides the operator two graphical user
interfaces to simplify the mission planning task. SoDDS supports the operators throughout the
planning and analysis of the mission. The mission planning is made up of four steps.

4.2.1. Step 1—Data Download

The data downloader is a Matlab wrapper to Python motu-client script. Therefore this function
has to collect all the required motu-client parameters and then perform a call to it. Key advantages
of the Matlab wrapper over motu-client are twofold: it comes with a graphical user interface for
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defining the region of interest of the sub-dataset, and previously defined regions can be easily re-used
in subsequent calls (see next step).

4.2.2. Step 2—Setting the Region of Interest GUI (roiGUI)

As stated above, motu-client requires the user to specify spatial portion of the dataset he wants
to download and thus it requires the minimum and maximum longitude and the minimum and
maximum latitude of the Region Of Interest (ROI). This means that the user must select a rectangular
bounding box of the sampling area of his interest. The GUI, shown in Figure 1, allows the user to
zoom and pan a picture showing the coastline of the Mediterranean Sea and to drag the ROI (the blue
rectangle in that figure). The ROI can also be resized by using the mouse or by entering the values
in the four edit boxes provided in the bottom part of the GUI (useful when the right bounding box is
exactly known beforehand). When the user is satisfied with the selected ROI he can save it on disk for
future use (the system asks a unique name for it before saving). Each ROI is defined by the attributes
provided in Table 1.

Figure 1. The Region Of Interest (ROI) definition GUI.

Table 1. ROI Descriptor.

Attribute Meaning

area Area, as defined in MyOcean (“Med”, “ArticOcean”, “NorthSea”, etc.)
lonMin Minimum Longitude
lonMax Maximum Longitude
latMin Minimum Latitude
latMax Maximum Latitude

vars
lField variable to download (it can be “C” for currents, “T” for temperature,
and “S” for salinity, or a combination like “CT” or “CS”)

4.2.3. Step 3—The Covariance Matrix Generation

Once the sea currents and the field to be optimally sampled have been downloaded from
MyOcean, the covariance matrix has to be computed. For instance, when considering the Sea Surface
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Temperature (SST), the 4D dataset (3 spatial dimensions plus time) must be masked to exclude land
regions. Then it has to be averaged along the z direction (the depth). At this point the prior covariance
matrix can be easily computed, following the procedure described in Section 5.

4.2.4. Step 4—The Mission Constraints GUI (mcGUI)

The mission constraints GUI (Figure 2) is an interface that shows the downloaded ocean field
(Temperature, Salinity, etc.) and its variance and standard deviation, for the ROI specified in previous
step. Moreover it allows the user to easily (i.e., graphically) specify the following information:

• the sampling area;
• the gliders’ deployment positions;
• the target variance.

For example, the red polygonal line shown in the mission constraints of Figure 2 represents
the sampling area (it has been drawn by hand by using the mouse with the user being able to
drag each single vertex to better define the area). It also displays magenta spots representing the
glider deployment positions. Finally it shows two blue polygonal regions, reporting a number.
These numbers represent the target posterior variance, i.e., the target value to be achieved by
optimal planning of the glider paths. Next section will show some results obtained by running the
SoDDS toolbox.

Figure 2. The mission constraints GUI (Generated using MyOcean products). The variable displayed
is the variance of the Sea Surface Temperature (the colormap on the right shows its range of
variability). In the sampling area delimited by a red polygon, the initial deployment position of one
glider is indicated by a magenta spot. The two regions delimited by blue polygons area areas in which
a target variance has been defined by the user (in the first, on the left, the target value is 0.02, while in
the second, on the right, the target is 0.01).

5. Experimental Results

To investigate the performance and the features of the proposed approach we applied our
method to study the temperature field at 50-m depth in an area of the Western Mediterranean Sea,
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specifically covering almost all the waters west of the coasts of Sardinia and Corsica (see Figure 3).
Background statistics have been built on the basis of a time series of monthly reanalysis of the
temperature fields at 50 m depth resulted from the Mediterranean Forecasting System (MFS), a
component of MyOcean.

On the basis of the ergodic assumption (see Section 2), we computed the prior covariance matrix
Σ and the known background ψ(x) used in our tests. Since we apply our algorithm to plan a
mission in January 2012, the known background is computed by averaging the values of 12 historical
series of average temperature data provided by the model for the months of January belonging to 12
consecutive years (2000-2011). Σ is obtained as the sample covariance and was then modified through
a transformation named shrinkage [36]. This operation tends to pull the most extreme coefficients
towards more central values, thus systematically reducing estimation error where it matters most. A
model of the water currents is also used to produce an estimate of the current field averaged in the
first 200 m (maximum depth reached by the gliders) and represents a prediction of the current field
the vehicles encounter during their mission.

A grid was computed covering the area of study with a spacing in latitude of 0.083°and in
longitude of 0.1875°. A Cartesian reference frame is also added with its origin fixed to the center of the
area of study. In our tests, we consider the gliders are all deployed at the same location (38.0654° N,
5.16° E). This condition represents a common situation in operational scenarios in which the vessel
starts deploying the vehicles at a preset deployment site. It also represents the most complex situation
from the point of view of respecting the required geometric constraints on paths since the gliders
move (at least at the beginning of the mission) in nearby areas. Prior values of the grid mesh in the
operation area are shown in Figure 3 along with the gliders’ deployment location.

The parameters used to characterize the glider mission are reported in Table 2 and are typical
of real glider missions conducted by NATO STO Centre for Maritime Research and Experimentation
(CMRE) in operations at sea.

Table 2. Parameters for the missions of gliders.

Vg 0.35 (m/s) nominal gliders surge speed
Ta 12 (days) total mission time

Tg 48 (h) time between two waypoints.
The number of waypoints Nw is therefore equal to 6

Ts 6 (h) time between surfacings
Current f ield µ = 0.1 (m/s) σ = 0.07 (m/s) mean and standard deviation value of the current field

It is important to remark that the current field is in some areas comparable with the glider
surge speed and thus strictly constrains the vehicle mobility. This is taken into consideration by
the optimization algorithm as previously described.

Concerning the algorithm, important parameters to be set are the values of the geometric
constraints (Section 3.3) strongly dependent on the geometry of the addressed scenario. We start
defining lg = VgTg (theoretical distance covered between two waypoints), in our case lg = 60.480 km.
On the basis of this value, we set D1 = lg/3 and D2 = lg. Furthermore, the observation error
covariance matrix is assumed diagonal of the form vI, with I identity matrix and the value v equal to
the average of the diagonal values of the prior covariance matrix, Σ.

The used Simulated Annealing algorithm is described in Algorithm 1 and was implemented in
Matlab (©MathWorks) and was run on an Intel Core2® Quad CPU Q6600 @2.4 GHz with 4 GB of RAM
memory. The algorithm code was adapted from [37]. The optimization terminates and provides the
so far best solution when one of the following conditions occurs: Jη = 0, that is the objective of the
optimization is completely reached, after a certain amount of execution time or if the temperature T
becomes lower that a certain Tmin. The used parameters in the algorithm are reported in Table 3.
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Figure 3. Values of the prior variances of the grid mesh nodes (diagonal values of the prior covariance
matrix Σ in the area of study). The red marker represents the starting position used for the gliders
(38.0654° N, 5.16° E).

Table 3. Parameters used for the optimization algorithm.

Tinit 5 starting temperature
Tmin 10−8 minimum temperature
α 0.15% temperature decrease as decrement in percentage of the current

temperature value
maxTries 50 maximum number of parameter perturbations at a certain

temperature before its decrement
maxSuccess 20 maximum number of updates of θ at a certain temperature

triggering a temperature decrement
Jmin 2 minimum value of the cost function which, if reached, caused the

termination of the algorithm. The value 2 means Jη = 0 and the
geometric constraints satisfied

χmax 1.2217 (rad) maximum value of the perturbations of the glider heading (70 °)
χmin −1.2217 (rad) minimum value of the perturbations of the glider heading (−70 °)
ε 0.2 parameter used in the perturbation strategy
β J 1 weighting factor for J index

Three different scenarios are here presented and discussed. Each scenario is characterized by
a different objective threshold η(x) set by the user reflecting different mission requirements. In
scenario 1 the threshold values are set to 70% of the relative prior variance values in the entire area
of study, that is {ηi = 0.7σii, for i = 1 . . . Nc}, with Nc being the number of cells in the grid mesh.
In scenario 2 threshold values are equal to 70% of the relative prior variance values throughout the
operation area except that in a circular area with a 230 km radius centered west of Sardinia where the
threshold values are equal to 50% of the relative priors (see Figure 4). In scenario 3 threshold values
are equal to 50% of the relative prior variance values all over the operation area.

Scenario 1 represents a situation in which the user sets a desired posterior variance which is
moderately lower than the prior. A first annealing with two gliders, R2, is run and terminates with the
following indices: J = 2.0828, with Jη = 0.0828 and Jc = 2. The latter value means that the geometric
constraints are fully respected. From our experience we have seen that the geometric constraints are
in general easily respected if the number of deployed gliders is limited (<4). The resulting paths are
shown in Figure 5 along with the difference between posterior variances and the target threshold. The
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black markers show grid nodes (30 in total) characterized by posterior variances that are higher than
the relative ηi. In particular, these locations are present in the north-east part of the area of study. Jη ,
however, has a low value, showing the minimization target is close to be reached. An annealing with
three gliders, R3, was then started and the index reaches the target value, that is Jη = 0 and Jc = 2.
The produced paths are reported in Figure 6. The three paths cover (without mutual intersections)
the region in the center of the area of study and the planned measurements succeed in lowering the
posterior up to the required values. The use of three gliders meets the target set by the user. However,
the cost value produced by R2 is close to the objective and suggests that two gliders are also a viable
possibility to achieve the mission requirements. To plan an at sea mission, a cost-benefit analysis
would drive the decision on deploying two or three vehicles.

Figure 4. Threshold as percentage of the starting prior variances for scenario 2. The desired posterior
is 70% of the prior in all of the area of study except that in a circular area with a radius of 230 km in
front of the Sardinia coast where the desired posterior is requested to be 50% of the relative prior.

In scenario 2 the requirements are more demanding, since for the area located around Sardinia a
lower posterior covariance is requested(50% of the prior) (see Figure 4). This may be a frequent case
in an operative scenario, where more information content is needed to be acquired in specific areas of
interest. Our sampling on-demand strategy addresses this need explicitly. An optimization with four
gliders, R4, was launched. R4 was not able to reach the mission objective and produces a solution
with Jη = 0.22 (Jc = 2.24). The produced paths are reported in Figure 7. Some locations above the
set threshold are present in the area close to Sardinia (50% area) and far from the glider trajectories.
Ng = 5 was then explored, and the annealing R5 was run with resulting Jη = 0.09 and Jc = 2.06.
R5 finds a good solution to our problem almost completely respecting the geometric constraints. The
paths are shown in Figure 8: three gliders head toward the coast of Sardinia to lower the posterior
of the 50% area. Some locations in the north-east zone still present a posterior not satisfying the
mission objectives due both to the required strong posterior covariance decrement in the area around
Sardinia and to their distance from the locations reachable by the glider paths. However, these grid
nodes present posteriors close to the sought values as the small value of Jη shows. The solution
using 5 gliders can be therefore considered good and would have been chosen for planning an at
sea mission.
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Figure 5. Scenario 1: planned paths for two gliders. The solution is characterized by Jη = 0.0828
and Jc = 2. In the figure we show also the difference between posterior variances and relative values
of the objective threshold. Black markers toward the north-east part of the operation area indicate
locations whose posterior was not lowered enough. These locations are limited in number proving
the optimization produced a solution close to the optimum.

Figure 6. Scenario 1: planned paths for three gliders. The solution is characterized by Jη = 0 and
Jc = 2. In the figure we show also the difference between posterior variances and relative values of
the objective threshold. All the posterior variances in the operation area respect the requirements of
the mission.
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Figure 7. Scenario 2: planned paths for four gliders. The solution is characterized by Jη = 0.22 and
Jc = 2.24. In the figure we also show the difference between posterior variances and relative values
of the objective threshold. The solution almost reaches the mission target. More gliders are needed to
reach the mission objective.

Figure 8. Scenario 2: planned paths for five gliders. The solution is characterized by Jη = 0.09
(Jc = 2.06). In the figure we also show the difference between posterior variances and relative values
of the objective threshold. Black markers toward the north-east part of the operative area indicate
locations whose posterior is still above the required threshold. The use of five gliders is considered
satisfying, since we are quite close to the achievement of our goal (no black marks).

Scenario 3 is the most demanding one in terms of objective threshold. The desired posterior
variances is set as 50% of the prior variances over all the operative area. Given the demanding
objective, we used five gliders in the optimization (R5) and the algorithm terminates with Jη = 1.67
(Jc = 2). The paths produced by R5 are shown in Figure 9. Locations not reaching the target values
are present in the north-east and south-west parts of the operative area. A new optimization with
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6 gliders was then run. The solution (see Figure 10) of this optimization is characterized by Jη = 0.14
and Jc = 2.

Figure 9. Scenario 3: planned paths for five gliders. The solution is characterized by Jη = 1.67
(Jc = 2). In the figure we show also the difference between posterior variances and relative values
of the objective threshold. The high number of black markers toward the north-east and south-west
parts of the operative area indicates posteriors for which gliders did not succeed in reducing enough
failing to meet the target variance. More samplings (gliders) are therefore needed.

Figure 10. Scenario 3: planned paths for six gliders. The solution is characterized by Jη = 0.14 and
Jc = 2. In the figure we show also the difference between posterior variances and relative values of
the objective threshold. Black markers indicate posteriors that gliders did not succeed in lowering
enough. These locations are limited in number showing the optimization has found an acceptable
solution to the problem.
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6 gliders succeeded in lowering the posterior even if some areas in the north-east and south-west
corners could not be influenced as we required. This is due to the distance of these areas from the
glider paths and to the requested low value of posterior. In this scenario, the solution with six gliders
results as the only reasonable candidate to provide a good solution to our problem.

The computational time needed by our approach depends on the size of the region and the
number of vehicles. In our experiments it was of the order of hours (for six gliders maxTime was
considered 5 hours), an acceptable time for our needs . For grids with a larger number of points or
an increased number of gliders, an optimization of the code and its porting to a supercomputer to
parallelize its execution would speed up it significantly.

6. Conclusions

This paper describes an optimal mission planning algorithm for a fleet of gliders based on the
sampling on-demand paradigm. In the sampling on-demand strategy, the user sets quantitatively the
requirements related to the uncertainty over an area of interest that needs to be achieved by means of
measurements taken by observing assets. In general, the set uncertainty can vary from one region to
another of the area of study according to the scientific/operational requirements of the mission. This
may be due, for instance, to the fact that some areas are considered more important to explore than
others. This paradigm addresses appropriately the requirements of real operative scenarios.

A new optimality criterion suited to the sampling on-demand paradigm, called Aη , has been
introduced. The sampling metric related to the Aη criterion is mimimized by planning the sampling
locations (paths) of the gliders. This mimization produces optimal paths for the vehicles (a series of
waypoints). To solve this complex nonlinear optimization problem, we proposed and discussed an
algorithm based on Simulated Annealing. The algorithm takes into account constraints due to the
desired geometry of the paths and also the constraints introduced by vehicle dynamics and by the
influence of the ocean currents on vehicle navigation.

To pursue the idea of creating an operational tool for scientists, we have integrated the proposed
sampling on-demand algorithm in a Matlab toolbox, named Sampling on Demand and Decision
Support (SoDDS). SoDDS is capable of downloading the forecasts of the ocean fields of interest
and the ocean currents from the public available MyOcean repository. MyOcean service allows to
standardize the access to ocean field forecasts generated by different and heterogeneous research
organizations. The tool provides graphical user interfaces allowing a user-friendly definition of the
sampling area and the definition of the desired target uncertainties. This tool provides an integrated,
effective and operational system for glider operators to ease the whole mission planning process and
post-mission analysis.

Results of using SoDDS tool in the considered scenarios prove that our methodology is effective
in planning “smooth” glider paths minimizing the Aη cost function, at the same time satisfying the
mission constraints.

In addition, a preliminary version of this planner has been applied to one glider showing a gain
of the collected information for assimilation purposes [16].

Our approach can therefore support marine scientists to plan effectively sampling missions at
sea characterized by target posterior uncertainty different in quantity in different geographic areas.
SoDDS can also be used in combination with other decision support tools, such as the glider decision
support tool described in [38], or with a fuzzy rule-based system [39], within a glider command and
control room.

In the sampling on-demand paradigm, however, one important question to be solved is the
minimum sufficient number of gliders to achieve the requirements of the mission. With this
information, scientists could achieve their operational objectives with the minimum number of
vehicles and reduce the number of deployed assets (costs and complexity reduction). Since the
amount of time an optimization potentially requires may limit the scope of applicability, future work
will address how to find this minimum number without a time-expensive, “brute” force approach,
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in which the optimization is run with all the possible numbers of gliders until the mission objectives
are met.
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