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Abstract: Many applications, such as marine navigation, land vehicles location, etc., require
real time precise positioning under medium or long baseline conditions. In this contribution,
we develop a model of real-time kinematic decimeter-level positioning with BeiDou Navigation
Satellite System (BDS) triple-frequency signals over medium distances. The ambiguities of two
extra-wide-lane (EWL) combinations are fixed first, and then a wide lane (WL) combination is
reformed based on the two EWL combinations for positioning. Theoretical analysis and empirical
analysis is given of the ambiguity fixing rate and the positioning accuracy of the presented
method. The results indicate that the ambiguity fixing rate can be up to more than 98% when
using BDS medium baseline observations, which is much higher than that of dual-frequency
Hatch-Melbourne-Wübbena (HMW) method. As for positioning accuracy, decimeter level accuracy
can be achieved with this method, which is comparable to that of carrier-smoothed code differential
positioning method. Signal interruption simulation experiment indicates that the proposed
method can realize fast high-precision positioning whereas the carrier-smoothed code differential
positioning method needs several hundreds of seconds for obtaining high precision results. We can
conclude that a relatively high accuracy and high fixing rate can be achieved for triple-frequency WL
method with single-epoch observations, displaying significant advantage comparing to traditional
carrier-smoothed code differential positioning method.

Keywords: BeiDou; triple frequency; carrier-smoothed code (CSC); extra-wide-lane; wide-lane;
ambiguity resolution; differential positioning

1. Introduction

Over the past decades, different GNSS techniques have been developed by researchers,
which have made remarkable contributions to scientific applications (e.g., geodesy, remote sensing,
space and fundamental physics) [1,2] and engineering services (e.g., surveying, navigation, and
timing) [3,4]. With regard to the navigation and positioning techniques of GNSS, they can be divided
into two main categories: absolute positioning and relative positioning. Absolute positioning mainly
includes standard point positioning (SPP) and precise point positioning (PPP). Relative positioning
mainly includes differential DGNSS (DGNSS) and real-time kinematic (RTK) positioning techniques.
Different advantages as well as disadvantages are shown for these techniques.

SPP, as the simplest positioning technique, can realize real-time positioning using a single
receiver with broadcast ephemeris. Its applications are mainly in navigation. The main disadvantage
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of SPP is that the accuracy is limited to several to tens meters [5]. Using the PPP technique, positioning
with a single receiver can also be implemented, but providing higher centimeter level accuracy [6,7].
However, precise ephemeris and clock products must be provided for PPP. In addition, a convergence
time of about thirty minutes is required to reach high precision results [8].

The real-time kinematic (RTK) positioning technique, which was first investigated by Kleusberg [9],
Cannon [10] and Schwarz et al. [11], implements positioning using two or more receivers. The
rover position is determined by forming double-differenced observations with the reference station.
Using the RTK technique, one can realize fast precise centimeter level positioning [12]. However, the
applications of RTK are limited to short distances (e.g., <10 km). For medium and long distances
(e.g., >10 km), a certain time duration (usually 10–40 min for GPS) is needed first for fixing the
ambiguities due to the existence of residual atmospheric errors [13].

Using multiple reference stations with inter-receiver distances of several tens of kilometers, the
network-RTK [14] and PPP-RTK [15] techniques can be implemented, which are extensions of RTK
and PPP, respectively. In this way, the atmospheric errors in a rover station can be modeled or
eliminated rapidly, thus improving the positioning performance. For network-RTK, the distance can
be extended to several tens of kilometers [14]. For PPP-RTK, high-precision results can be obtained
rapidly, e.g., within several seconds [15,16]. The main disadvantage of these two techniques is that
they are unavailable in some areas, like marine areas, due to the difficulty of establishing reference
stations. PPP-RTK using global-scale networks were also proposed by some researchers [17].
However, at least five to ten minutes are needed for ambiguity fixing for this technique.

Differential GNSS (DGNSS) positioning is a positioning technique where the user's position is
determined more accurately by applying differential corrections, derived from a fixed ground-based
reference station [18]. DGNSS was invented in the mid-1980s, and was called DGPS at that time.
When implementing DGNSS positioning, both original code and carrier-smoothed code (CSC)
measurements can be used. The positioning accuracy of original code-based DGNSS is usually
at meter level [18]. If one requires decimeter level positioning, CSC measurements usually are
needed. The reason is that the impact of noise and multipath code errors can be reduced by applying
carrier-smoothing techniques [19,20]. Apparently but unfortunately, a certain time duration (usually
several minutes) is also needed for carrier smoothing the code measurements to achieve a relatively
high accuracy.

As can be deduced, all these GNSS-based positioning techniques operate under a set of constraints.
These constraints include baseline length, attainable accuracy, time-to-solution, instrumentation,
operational modes, and so on [21]. Some applications, such as marine navigation, aircraft landing
guidance and land vehicles location, etc., require obtaining the user positions in a rather short time
with certain positioning accuracy (decimeter-level) and certain coverage (e.g., <100 km). In some
areas like marine areas, it is also hard to establish multiple-reference stations in the surrounding
areas. For such applications, CSC-based DGNSS is currently the most suitable method, since it can
obtain the user positions in a relatively short time with decimeter level accuracy using just a single
or a few reference stations. However, this technique still suffers some time cost for code carrier
smoothing, which has been described above.

Currently, with the two new and emerging BeiDou and Galileo constellations as well as the
ongoing modernization of GPS and GLONASS, more multi-frequency signals will become available
for most users [22]. As to the current BDS constellation, all BDS satellites can transmit triple-frequency
signals to the users. With triple-frequency signals, more useful combinations can be formed, which
can improve the performance of ambiguity resolution (AR). Significant research efforts have been
made in the past decade to make use of the multi-frequency signals for improving AR (ambiguity
resolution). Harris [23] and Forssell et al. [24] proposed the Three Carrier Ambiguity Resolution
(TCAR) method. Jung [25] proposed the Cascade Integer Resolution (CIR) method. Feng [26]
presented the triple-frequency AR method using geometry-based model. Feng and Li [27] studied
the positioning accuracy of wide-lane (WL) signals using GPS measurements. In these studies, only
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theoretical analysis or simulation test performed. With regard to BDS, some studies [28,29] with
real observations are implemented. However, these studies concentrated on the positioning for
short baselines or fixing the ambiguities of narrow-lane over medium and long distances, which still
requires long observation time.

In this contribution, we aim to develop a new real time differential GNSS positioning technique
by using WL measurements obtained from BDS triple-frequency signals. This technique can realize
instantaneous real-time kinematic positioning over medium distances with decimeter level precision.
The fixing rate and positioning accuracy are investigated in detail. The performance is compared
with those of dual-frequency WL case and CSC differential positioning case.

2. Wide-Lane Based Differential Positioning

In this section, the models of differential GNSS positioning using WL measurements are
introduced. The case with regard to medium distances is focused on here.

2.1. Ambiguity Resolution Models

In medium and long baseline (>10 km) cases, residual atmospheric delays will affect the
ambiguity resolution, therefore, the atmospheric errors have to be taken into account. There are two
methods to deal with the residual atmospheric errors. The first one is to form combinations that can
eliminate atmospheric errors or can reduce the impact of atmospheric errors to an extent that can be
ignored, e.g., the Hatch-Melbourne-Wübbena (HMW) combination [19,30,31]. The second one is to
estimate the residual atmospheric delays as unknown parameters. Here, we focus on the method of
forming combinations.

With triple-frequency or multi-frequency signals, more useful combinations can be formed [26,32,33],
such as EWL combinations. General triple-frequency phase combinations can be defined as [26]:

∆∇φpi,j,kq “
i ¨ f1 ¨ ∆∇φ1 ` j ¨ f2 ¨ ∆∇φ2 ` k ¨ f3 ¨ ∆∇φ3

i ¨ f1 ` j ¨ f2 ` k ¨ f3
(1)

where the combination coefficients i, j, k are integers, and f 1, f 2, f 3, are three signal frequencies
corresponding to B1, B3 and B2 of BDS or L1, L2 and L5 of GPS, respectively. The DD
(double-differenced) phase measurements of three original DD observations in meters are ∆φ1,
∆φ2, ∆φ3, corresponding to, f 1, f 2 and f 3 According to [26], the phase linear combinations can be
classified as four categories: extra-wide-lane (EWL, λ ě 2.93 m), wide-lane (WL, 0.75 ď λ < 2.93 m),
medium-lane (ML, 0.19 m ď λ < 0.75 m) and narrow-lane (NL, λ < 0.19 m) combinations.

Taking atmospheric errors into account, double-differenced phase and code combinations can be
expressed as:

∆∇φpi,j,kq “ ∆∇ρ´ βpi,j,kq∆∇I ` ∆∇T` λpi,j,kqNpi,j,kq ` ε∆∇φ

∆∇Ppl,m,nq “ ∆∇ρ` βpl,m,nq∆∇I ` ∆∇T` ε∆∇P
(2)

where β is the ionospheric scale factor, the combination coefficients l, m, n are integers, ρ is the
geometrical distance, I is the ionospheric delay on the first frequency, T is the tropospheric delay,
N is the ambiguity of phase combination, λ is the wavelength of phase combination and ε is the
residual error.

Based on the former studies [26,33], several optimal and useful EWL combinations can be
formed, for example, (0, 1, ´1) and (1, ´5, 4) of BDS. Considering the effects of the phase noise
standard deviation and atmospheric errors, total noise level can be defined [26], which is the ratio
of the sum of errors and the wavelength. According to [26], the total noise level of these EWL
combinations is lower than 0.3 cycles in medium baselines case. Therefore, when implementing AR
using these combinations, it is safe to ignore the atmospheric errors.

Theoretically, at least two independent EWL combinations can be formed using triple-frequency
signals. The ambiguities of these two independent EWL combinations are determined first. A WL
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combination then can be derived by combining any of two independent EWL combinations.
Therefore, we can fix the ambiguities of two EWL combinations firstly, and then form a WL signals
from these two ambiguity-recovered EWL combinations for positioning. Theoretically, implementing
wide-lane ambiguity resolution using this method is easier than that in dual-frequency case, because
such EWL combinations cannot be found in dual-frequency case.

We will introduce the procedures of this method in detail in the following paragraphs. Two
independent EWL combinations (EWL-I and EWL-II) have to be selected first, as listed in Table 1.
The characteristics of these selected combinations are also shown. As can be seen, the wavelength of
the EWL combinations is up to several meters. Code combinations also have to be formed to constrain
the phase combinations. Table 2 shows the combinations we selected.

Table 1. Characteristics of the selected phase combinations.

Constellation Combinations Wavelength (m) Ionospheric
Scale Factor (m)

Noise Scale
Factor (m)

BDS
EWL-I (0, 1, ´1) 4.8842 ´1.5915 28.5287
EWL-II (1, ´5, 4) 6.3707 0.6521 172.6135

GPS
EWL-I (0, 1, ´1) 5.8610 ´1.7186 33.24
EWL-II (1, ´6, 5) 3.2561 ´0.0744 103.80

Table 2. Characteristics of the selected code combinations.

Constellation Combinations Ionospheric Scale Factor (m) Noise Scale Factor (m)

BDS
(0, 1, 1) 1.5915 28.5287
(1, 0, 0) 1.0000 1.0

GPS
(0, 1, 1) 1.7186 33.24
(1, 0, 0) 1.0000 1.0

The first step is to resolve the ambiguity of the first EWL combination ∆∇φEWL´ I . Both
geometry-free and geometry based models can be used. The geometry-free model for EWL-I
combination is as follows:

!

NEWL´I “

„∆∇Pp0,1,1q ´ ∆∇φEWI´I

λEWL´I



round´o f f
(3)

where P indicates the code combinations. λ indicates the wavelength
!

N indicates the fixed
ambiguities. The geometry-based model for EWL-I combination can be written as:

«

∆∇Pp0,1,1q
∆∇φEWL´I

ff

“

«

A 0
A E ¨ λEWL´I

ff«

X
NEWL´I

ff

`

«

ε∆∇Pp0,1,1q

ε∆∇φEWL´I

ff

(4)

where E is the identity matrix. N indicates the ambiguities. X indicates the baseline estimates, such
as position. A indicates the design matrix. ε is the residual errors. As the ionospheric scale factor
of ∆∇P(0,11) is equal to that of ∆∇ϕEWL´I , the ionspheric error can be completely eliminated. The
tropospheric error is also eliminated. When using geometry-free model, rounding method is always
used. When using geometry-based model, the Integer Least Squares (ILS) method is always used,
which was investigated by many researchers [34–36].
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The second step is to resolve the ambiguity of the second EWL combination ∆∇ϕEWL´
ś

according to the following equation. Also, both geometry-free and geometry based models can be
used. The geometry-free model is as follows:

!

NEWL´I I “

„∆∇Pp1,0,0q ´ ∆∇φEWL´I I

λEWL´I I



round´o f f
(5)

The geometry-based model can be written as:

«

∆∇Pp1,0,0q
∆∇φEWL´I I

ff

“

«

A 0
A E ¨ λEWL´I I

ff«

X
NEWL´I I

ff

`

«

ε∆∇Pp1,0,0q

ε∆∇φEWL´I I

ff

(6)

As the ionospheric factor of ∆∇P(0,11) is not equal to that of ∆∇ϕEWL´
ś, the ionspheric error

cannot be completely eliminated. However, the tropospheric error is eliminated.
Based on the above two independent resolved EWL ambiguities, the ambiguity of WL

combination ∆∇ϕp1,0,´1q or ∆∇ϕp1,´1,0q can be computed according to the linear relationship, e.g.,
!

Np1,0,´1q “ 5 ¨
!

Np0,1,´1q `
!

Np1,´5,4q. Then, we can derive the WL observables which can be considered
as precise pseudorange observables:

∆∇rΦWL “ ∆∇φWL ` λWL
!

NWL (7)

The success rate of WL AR is dependent on the success rate of the two EWL combinations.
For dual-frequency signals, HMW combinations can be formed, which eliminate both geometric
terms (including clock errors, tropospheric delay, etc.) and ionospheric delays (first-order). In
the double-difference case, only wide-lane ambiguities, multipath and measurement noise remain.
Therefore, the ambiguities of WL measurement can be computed conveniently. Since the wavelength
of the WL measurement is longer than 80 cm, we can fix its ambiguity much easier than that of original
measurements [17,37].

The formula of DD HMW combination can be expressed as:

∆∇LHMW “

„

p f1φ1 ´ f2φ2q

f1 ´ f2
´
p f1P1 ` f2P2q

f1 ` f2



{λWL12 “ NWL12 ` εHMW (8)

where f 1 and f 2 are the frequencies of the signals; εHMW denotes the residual errors and observational
noise of HMW combination, which is in units of wide-lane cycles. λWL12 is the wavelength of
wide-lane measurements, which can be computed as follows:

λWL12 “
c

p f1 ´ f2q
(9)

where c denotes the speed of light. NWL12 is the ambiguity of wide-lane measurements, which is
defined as:

NWL12 “ N1 ´ N2 (10)

where N1 and N2 are the ambiguities of original measurements.
Using geometry-free model, WL ambiguities can be obtained:

!

NWL “
“

∆∇LHMW
‰

round´o f f (11)

where ∆∇LHMW indicates the averaged value of DD HMW combination. According to former
studies [17,37], ten to thirty minutes are usually needed for averaging.
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2.2. Positioning Model

After the ambiguities of wide-lane observations are fixed, positioning with wide-lane
observations can be implemented. The model is as follows:

∆∇rΦWL “ AX` ε∆∇φWL (12)

The estimated parameters are only user positions. Since the atmospheric errors are not
parameterized or eliminated, this model still suffers from the impact of atmospheric errors. The
positioning accuracy are analyzed in detail in the section entitled “Theoretical analysis”.

3. Code-based Differential Positioning

The positioning accuracy of the proposed method will be compared with the code-based
differential positioning, therefore, the code-based DGNSS model will be briefly introduced here.
Code-based DGNSS uses code measurements for positioning. Based on the similarity of the
atmospheric errors of base and rover stations, the corrections produced by base station are used for
the positioning of rover station.

In base station, corrections at time t0 are computed as follows:

PRCS pt0q “ rP´ ρ “ dts ´ dtr ` T` I ` ε
rP (13)

where rP represents the original code or carrier-smoothed code; ρ represents the geometrical distance
between satellite and receiver; dts represents the satellite clock errors; dtr represents the receiver clock
errors; T represents the tropospheric delays; I represents the ionospheric delays; ε

rP represents the
measurement noise.

The positioning model of the rover station is as follows:

v “ rP´ pdts ´ dtr ` T` Iq ` ε
rP “ P´ PRCS ptq ` ε

rP (14)

where t indicates the time when a user received the correction for positioning. PRCS(t) is computed
according to the following equation:

PRCS ptq “ PRCS pt0q ` RRCS pt0q pt´ t0q (15)

When rP represents the original code, the model is original code based differential positioning
method. When P represents the carrier-smoothed code, the model become carrier-smoothed code
based differential positioning method. Applying least square method, rover position can be obtained.

For code carrier-smoothing, the general formula is as follows:

Ppnq “ φpnq `
1
n

n
ÿ

i“1

´

Ppiq ´ φpiq

¯

(16)

where n represents the number of epochs. i indicates at ith epoch. P and φ can be original
measurements or combinations. Its recursive form can be written as:

$

&

%

Ppnq “ Pp1q for n “ 1

Ppnq “
1
n

Ppnq `
n´ 1

n

´

Ppn´1q ` φpnq ´ φpn´1q

¯

otherwise
(17)

There are several computing methods for code carrier-smoothing. Hatch [19], Goad [20] and
McGraw [38] investigated the carrier-smoothing algorithm. McGraw [38] proposed an ionospheric
divergence-free carrier-smoothing algorithm, P and φ adopt the following form:
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$

’

&

’

%

P “ P1

φ “
f 2
1 ` f 2

2
f 2
1 ´ f 2

2
φ1 ´

2 f 2
2

f 2
1 ´ f 2

2
φ2

(18)

Because the ionospheric scale factor of the carrier phase combination part is equal to 1, and
its sign is same as that of code measurement, this algorithm will not be affected by the ionospheric
delay divergence.

4. Theoretical Analysis

For carrier phase measurements, high positioning accuracy can be achieved only when its
ambiguities are fixed. Therefore, the fixing rate of the ambiguities decides the accuracy and reliability
of the positioning results in large extent. In this section, the fixing rate of WL AR using dual-frequency
signals and triple-frequency signals are analyzed theoretically. The wide-lane observational errors
are larger than those of narrow-lane or original carrier phase measurements, thus the positioning
accuracy is lower than that of narrow-lane measurements. It is necessary to figure out what
positioning accuracy the wide-lane signals can achieve over medium distances. Therefore, the
positioning accuracy is also evaluated theoretically, and compared with that of carrier-smoothed code
differential positioning in this section.

For convenience, we define:

(a) DFWL-DGNSS: WL differential positioning with dual-frequency signals;
(b) TFWL-DGNSS: WL differential positioning with triple-frequency signals;
(c) ORC-DGNSS: original-code based differential positioning;
(d) CSC-DGNSS: carrier-smoothed-code based differential positioning.

4.1. Theoretical Fixing Rate

According to [39], when using rounding method, the theoretical fixing rate can be expressed as:

Psucc “

0.5´ µN̂
σN̂
ż

´8

1
?

2π
e´z2{2dz´

´0.5´ µN̂
σN̂
ż

´8

1
?

2π
e´z2{2dz (19)

where σN̂ is the standard deviation of the errors of the float ambiguities, µN̂ is the bias of the
float ambiguities. We use this formula to assess the theoretical fixing rate of TFWL-DGNSS and
DFWL-DGNSS. Since Equation (19) corresponds to a rounding method, some difference will be
caused to the fixing rate when TFWL-DGNSS uses ILS method. However, the fixing rate of ILS
method used in geometry-based model will be higher or at least equivalent to that of rounding
method used in geometry-free model [40]. In addition, DFWL-DGNSS uses the rounding method.
Therefore, it is still reasonable for us to evaluate the fixing rate using Equation (19).

From the analysis of Section 2.1, we can learn that the float ambiguities of the EWL-I combination
are not affected by the atmospheric errors, whereas the float ambiguities of the EWL-II combination
are affected by the residual atmospheric errors.

Assuming that the standard errors of undifferenced phase and code measurements are
σPu = 0.3 m and σφu = 0.003 m, respectively and taking the double-differenced (DD) case into
account, the standard errors of the float ambiguities for BDS WL (computed based on the HMW
combination), EWL-I and EWL-II combinations will be σN̂WL

= 0.565 cycles, σN̂EWL´I
=0.087 cycles

and σN̂EWL´I I
= 0.188 cycles, respectively. The values are computed based on Equations (3), (5) and (8)

according to the error propagation law. Since the float ambiguities of EWL-II are affected by the
atmospheric errors, biases might exist in the float ambiguities. Assuming that residual ionospheric
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delay is 0.40 m, the caused biases for EWL-II will not exceed 0.11 cycles. We roughly assume that the
residual atmospheric errors cause a bias of 0.11 cycles to the EWL-II float ambiguities. Therefore, the
forms of the distribution for the float ambiguities of WL, EWL-I and EWL-II are ε N̂WL

„ N p0, 0.565q,
ε N̂EWL´I

„ N p0, 0.087q and ε N̂EWL´I I
„ N p0.11, 0.188q, respectively. In a similar way, the distributions

of the float ambiguities for GPS WL, EWL-I and EWL-II combinations can be obtained.
Based on Equation (19), we computed the theoretical fixing rate of WL and two EWL

combinations, as shown in Table 3. As can be seen, the fixing rates of the BDS EWL-I and EWL-II
combinations are higher than 98.0%, whereas the fixing rate of the BDS WL combination is lower
than 65%. The values indicate that the ambiguities of the selected two EWL combinations can be
resolved with a rather high fixing rate.

Table 3. Theoretical fixing rate of WL and EWL combinations.

Combinations
Theoretical Fixing Rate

BDS GPS

WL 62.38% 62.65%
EWL-I ~100.00% ~100.00%
EWL-II 98.04% 91.67%

4.2. Theoretical Accuracy

We first analyze the accuracy of the CSC measurements. Equation (16) can be rewritten as:

Ppnq “
n´ 1

n
φpnq ´

1
n

n´1
ÿ

i“1

φpiq `
1
n

n
ÿ

i“1

Ppiq (20)

Assuming that the accuracy of DD code measurement is σP, the accuracy of DD carrier phase
measurement is σφc , then the accuracy of the carrier-smoothed code measurements can be computed
as follows:

σP “

c

n´ 1
n

σ2
φc
`

1
n

σ2
P (21)

where:

σφc “

g

f

f

e

˜

f 2
1 ` f 2

2
f 2
1 ´ f 2

2

¸2

`

˜

2 f 2
2

f 2
1 ´ f 2

2

¸2

σφ “ 6.24σφ (22)

where σφ indicates the accuracy of original DD carrier phase measurement. Then, we have:

σP “

c

n´ 1
n

`

6.24σφ

˘2
`

1
n

σ2
P (23)

For wide lane measurements, only carrier phase measurements have to be taking into account,
the accuracy can be computed as follows:

σφWL “

d

ˆ

f1

f1 ´ f2

˙2
σ2

φ1
`

ˆ

f2

f1 ´ f2

˙2
σ2

φ2
“

d

ˆ

f1

f1 ´ f2

˙2
`

ˆ

f2

f1 ´ f2

˙2
σφ “ 6.87σφ (24)

Assuming that σPu = 0.3 m and σφu = 0.003 m and taking the double-differenced (DD) case into
account, we calculated the standard deviation of CSC measurements and WL measurements versus
the number of epochs, as shown in Figure 1. From the above two equations and Figure 1, we can
learn that the accuracy of the WL measurement is comparable to that of the CSC measurement when
a sufficient number of epochs are used. However, the accuracy of the CSC measurement is lower
than that of the WL measurement for the first several hundred epochs. In other words, certain time
smoothing is needed for CSC measurements to reaching a relatively high accuracy. In addition,
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CSC measurements can be regarded as a phase measurement with ambiguity without fixing to
integer, but roughly calculated by the following expression:

1
n

n
ÿ

i“1

´

Ppiq ´ φpiq

¯

(25)

Therefore, the accuracy of CSC measurement also depends on whether the hardware delays
of the signals are relatively stable and how long the multipath errors and observational noise
can be eliminated or largely reduced. According to [41], the stability of BeiDou between-receiver
differential code biases shows a dependence on satellite type, which has impacts on the
carrier-smoothing performance.Sensors 2015, 15, page–page 
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Figure 1. Standard deviation of CSC measurements and WL measurements versus the number
of epochs.

In the medium baselines case, atmospheric errors also have an impact on positioning, because
the atmosphere delays are not considered when implementing positioning for both algorithms. For
tropospheric delays, the impacts is identical for both methods. For ionospheric delays, however, the
impacts are different, because they dependent on frequency. The ionospheric scale factors of WL and
CSC measurements are as follows:

$

&

%

βφWL “
f 2
1

f1 ´ f2

ˆ

1
f1
´

1
f2

˙

“ ´1.293

βP “ 1
(26)

As can be noticed, the ionospheric scale factor of WL measurements is a little higher than that of
CSC measurements. Taking atmospheric errors into account, the user range error (URE) of WL and
CSC measurements can be computed as follows:

UREWL “
b

σ2
φWL

` σ2
trop ` β2

WL ¨ σ
2
iono (27)

UREP “
b

σ2
P
` σ2

trop ` σ2
iono (28)

Table 4 gives two sets of error budgets to roughly represent the short and medium distance cases.
The errors refer to original measurements on the first frequency. Based on these error budgets, UREWL
and UREP for both short baselines and medium baselines are computed, as shown in Table 5. For
UREP, we assume that the measurements have been implemented enough time carrier smoothing.
The results indicate that the positioning accuracy of both methods will be mainly affected by the
atmospheric errors in medium baselines. Therefore, the positioning accuracy will be approximately
in the decimeter level.
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Table 4. DD phase error budgets for short and medium distance [26].

Error Factors Noise Troposphere Ionosphere

Short distance (0–10 km) «0.6 cm <1 cm <10 cm
Medium distance (10–100 km) «0.6 cm <5 cm <40 cm

Table 5. URE of CSC and WL measurements.

Case UREP UREWL

Short distance (0–10 km) 0.107 m 0.136 m
Medium distance (10–100 km) 0.405 m 0.520 m

5. Data Collection and Processing Strategies

Observations of one short baseline and six medium baselines collected in static mode are used
for our experiments. The baseline information is presented in Table 6. CUTA-CUT2 is located at
the Curtin University of Technology (CUT, Perth, Australia). The data were collected on July 20
(DOY 201), 2015. The stations of the six medium baselines are located in Wuhan (China). The data
were collected on February 22 (DOY 053), 2014. All of the data were obtained using Trimble NetR9
receivers, which can receive both GPS and BDS signals. The sampling rate of is 30 s for CUTA-CUT2
and 1 s for the six medium baselines.

Table 6. Baseline information.

Baseline Distance

CUTA-CUT2 8.4 m
WHCD-WHHP 47.2 km
WHHN-WHHP 68.8 km
WHEZ-WHCD 83.9 km
WHEZ-WHHN 77.0 km
WHEZ-WHHP 74.5 km
WHHN-WHCD 28.7 km

For the DFWL-DGNSS method, observations on B1 and B2 frequencies are used for the test.
For ORC-DGNSS method, we use the code measurement on B1 frequency for positioning. As
to CSC-DGNSS, code measurements on one frequency and carrier phase measurement on two
frequencies have to be used for carrier-smoothing. For GPS, we use code measurement on L1 and
carrier phase measurements on L1 and L2. For BDS, we use code measurement on B1 and carrier
phase measurements on B1 and B2. Details of the data processing strategy are summarized in Table 7.

Table 7. Processing strategy.

Options Processing Strategy

Ephemeris BeiDou broadcast ephemeris
Elevation cutoff angle 15˝

Observation weighting Elevation-dependent weightingRatio between standard
deviation of phase and standard deviation of code: 1:100

6. Empirical Analysis

In this section, the fixing rate and positioning accuracy are evaluated empirically with
observational data.
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6.1. Empirical Fixing Rate

Using observations of the six medium baselines presented in Table 6, the biases of the float
ambiguities for the WL, EWL-I and EW-II combinations relative to their corresponding true integer
ambiguities are computed. The float ambiguities of the WL combination are computed based on
the HMW combination. The float ambiguities of the EWL-I and EWL-II combinations are computed
based on Equations (3) and (5), respectively.

Figure 2 shows the biases of the WL float ambiguities of WHCD-WHHP in DOY-053 of 2014
for different types of satellites as examples. It can be noticed that the WL float ambiguities exhibit
large errors with respect to the WL integer ambiguities. The maximum error is close to three cycles.
Obvious systematic errors can be observed from the WL float ambiguities of the BDS GEO satellites
(C01-C02), which are mainly caused by the systematic multipath errors of GEO satellites [42,43].Sensors 2015, 15, page–page 
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Figure 2. Dual-frequency WL float ambiguities of the GPS and BDS satellites for baseline
WHCD-WHHP. The red line indicates the threshold for rounding. Green dots indicate the values
of WL float ambiguities.

Figures 3 and 4 present the biases of the EWL-I and EWL-II float ambiguities of WHCD-WHHP
in DOY-053 of 2014 for different types of satellites. It can be noticed that the errors of the EWL-I and
EWL-II float ambiguities with respect to their integer ambiguities is smaller than 0.5 cycles most of
the time, which is much smaller than those of the WL float ambiguities. The results of the EWL-II
combination are a little lower than that of the EWL-I combination, which is mainly because the
atmospheric errors are not fully eliminated for the EWL-II combination model. Furthermore, the
fixing rate of GPS results is a little lower than that of BDS. This may be caused by the larger multipath
errors of GPS code measurements. Fortunately, the fixing rate is extremely high for both the EWL-I
and EWL-II combinations.
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We also computed the AR fixing rate of WL, EWL-I and EWL-II using observations of the six
medium baselines, as shown in Table 8. The fixing rate of the WL combination is computed based
on the HMW combination. The fixing rates of the EWL-I and EWL-II combinations are computed
based on Equations (3) and (5), respectively. As can be noticed from this table, the fixing rate of both
BDS EWL-I AR and EWL-II AR is close to 100%, though the fixing rate of EWL-II AR is a little lower.
The fixing rate of WL AR using the HMW combination, however, is lower than 65%. Specifically, the
fixing rate of GPS WL AR is even lower than 60%. These results indicated that we can obtain WL
measurements using single-epoch triple-frequency signals with extremely high success rate, which is
impossible in the dual-frequency case.
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Table 8. Fixing rate of GPS/BDS AR. The fixing rate of the WL combination is computed based on the
HMW combination. The fixing rates of theb EWL-I and EWL-II combinations are computed based on
Equations (3) and (5), respectively.

Combinations GPS MEO BDS GEO BDS IGSO BDS MEO

WL 59.30% 62.45% 65.11% 63.31%
EWL-I 99.90% 100.00% 99.98% 99.99%
EWL-II 82.18% 99.98% 98.57% 99.35%

Multi-epoch smoothing or averaging algorithms also can be used to obtain the right solution.
In this case, the smoothing time is very important. We compared the time needed for smoothing for
different combinations. The time needed for achieving 100% fixing rate for dual-frequency signals
and triple-frequency signals are computed. Figure 5 presents the averaged double-differenced HMW
series of baseline WHCD-WHHP versus e time as an example. As can be noticed, several minutes to
several tens of minutes are needed to obtain the correct wide-lane integer ambiguities for the BDS
IGSO and MEO satellites. The time needed for GEO satellites is even longer. The minimum time for
reaching 100% fixing rate is listed in Table 9. As can be noticed from this table, the needed time for
obtaining the right solution for GPS dual-frequency signals and BDS dual-frequency signals are tens
of minutes and several hours, respectively, which are much longer than that of GPS triple-frequency
signals and BDS triple-frequency signals. These results indicate that implementing WL AR in a
short time span using dual-frequency signals cannot be achieved. This is rather severe for BDS
GEO satellites, since its multipath impact is large [42,43]. However, when triple-frequency signals
are provided, the impact of noise and multipath of code measurements can be largely reduced by
forming EWL combinations. WL measurements can thus be obtained with high fixing rates by linear
derivation, which can be used for positioning.
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Table 9. Minimum time needed for reaching 100% fixing rate. The results of the WL combination are
computed based on the HMW combination. The results of the EWL-I and EWL-II combinations are
computed based on Equations (3) and (5), respectively.

Combinations BDS GEO BDS IGSO BDS MEO

WL 24 h 1 h 45 min
EWL-I 1 s 3 s 2 s
EWL-II 2 s 25 s 25 s

6.2. Empirical Accuracy

Observational data of seven baselines listed in Table 6 are used for this test. The rounding
threshold of the DFWL-DGNSS method is set as 0.2 cycles to guarantee reliable results. The
ILS algorithm is applied for AR for TFWL-DGNSS method. Ratio test [44] is used to validate
the ambiguity results. The threshold is set as 3.0 for the ambiguity validation of both EWL-I
and EWL-II. Figure 6 shows the positioning errors of ORC-DGNSS, CSC-DGNSS, DFWL-DGNSS
and TFWL-DGNSS obtained from BDS observations for baseline WHCD-WHHP as an example.
As can be noticed, the positioning accuracy of ORC-DGNSS is much lower than those of the
other three methods. The positioning accuracy of DFWL-DGNSS and TFWL-DGNSS are almost
comparable to that of CSC-DGNSS. Theoretically, the accuracy of DFWL-DGNSS and TFWL-DGNSS
will be equivalent each other once ambiguities are fixed. However, the errors of some epochs for
DFWL-DGNSS are larger than that of TFWL-DGNSS, especially during the first several hours. This
can be attributed to two reasons. Firstly, in some epochs, many WL observations are excluded because
the fractional parts of their float ambiguities exceed the rounding threshold, thus the observations
which can be used for positioning is few. The second reason is that there are some wrongly fixed
wide-lane ambiguities in some epochs. We also can see that the positioning errors of CSC-DGNSS in
the first several tens of epochs are relatively large. This is because the noises of the code measurements
have not yet been smoothed to a rather low level.Sensors 2015, 15, page–page 
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Figure 7 shows the RMS of the positioning errors for the seven baselines. In order to figure
out whether the positioning accuracy is related to the baseline length, the results are ordered by the
baseline distance. For comparison, the CSC-DGNSS results obtained from GPS observations are also
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presented. It is shown that the positioning accuracy is somehow dependent on the baseline distance.
For short baselines, the positioning accuracy is relatively high, especially for TFWL-DGNSS results.
For medium baselines, the accuracy of most results is lower than that of the short baseline case. As
the baseline length increases, the positioning accuracy shows a decreasing trend. Some abnormal
cases are seen for BDS results, which may be caused by the systematic multipath errors of BDS code
measurements [43]. Fortunately, the positioning accuracy of TFWL-DGNSS for all the six medium
baselines is at the decimeter level.
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Figure 7. RMS of the positioning errors versus the baseline length. The left panel is for CSC-DGNSS
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Table 10 presents the averaged RMS of the positioning results of ORC-DGNSS, CSC-DGNSS and
TFWL-DGNSS for the six medium baselines. As can be seen, the accuracy of ORC-DGNSS is 5–7 dm
in horizontal and lower than 18 dm in the up direction, much lower than those of the CSC-DGNSS
and TFWL-DGNSS results. The accuracy of TFWL-DGNSS is 1.0–1.5 dm in horizontal and about 6
dm in the up direction. The accuracy of CSC-DGNSS for BDS observations and GPS observations is
also different. The accuracy of CSC-DGNSS with BDS observations is 1.5–2.5 dm in horizontal and
about 8 dm in the up direction, which is lower than that of TFWL-DGNSS in both the horizontal and
up directions. The accuracy of CSC-DGNSS with GPS observations is about 1.7 dm in horizontal and
about 4.5 dm in the up direction, which is a little lower than that of TFWL-DGNSS in the horizontal,
but a little higher than that of TFWL-DGNSS in the up direction.

Table 10. Averaged RMS of CSC-DGNSS and TFWL-DGNSS. Units are in meters.

Method East North Up 3D

ORC-DGNSS (BDS) 0.528 0.642 1.713 1.904
CSC-DGNSS (BDS) 0.248 0.187 0.790 0.852
CSC-DGNSS (GPS) 0.176 0.164 0.441 0.507

TFWL-DGNSS (BDS) 0.140 0.099 0.565 0.593

In order to evaluate the impact of the signal interruption to these methods, we processed 4 h
of WHCD-WHHP data with simulated signal interruptions. The simulation is implemented by
reinitializing all the estimating parameters for every 300 s during the processing. The results with
no signal interruptions are also obtained for comparison. Figure 8 shows the positioning errors of
CSC-DGNSS and TFWL-DGNSS in both the signal interruption case and no signal interruption case
for baseline WHCD-WHHP. As can be noticed, the CSC-DGNSS results of both BDS and GPS are
affected by signal interruptions. Relatively high accuracy can only be reliably achieved when certain
time smoothing is implemented after signal interruption for CSC-DGNSS. TFWL-DGNSS, however, is
almost not affected by signal interruption. Since single-epoch AR can be implemented with very high
success rate, high accuracy positioning results can be obtained immediately after signal interruption.
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By splitting the observational data into different time spans, ranging from several seconds to
several minutes, we also computed the accuracy versus the time of CSC-DGNSS and TFWL-DGNSS.
The results are presented in Figure 9. As can be seen, for CSC-DGNSS, the shorter the time span, the
lower the accuracy is. Relatively high accuracy only can be achieved after 60–200 s of data are used.
In contrary, the accuracy of TFWL-DGNSS remains stable regardless of the time span. These results
display the advantage of TFWL-DGNSS for obtaining high accuracy positioning results rapidly.
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several minutes, we also computed the accuracy versus the time of CSC-DGNSS and TFWL-DGNSS. 
The results are presented in Figure 9. As can be seen, for CSC-DGNSS, the shorter the time span, the 
lower the accuracy is. Relatively high accuracy only can be achieved after 60–200 s of data are used. 
In contrary, the accuracy of TFWL-DGNSS remains stable regardless of the time span. These results 
display the advantage of TFWL-DGNSS for obtaining high accuracy positioning results rapidly. 
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case and no signal interruption case for baseline WHCD-WHHP. The top panels are for the results 
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Figure 8. Positioning errors of the CSC-DGNSS and TFWL-DGNSS in both the signal interruption
case and no signal interruption case for baseline WHCD-WHHP. The top panels are for the results
without simulated signal interruption, whereas the bottom panels are for the results with simulated
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Figure 9. Positioning accuracy versus time for CSC-DGNSS and TFWL-DGNSS. The left panel is for 
CSC-DGNSS results derived from BDS observations, the middle panel is for CSC-DGNSS results 
derived from GPS observations whereas the right panel is for TFWL-DGNSS results derived from 
BDS observations. 

7. Conclusions 

In this paper we present a wide-lane positioning algorithm based on BDS triple-frequency 
signals, which can implement instantaneous real-time kinematic positioning with decimeter level 
positioning accuracy over medium distances. The fixing rate and positioning accuracy are carefully 
analyzed theoretically first, and then verified empirically by processing the data sets of seven 
baselines. The positioning performance is compared with that of carrier-smoothed code positioning. 

The results indicates that the AR fixing rate of triple-frequency WL method with BDS 
observations can reach over 98%, which is much higher than that of DFWL-DGNSS. Decimeter level 
accuracy can be achieved by TFWL-DGNSS method, which is comparable to that of CSC-DGNSS 
method when using continuous observations. Signal interruption simulation experiments indicate 
that relatively high accuracy positioning results cannot be immediately obtained with the 
CSC-DGNSS method when signal interruption happens. However, they can be achieved using the 
TFWL-DGNSS method. The results imply that a high AR fixing rate and relatively high positioning 
accuracy can be achieved for the TFWL-DGNSS method with single-epoch or very short time 
observations, representing a significant advantage compared to the CSC-DGNSS method. The 
presented method can be an alternative method for the users requiring decimeter level rapid 
positioning results over medium distances. In future studies, the atmospheric errors should be 
considered to further improve the positioning accuracy. In addition, triple-frequency observations 
of the other GNSS systems can be added to improve the performance. 
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7. Conclusions

In this paper we present a wide-lane positioning algorithm based on BDS triple-frequency
signals, which can implement instantaneous real-time kinematic positioning with decimeter level
positioning accuracy over medium distances. The fixing rate and positioning accuracy are carefully
analyzed theoretically first, and then verified empirically by processing the data sets of seven
baselines. The positioning performance is compared with that of carrier-smoothed code positioning.

The results indicates that the AR fixing rate of triple-frequency WL method with BDS
observations can reach over 98%, which is much higher than that of DFWL-DGNSS. Decimeter level
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accuracy can be achieved by TFWL-DGNSS method, which is comparable to that of CSC-DGNSS
method when using continuous observations. Signal interruption simulation experiments indicate
that relatively high accuracy positioning results cannot be immediately obtained with the
CSC-DGNSS method when signal interruption happens. However, they can be achieved using
the TFWL-DGNSS method. The results imply that a high AR fixing rate and relatively high
positioning accuracy can be achieved for the TFWL-DGNSS method with single-epoch or very
short time observations, representing a significant advantage compared to the CSC-DGNSS method.
The presented method can be an alternative method for the users requiring decimeter level rapid
positioning results over medium distances. In future studies, the atmospheric errors should be
considered to further improve the positioning accuracy. In addition, triple-frequency observations
of the other GNSS systems can be added to improve the performance.
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